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Abstract

In the present study we investigate the secondary ingtabfithe in-phase synchronized vortex shedding from two
side-by-side circular cylinders at low Reynolds numbensgo Tistinct Floquet modes become unstable for different
values of the Reynolds number and of the non-dimensionaspaping, leading to the onset of the well-knofip-
flopinstability of the two cylinder wakes. In both cases the mmensional Floquet analysis reveals that at very low
Reynolds numbers, a pair of complex-conjugate multipleesses the unit circle, showing the same frequency as the
biased gap-flow flip-over. In the past literature this bebavhas been often ascribed to a bi-stability of the flow. On
the contrary, the present DNS and stability results proeiddence that, at low Reynolds numbers, the flip-flopping
behaviour originates from a Neimark-Sacker bifurcatiothefin-phase shedding cycle.

Keywords:
Secondary instabilities, Floquet stability analysis, sige-by-side cylinders, flip-flop.

1. Introduction

Bluff body wake interaction plays an important role in seféndustrial applications, such as, for instance, in
the flow past tube bundles in heat exchangers or in the dedigigb-rise buildings. A simple, yet interesting
prototype of this kind of flows is represented by the incorspilele flow past two side-by-side circular cylinders
(zdravkovich, 1977). In this configuration, the two cylimdare aligned along the direction perpendicular to the
free stream (see Fig. 1) and the flow is governed by two inddgr@mon-dimensional parameters: the Reynolds
number Re= U2 D*/v and the non-dimensional distance between the cylindeasesty = g*/D, Uz being the
free-stream velocityD* the cylinder diameter and the kinematic viscosity. As the gap size is varied, basjicall
three distinct vortex shedding regimes are observed: tigesbluff-body regimed < 0.2), the asymmetric regime
(0.2 £ g < 1.2) and the symmetric regime.@L< g < 5) with a synchronization of the vortex shedding from the two
cylinders (Sumner, 2010). The synchronization may ocaheein phase, leading to an anti-symmetric wake pattern,
or in phase opposition resulting in a wake pattern symmeititic respect to the flow centerline. At low Reynolds
numbers both these synchronized patterns have been debarnithe experimental work of Williamson (1985). In
particular, while the symmetric double vortex street camfigion is intrinsically more persistent and survives gjéa
distance from the two cylinders, the idealized anti-symiagtattern rapidly evolves into a single large-scale stree
calledbinary vortexstreet (Williamson, 1985).

Among the various wake patterns that characterize the deresi flow, we are particularly interested in the so
calledflip-floppingpattern that mainly arises in the asymmetric regime. Withis regime, a biased vortex shedding
takes place from the two cylinders, the gap flow between theingadeflected toward one of the two cylinder surfaces.
In some cases the gap flow direction alternatively switcha® fone side to the other, which is commonly referred to
as the flip-flopping behaviour. This phenomenon has beemadxbén several experiments (Bearman and Wadcock,

*Corresponding author
Email addressf ranco. aut eri @ol i m . it (F. Auteri)

Preprint submitted to Fluids and Structures August 26, 2014



1973; Kim and Durbin, 1988; Sumner et al., 1999; Zhou et 802 Wang et al., 2002) and in numerical simulations
(Kang, 2003; Chen et al., 2003; Afgan et al., 2011). For redft high Reynolds numbers, the gap flow changes
direction in an apparently random way as described by KimRundbin (1988) forg = 0.75 and Re= 2 - 7 x 10° or

by Zhou et al. (2002) fog = 0.5 and Re= 5800. At low Reynolds numbers the occurrence of the flip-flogihas
been described by Kang (2003) using two-dimensional nuraksimulations. Kang (2003) found that during the flip-
flopping regime the drag coefficient of each cylinder slowiarges over a time scale one order of magnitude greater
than that of vortex shedding, which is much smaller comp&oetie high Reynolds number case. Two parameter
ranges have been described by the author for the occurréttoe tip-flopping: one main region at intermediate gap
spacing ¥ < g < 1.4 for Re> 50 and one smaller region at larger gap spacidgd g < 2.2 for50< Re < 70
where the flip-flopping is found to coexists with the in-phagachronized pattern. Fgr= 0.7 and Re= 150 and
230 the flip-flop of the gap flow has been experimentally dbscriby Wang et al. (2002), who provided a detailed
analysis of the vortex dynamics associated with the switgdr-phase by means of flow visualizations.

In the past literature, a bi-stability conjecture has beft@noinvoked to explain the onset of the flip-flopping
(Le Gal et al., 1994; Peschard and Le Gal, 1996). In these svbrk authors proposed a system of two coupled
Landau equations to model the interactions between theithesks/-side cylinder wakes. Besides in-phase and anti-
phase synchronized states, the model shows the existersuabfisymmetric locked solutions with a non-trivial
phase difference and amplitude ratio between the two asmif. Based on these results, the authors suggested that
the flip-flop can be interpreted as the alternate switchirigyden these dual asymmetric solutions, driven by external
perturbations. This hypothesis has been further suppbytétizushima and Ino (2008), who showed that in a narrow
range of gap spacing &4 < g < 0.607) the steady base flow past the two cylinders bifurcatestasymmetric
steady state, thus providing a rationale for such integpigri. Recently the global stability analysis of the steady
symmetric base flow has been considered by Carini et al. (§0%HBowing that this pitchfork bifurcation occurs for
a remarkably wider interval of the gap width.$66 < g < 0.725). Notwithstanding, for low Reynolds numbers,
the bi-stability conjecture is not convincing. In fact, thecond small parameter region where the emerging of the
flip-flopping has been documented by Kang (2003) falls oet$ite gap spacing range of bifurcated asymmetric
states (Carini et al., 2014b). Furthermore, within the sdcparameter region reported by the former author, the
co-existence of both the in-phase and the flip-flopping statigigests us that the latter could arise from a secondary,
two-dimensional instability of the in-phase shedding eyttirough a subcritical bifurcation.

Based on two-dimensional DNS and stability analyses, wevghat at low Reynolds numbers and fa60<
g < 2.4 the flip-flopping behaviour originates from a Neimark—Sadkifurcation of the in-phase vortex shedding
cycle, leading to a torus in the phase space. For both thbasepsynchronized and the flip-flopping wake patterns, a
different vortex dynamics is observed betwegen 0.7 andg = 1.8, thus indicating that different physical mechanisms
are involved at intermediate and large gap spacing. Caoretipgly two distinct unstable Floquet modes breaking
the spatio-temporal symmetry of the periodic base flow avado both characterized by the low-frequency of the
respective gap flow flip-over. Their corresponding insigbdomain is described in the parameter plageRe). In
addition a weakly nonlinear analysis in the neighbourhdoithe double Hopf bifurcation point a; = 1.875 and
Re, = 51.51 (Carini et al., 2014b) is performed to get further insighthe nature of the flip-flop instability at large
gap spacing.

The work is organized as follows. The flow configuration areldbverning equations are introducedalong
with some details about the Floquet stability analysis. &hmloyed numerical procedures are summarize{Bin
DNS results are reported §# where the flip-flopping vortex dynamics is investigatedei the stability analysis is
presented irt5. The periodic base flow is illustrated §%.1, for bothg = 0.7 andg = 1.8. Then the domains of
instability of the two Floquet modes are described®?2 and their spatio-temporal structures are presentg8.t
for bothg = 0.7 andg = 1.8. Finally the normal-form of the double Hopf bifurcationaralyzed in§5.4 and some
conclusions are drawn 6.

2. The mathematical problem

The present study deals with the incompressible flow of a Neiah fluid of constant density* around two
identical circular cylinders in side-by-side arrangemewith reference to Fig. 1, the cylinder centres are aligned
on they-axis and symmetrically placed with respect to #axis which is oriented as the free-stream velocity. The
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Figure 1: Sketch of the flow configuration and of the compateti domainQ..

governing incompressible Navier—Stokes equations madernsionless usinB*, U% andp* are written as:

aU 1
% L (U-V)U = -WP+ —V2U
o UV TRe' 7

(1)
V-U=0,

whereU is the velocity field with componentd = (U, V) andP is the reduced pressure. At the outlet boundayy

the above equations are supplemented with the boundarytioorsd-P + 2Re19U/dx = 0 anddV/dx = 0. Both at
the inletl;, and at the side boundari€g, andIyoom, the vorticity is set to zero and the flow perturbation prastiic
by the two cylinders on the incoming uniform stream is asslitoalecay to zero as the leading term in the potential
flow around them. No-slip conditions are imposed on the dgirsurfaces.

2.1. Floquet analysis

As already mentioned we are interested in the two-dimemsiBloquet analysis of the in-phase synchronized
vortex shedding from the two cylinders. For such purpose,ttital flow fieldQ = {U, P} is decomposed as the
sum of the periodic base flolQ, = {Uy, Py}, of periodT and of a small, unsteady perturbatiap= {u, p}, i.e.
Q(x. Y, 1) = Q(x, ¥, t) + eq(x, Y, t), € being the amplitude of the perturbation, withs 1. Since we are concerned with
the stability properties of the periodic base flow, withagd of generality, the total perturbation field can be wmitte
in the formqg(x, y,t) = §(x. y.t) expt) whereo € C is the Floquet exponent argl= {0, p} denotes a non-trivial,
periodic, complex-valued field having the same pefioadf the base flow. By introducing the above decomposition
in the Navier—Stokes equations (1) and getting rid of seamader terms ire, we obtain the following eigenvalue
problem:

aa _ L 1 o0 o

— + 00+ (Up-V)0 + ((-V)Up — —V20+ Vp =0,

ot Re 2
v-a=0.

For the above set of equations the same boundary condititnesluiced so far are applied with homogeneous data. In
addition, a time periodicity constraint is imposed@). For a given Reynolds number and gap spacing, the flow is
unstable if there exists a non-trivial solutiGrwhose associated Floquet exponent has real part greatereha.
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Kang (2003) 134 Q271 Q164
Presentilp) 1409 0262 Q163
Presentlilg) 1408 0266 Q163

Table 1: Comparison of DNS results for the in-phase syndheonvortex shedding from the two cylindersgat 1.5 and Re= 100, beingCp

the mean drag coefficien€C; the maximum amplitude of the lift coefficient fluctuationsda®t the Strouhal number. Due to vortex shedding
synchronization, all these quantities assume the same fafboth cylinders. The present computations have beedorpeed on both the grid
denoted byMp and the finer grid denoted byig.

Figure 2: Flow vorticity snapshot during the in-phase syonfzed vortex shedding gt= 1.5 and Re= 100.

3. Numerical approach

Both the two-dimensional DNS and the Floquet stability gsialhave been carried out on the dom@jreported
in Fig. 1. The computational domain extends for a lerigtk= 125 in thex direction and_y = 100 in they direction.

The inlet (outlet) is located at 50 (75) diameters from thincher centres. O2; the Navier—Stokes equations are
discretized by a second-order finite difference scheme aggsred Cartesian grids and the cylinder surfaces are
treated according to the immersed boundary techniquetexpor Giannetti and Luchini (2007). A total of 433450

grid nodes has been employed, the grid being refined neaylinder surfaces up to the smallest size d¥Din both
directionsx andy. Such grid will be referred to ddy. The third-order Runge-Kutta/Crank-Nicolson scheme psegl

by Rai and Moin (1991) has been used to advance the equatitings, treating the Stokes operator implicitly and the
convective terms explicitly. In this way, the linear systarising from the spatial discretization can be factoredeonc
and for all in the preprocessing phase. The LU solver UMFPADHvis, 2004) has been employed for this task. For
time integration, a non-dimensional time st¢p= 0.03 has been used. Finally, the least stable Floquet modes hav
been computed by repeatedly marching the linearized sy@gover the period” and using the Arnoldi algorithm
implemented in the ARPACK library (Lehoucq et al., 1998) &&iannetti et al. (2010) and Camarri and Giannetti
(2010) for further details.

A DNS convergence check, employing 7R@00 points (gridMg) and a time stepit = 0.015, has been also
performed showing that the present results are convergdd three significant digits. As an example the DNS
results obtained fog = 1.5 and Re= 100 are compared with those of Kang (2003) in Table 1, shogouay overall
agreement. A vorticity snapshot of the flow field illustratithe in-phase vortex shedding from the two cylinders is
reported in Fig. 2.

4. DNS results

Several simulations have been performeddos 0.7 andg = 1.8 while varying the Reynolds number in the
range 50< Re < 70. All the simulations have been started from a random ugldield and have been continued
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Figure 3: Time series of the lift and drag coefficients for tipper (1) and lower cylinder (2) (see Fig. 1) during the fulgveloped flip-flopping
regime:Cy 1, Cp.1 black lines,Cy 2, Cp grey lines. (a,bpy = 0.7 and Re= 688. (c,d)g = 1.8 and Re= 63. In Fig. (b) and (d) round dots are
used to mark the shedding phases corresponding to theiyostapshots which are reported in Fig. 6, on the right aficclumn, respectively.
Dashed vertical lines approximately indicate two subsetigap flow flip-overs marked by square dots in Fig. 5(a) andl. 5(b

up to~ 5000 nondimensional time units. The time traces of the fifl drag coefficients corresponding to the fully
developed flip-flopping regime are illustrated in Fig. 3(@) Re = 688 atg = 0.7 and in Fig. 3(b) for Re= 63
atg = 1.8. In both cases th€_ time series show a characteristic beating like waveforrair tfelative phase is no
more constant but changes with time and the related perindtia multiple or sub-multiple of the vortex shedding
frequency. Correspondingly, the relat€g time traces appear as the superposition of a relatively figgduency
signal, which corresponds to the in-phase vortex sheddmoglulated in amplitude by a low frequency signal which
is shown to be related to the alternate deflection of the gap flo

The spectrum of the lift coefficient fluctuations for the casg = 0.7 is illustrated in Fig. 4(a) showing three
well-defined peaks. The main peak St 0.1119 corresponds to the in-phase vortex shedding, whildotiest
frequency peak $t= 0.0193 is related to the oscillation of the gap flow directiod @&nin good agreement with the
value reported by Kang (2003) for Re 100 andg = 1 (St= 0.018). The third peak is most probably produced by
a nonlinear interaction of the other two modes since=58St; + St,. Similar considerations apply to the spectrum
computed forg = 1.8, see Fig. 4(b). In this case up to six strong peaks can bieglisshed. The lowest frequency
one (St = 0.0137) is still related to the unsteady deflection of the gap.flof the remaining five, the central one
(Sty = 0.1437) corresponds to the vortex shedding frequency whiether four result from the nonlinear interaction
between Stand St. Indeed St = 0.1160~ St — 2St, Sk = 0.1297~ St — St;, S = 0.1577~ St + St; and
St =0.1714~ Sty + 2S4.

In order to investigate the relationship between the aeradyc forces acting on the cylinders and the deflection
of the gap flow, the time history of thé component of the velocity field ak(y) = (0.5,0) is illustrated in Fig. 5.
For bothg = 0.7 andg = 1.8, the sign o/(0.5, 0, t), which provides an indication of the direction of the gamflo
changes at a frequency which is one order of magnitude Idveerthat of the vortex shedding and corresponds to the
lowest frequency peak observed in the spectrum o&theTherefore, the gap flow remains weakly deflected toward
one of the cylinders for more than one vortex shedding perantording to the signals of Fig. 5, the flip-over time
instants (square dots) approximately correspond to thegaiawhich the drag coefficient fluctuations change sign, as
indicated by dashed vertical lines in Fig. 3. Moreover, it ba noticed that an higher drag coefficient is experienced
by the cylinder towards which the gap flow is deflected which general feature of the asymmetric vortex shedding
regime (Sumner, 2010).



(@ (b)

0.1119
1} | il 0.1577
0.8l { og
0.1312
0.6} {06l
od | o4 0.1434
: : 0.1297
0.0193 Dot
0.2} { 02 O
01160 0.1714
| | ‘
0 0.1 02 025 0 005 01 015 02 025
St St

Figure 4: Spectral content of the lift coefficient assodatgth the flip-flopping behaviour. (@ = 0.7 and Re= 68.8. (b)g = 1.8 and Re= 63.
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Figure 5: Time history of the cross-stream velocity compangx,, yp, t) at (Xp, yp) = (0.5,0) during the flip-flopping regime. (&) = 0.7 and
Re=68. (b)g = 1.8 and Re= 63. Black round dots refer to vorticity snapshots in Fig.&e(also Fig. 3) while the two square dots approximately
indicate two subsequent switching phases of the gap flowdtiefte
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deflection of the gap flow is observed. On the contrary for(f@)the gap flow is weakly deflected upward.



The flip-flopping behaviour can be better understood by ictipg the vortex dynamics for the two considered
values of the gap spacing. Almost the same phases duringhewelisig cycle are depicted in Fig. 6 for both cases.
These shedding phases are marked by round black dots in Bigd 3. Forg = 0.7, Fig. 6(a)—(d), larger vortices
are shed from the outer shear layers of the two cylindersevgmialler vortices develop from the inner shear layers.
During one shedding cycle, the two gap eddies merge intouler @ortex street on the same side with the formation
of a narrow and a wide wake behind the two cylinders while glsitarge-scale vortex street is formed in the far
wake. A similar vortex dynamics has been reported by Wiliam(1985) while investigating the asymmetric vortex
shedding regime fog = 0.85 and Re= 200. The merging direction of the gap vortices is not fixeddh&nges with
time according to the switch-over of the gap flow which is wealeflected downward in the snapshots of Fig. 6(a)—
(d). Forg = 1.8, Fig. 6(e)—(h), the vortex dynamics is completely différeln this case two distinct vortex streets
develop from the cylinders and a vortex merging processlaino that characterizing the evolution of the binary
vortex street is observed. An example of such transitiorefgated in Fig. 2 foig = 1.5 and Re= 100: during the
in-phase vortex shedding regime, like-signed vorticesl stidhe same time pair up, merge and rotate around each
other leading to the formation of two counter rotating ventews on opposite sides of the flow centerline, a wake
pattern for which the termbinary streetwas introduced by Williamson (1985). During the flip-flopgat 1.8 this
mechanism occurs only on one side of the wake. This is showigiré(e)—(h) where only counter-clockwise rotating
vortices are observed to merge, while the same does not hdppepposite sign vortices. In particular on the outer,
bottom side of the two cylinder wakes, each gap vortex shad the lower cylinder remains trapped between pairs of
merging eddies, which prevents the formation of the binaryex street structure. In analogy with the casg at0.7,
as the gap flow deflection switches from upward to downwarel biesed pairing process occurs only for negative
sign vortices on the upper wake side. A similar asymmetrikengattern has been described by Le Gal (1991) by
means of flow visualization fay = 4 and Re= 110.

5. Stability results

Contrary to what previously conjectured by other authdms spectra reported in Fig. 4 and the highlighted analo-
gies with the in-phase vortex dynamics for the flip-floppihg & 1.8, suggest that the flip-flopping behaviour could
originate as a secondary instability of the in-phase vasteedding cycle. In order to assess this novel interpretatio
a two-dimensional Floquet stability analysis of the in-pdperiodic base flow has been performed.

5.1. Periodic base flow

The periodic base flow corresponding to the in-phase vottegding limit cycle is illustrated in Fig. 7 and 8 for
g = 1.8 (Re=54) andg = 0.7 (Re= 616), respectively. Fog = 1.8, the base flow displays the same wake structure
which has been described by several authors with the clegistat formation of the binary vortex street in the far field
(Williamson, 1985; Sumner et al., 1999; Kang, 2003). At loeyRolds numbers this flow pattern can been obtained
from DNS in the range of.b < g < 5 (Kang, 2003). Conversely, when reducing the gap widtlp at0.7, Fig. 8,
the resulting in-phase pattern appears still charackbyehe formation of a single large scale vortex street, toait t
underlying vortex dynamics is different from the aforenieméd one. During one period, each small gap eddy is
transported between two subsequent big vortices shed frerauter shear layer on the opposite cylinder side. Thus
gap vortices merge on opposite sides of the outer large stalet. In Fig. 9(a) the in-phase synchronization of the
two wakes forg = 0.7 is confirmed by the superposition of the time traces of thediefficient fluctuations of the
two cylinders4C 1. In addition black round dots are used to mark the sheddiaggshcorresponding to base flow
shapshots in Fig. 8. The same definition of the shedding ghzmee also been used for the casg at 1.8, Fig. 7.
In Fig. 9(b), the signa¥/(0.5, 0, t) associated with the periodic base flow fpe 0.7 and Re= 61.6 shows that gap
flow oscillations are periodic and synchronized with thetewshedding frequency, as expected. The same behaviour
holds for the case @ = 1.8 (not shown here).

It is worthwhile to note that in both cases theperiodicin-phasebase flow obeys the reflection symmetry about
the x-axis when time is advanced &f2: this is clearly highlighted by selected shedding phasésg. 7 and 8. The
same spatio-temporal symmetry has been found to charsetée two-dimensional wake past a single cylinder and
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Figure 7: Vorticity snapshots of the periodic base flowdos 1.8 and Re= 54. Four different shedding phasgsmong the eight in which the
base flow has been equally divided are illustratedp(a)r/2; (b) ¢ = x; (€) ¢ = 3n/2; (d) ¢ = 2n.
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Figure 8: Vorticity snapshots of the periodic base flowdos 0.7 and Re= 61.6. Four different shedding phasg¢gamong the eight in which the
base flow has been equally divided are illustratedp(a)r/2; (b) ¢ = x; (¢) ¢ = 3n/2; (d) ¢ = 2n.
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Figure 9: Periodic base flow far= 0.7 and Re= 616. (a) Lift coefficient fluctuations!C, = C| — C_ of the upper (black continuous line) and
lower cylinder (dashed grey line); black dots are employesiark shedding phases corresponding to the vorticity $rapén Fig. 8. (b) Velocity
componen¥ of the flow field at &, y) = (0.5, 0) as a function of time.

following Robichaux et al. (1999) this symmetry is callefleetional-translation (RT):

{ Uxy,t) = U(x -y, t+T/2),

®3)
V(X y,t) = =V(X -y, t+T/2).

In order to perform a Floquet analysis of the in-phase shmefddycle, the inherent periodic base flow has been
computed for different values of Re in the neighbourhoodhefdritical flip-flop threshold which has been preliminar-
ily estimated through DNS. The base flow Strouhal numbgisStlotted in Fig. 10(a) and 11(a) as a function of Re for
g = 0.7 andg = 1.8, respectively. In particular, at supercritical Reynaldsnbers, a suitable stabilization technique
has to be employed to compute the periodic orbit. Severaloaghes can be adopted, such as the one devised by
Lust et al. (1998) using the Recursive Projection methoddfshand Keller, 1993). Another possibility is to use the
Selective Frequency Damping method proposed by Akervik €@06) (see also Viaud et al. 2011), provided that the
frequency of the periodic base flow is well separated fronfraguency of the unstable mode, as in the present case.
In this paper a different approach has been employed forertence. Basically our stabilization technique relies on
a novel algorithm inspired by the Iterant Recombinationhrodtto accelerate fixed point iterations by correcting the
next iteration with a linear combination of the previous ®fiErottenberg et al., 2001; Luchini, 2011). This algorithm
is similar to a GMRES, but it is able to update with contindhg subspace of vectors used to get the new estimate.

5.2. The stability diagram

The linear stability of the in-phase shedding cycle has Hgshinvestigated for the two considered values of
the gap spacing = 0.7 andg = 1.8 at which DNSs were performed. In both cases the Floqueysigahdicates
that a pair of complex-conjugate multipliers becomes uistabove the critical Reynolds number of R&1.74 for
g = 0.7 and of Re~ 51.72 forg = 1.8. The growth ratel = Re(r) and the frequency St Im(o)/2r of the least
stable Floquet exponent are plotted as a function of Re inJgnd 11 foig = 0.7 andg = 1.8, respectively. For
both these cases, the computed values of St agree well vatlowrest frequency peaks detected from DNS signals,
Fig. 4, thus confirming that a Neimark—Sacker bifurcatiothaf in-phase periodic base flow lies at the root of the
described flip-flopping behaviour. Moreover the Floquet matly = 1.8 becomes stable again for Re 59.84,
Fig. 11(b), indicating that the linear instability of thefinase periodic base flow gt= 1.8 is limited to a small range
of Reynolds numbers. In our simulationsgat= 1.8 the flip-flopping behaviour is still present for Re 60 up to
Re~ 65, while for Re> 65 the in-phase base flow is restored, which is in agreemént€eing (2003) results. This
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Figure 10: Floquet stability results as a function of Redef 0.7. (a) Periodic base-flow Strouhal numbeg.gb) Leading Floquet mode growth
rated = Re(r). (c) Leading Flogquet mode frequency Stm(o)/2x.
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Figure 11: Floquet stability results as a function of Reder 1.8. (a) Periodic base-flow Strouhal numbeg.§b) Leading Floquet mode growth
rated = Re(r). (c) Leading Floguet mode frequency Stm(o)/2x.

11



Figure 12: Neutral stability curves associated with the tmstable Floquet modes of the in-phase limit cycle. The ghaded areas are used to
denote the region of linear instability of the periodic bflee. The dashed and dash-dotted lines correspond to theaheutves associated with

the unstable IP and AP modes on the steady symmetric basedispectively. The round black dot indicates the double Hopimension-two
bifurcation point at the intersection of the IP and AP ndudiranches.
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Figure 13: Variation of the leading Floquet mode frequenty: $n(c-)/2r along the neutral branches of Fig. 12. (a) St is plotted asetifin of
g along the FF1 branch. (b) Stis plotted as a function of Regatba FF2 branch.
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Figure 14: Vorticity field of the unstable direct Floquet nedt(x, y,t) (real part) atg = 0.7 and Re= 61.8. Pictures illustrate four subsequent
shedding phasesamong the eight in which the periodic base flow has been ggdided: (a)¢ = 0; (b)¢ = n/4; (¢)¢ = n/2; (d) ¢ = 3r/4.

suggests that fog = 1.8 the upper bound of the instability domain is associatel wisubcritical Neimark—Sacker
bifurcation.

Starting from these results, the Floguet stability analysis been extended to the regiof & g < 2.4 and
51 < Re < 70 in the parameter plane, tracking the critical Reynoldsiner threshold associated with the leading
Floquet mode. The resulting neutral curves are depictedginl2. The neutral curves associated with the In-Phase
(IP) and Anti-Phase (AP) oscillatory modes, which develppap of the steady symmetric base flow are also reported
in the same diagram (Carini et al., 2014b). These linearajloindes are indeed responsible for the onset of the
corresponding synchronized vortex shedding regimes @darand Mizushima, 2005; Mizushima and Ino, 2008). In
particular, forg = 1.875, the in-phase limit cycle becomes unstable just aba/Btlourve where it exists as a periodic
solution of the governing equations (1). Two distinct domsaof instability, highlighted by the grey shaded areas in
Fig. 12, are described, namely FF1 and FF2. These resulte agry well with the parameter region where the flip-
flop has been observed by Kang (2003) by means of DNS. In platithe occurrence of the flip-flop fgr~ 1.4—-1.5,
in the intermediate region between FF1 and FF2, reporteddmgkand confirmed in our DNS investigations, suggests
that a subcritical behaviour occurs also in this region. e\ev a detailed analysis of the subcritical nature of the
Neimark-Sacker bifurcation is beyond the scope of the prtesealysis. In addition in Fig. 13, the variation of the
leading Floquet mode frequency St along the two neutraldirasmof Fig. 12 is illustrated.

5.3. Direct Floquet mode atg 0.7 and g= 1.8

The vorticity field associated with the real part of the difgloquet moddi(x, y, t) is illustrated in Fig. 14 and 15
for g = 0.7 andg = 1.8, respectively. The mode snapshots correspond to the phasesy = 0, /4, /2, 3x/4 of
the lift coefficient fluctuations,2representing a full cycle. Both unstable modes display &spamporal symmetry
which is opposite with respect to the symmetry of the peddsiise flow, namely(x,y,t) = -0(x, -y,t + T/2),
U(x,y, 1) = U(x, -y, t+T/2). This allows one to easily recover the portrait of the glsdbat are not shown here starting
from the ones that have been reported.

Forg = 0.7 and Re= 618, the time-periodic perturbation field, Fig. 14, appearsnigaconcentrated in the
near-wake region, with an irregular vortex shedding pattkveloping behind the two cylinders and a strong vortical
structure being formed in the region between the two cylimagkes. The sign of this vortical structure is constant
during a shedding periofl and changes with the same frequency of the Floquet expoRarthermore, a shedding
like mechanism takes place at the downstream edge of thisimremd a counter-clockwise rotating vortex is alter-
natively shed on each cylinder side during the in-phasedihgdycle. This mechanism seems to be at the root of
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Figure 15: Vorticity field of the unstable direct Floquet nedi(x, y,t) (real part) atg = 1.8 and Re= 54. Pictures illustrate four subsequent
shedding phasesamong the eight in which the periodic base flow has been ggdaided: (a)¢ = 0; (b)¢ = n/4; (¢)¢ = 7/2; (d) ¢ = 3/4.

the biased merging process of gap eddies which charadeheedocumented vortex dynamics in the flip-flopping
regime ag = 0.7.

Conversely, fog = 1.8 and Re= 54, Fig. 15, the mode structure extends far downstream fhentwio cylinders,
with the region of maximum intensity being located~ab — 6 diameters from the cylinder centres. Two irregular
vortex rows displaying an approximately anti-phase pattee observed with a region of smaller intensity between
them forx = 10. Also in this case the sign of these vortical structuresges with the same frequency of the Floquet
exponent, being constant over the shedding peFiod

5.4. Weakly nonlinear analysis

The existence of a codimension-two Hopf-Hopf bifurcatiaing on the boundary of the flip-flop instability do-
main FF2 atg. = 1.875 and Rg = 5151 where the IP and AP neutral curves intersect (Carini e28ll4b), see
Fig. 12, motivates us to investigate the related phasegitisased on classical bifurcation theory (Kuznetsov,899
Indeed it is known that higher-codimension bifurcatioresyphn important role as ‘organizing centres’ of the system
dynamics in their neighbourhood (Wiggins, 2003). For thesidered bifurcation, the normal form reads

dA
Tt = Al QA+ vasA BI? + vaaAIAP,

dB
5 = o8(e. 9B+ veaBIA® + vegB|BP,

(4)

whereA(t) andB(t) denote the complex critical amplitudes associated wighlhand AP modes, respectively, and
is the reduced Reynolds number, iee= (Re— Re;)/ReRe. The coefficientsra(e, g) andos(e, g) provide a linear
estimate to the IP and AP eigenvalues when the parametensdRgaae varied in a neighbourhood of the bifurcation
point
oa(e, 9) = 2a(e, 0) + iwa(e, 9) = iwao + A€ + Tag(d— Oc)s )
os(e, 0) = As(€, 9) + iwg(e, 9) = iwpo + 0B € + 0B (T — Ue),
wao andwpp being the global mode frequency at criticality. The abovefficients and the remaining ones in (4)
have been computed by means of a centre-manifold reductitrealiscretized Navier-Stokes equations using the
technique recently described by Carini et al. (2014a) whibbws to derive directly the reduced nonlinear system
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wAQ 0.7892

wB,0 0.8620
TAc 11.2833+ 4.5801i
OBe 111258+ 4.2280

oag  —1.4049x 1073 + 2.6793x 1072
osg  A5347x 1072 - 3.3647x 10°%
van —9.5516x 104 + 4.7776x 10°i
vag —6.3149x 1073 + 3.5165x 1073
veg —3.6417x 107 + 1.8609x 10°i
vea  3.2224x 1073+ 8.4219x 107

Table 2: Computed values of the normal-form coefficientatierdouble Hopf IP-AP bifurcation agif, Re:) = (1.8755151) in the flow past two
side-by-side cylinders.

in its normal form. The values of these coefficients are reggbin Table 2. By introducing the polar coordinate
transformatiorA(t) = ra(t)é?A® andB(t) = rg(t)e€?s®, the system (4) can be re-written in the form

dr
d_tA = Aa(e, Q)ra + R{vaplrarz + R{vaalrs,
dI'B _ R 2 R 3
v As(e, O)rg + Rivealrers + Rivesirg,
(6)
Yr _ e, 9)
dt b 9
d
% = ws(€, 0),

where terms of ordes(1) in the last two equations have been dropped accordirttetbifurcation analysis described
by Kuznetsov (1998). Based on the computed values of thealeiorm coefficients, the present situation falls in the
subcase “IlI” of the ‘simple’ case in the classification rejed by this author. In this case, the bifurcation diagram
of (6) is completely determined by that of the planar systehictv consists of the first two equations, while the
remaining equations simply describe rotations in the @apne= 0 andrg = 0. Let us denote by = (ra,rg)" the
reduced state vector collecting the modulu®Aaind B, for all values of the parameters Rethe system (6) admits
the trivial equilibrium point at the origin, i.ero = 0 which corresponds to the steady symmetric base flow. Two
other trivial equilibria are found for; = (ra,0)" andr, = (0,rg)" which correspond to the in-phase and to the
anti-phase vortex shedding limit cycles, respectivelyadidition, a third non-trivial equilibriunmz = (ra, rg) may
also exist which generates a two-dimensional torus in tdaaed four-dimensional phase-space. According to the
related bifurcation diagram, the parameter plane in thght®urhood of the codimension-two bifurcation point can
be roughly partitioned into five regions which are illustiéin Fig. 16. In the same figure the two thick lines represent
the neutral curve branches associated with the IP and AP sn@ddifferent phase-portrait is associated with each
region:

(1) onlyrg exists which is a stable node;

(2) bothrg andr; exist,ro being a saddle and a stable node;

(3) bothrg andr; exist,rg being a saddle ang a stable node;

(4) three equilibria existrg, r1 andrs, ro andr; being saddles ang a stable node;

(5) three equilibria existrg, r; andry, ro being a source;,; a saddle and, a stable node;
15
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Figure 16: Bifurcation diagram resulting from the analysfithe normal form (4) related to the considered codimensiamHopf-Hopf bifurcation
(white dot). Black thick lines indicate the neutral brarglssociated with the IP and AP global modes.

An additional region is defined in the theoretical bifuroatdiagram described by Kuznetsov (1998). With reference
to Fig. 16, this region, i.e. the region 6, corresponds tortiqroof the parameter space where both the IP and AP
eigenmodes are unstable, being separated by the regioougthan additional bifurcation curve originating from the
codimension-two bifurcation point. In the region 6 all tloaif introduced equilibria exist, withy being a sourcer,;
andr, being saddles ang a stable node. However, in the present case, the bifurcetitve separating region 5 and

6 nearly collapses on the AP neutral branch, with the regibeiBg limited to a very narrow stripe near the AP upper
branch.

The phase portrait described by the codimension-two hifizo analysis is consistent with the results of the
linear stability analysis reported in Fig. 12 fgr> 1.5. In fact, both the Floquet stability and the normal-form
analysis indicate that the bifurcation curve which leadbéoquasiperiodic regime lies between the IP and AP neutral
branches fog < gc while for g > gc the in-phase limit cycle becomes unstable in the region Ss @agreement
suggests also that, in the region FF2, the flip-flop behavieay be related to a nonlinear interaction between the
IP and the AP modes. A similar conjecture for the appearahtieeoasymmetric modes at largewas proposed
by Le Gal et al. (1990) based on the linear combination of thphiase and anti-phase oscillations which results in
beating-like waveforms.

It is interesting to note that the normal form (4) shares s@atures with the coupled oscillator model proposed
and investigated by Le Gal et al. (1994) and by Peschard ar@hl €1996). This low-dimensional model consists of
two Landau equations associated with two identical odoilfa i.e. two cylinder wakes, which are coupled through
additional linear terms

A A @+ic) AR + 11+ ics)(B - A).
o ¢ @)
‘3—? =B (L+icy)BIBR + g(1+ ic,)(A— B).

Inthe above equationg e represents the magnitude of the coupling between the tviod®idwakes which is inversely

proportional to the reduced Reynolds number and increakes weducing the distance between the cylinders. In
the present case, the complex amplitudeand B can be associated with the IP and AP critical amplitudes. It
can be noticed that the universal valueogfis approximately the same for both the IP and the AP mode$, wit
Coa = J{vaal/Ri{vaa} = =5.002 andcy o = TF{vaa}l/R{vaa} = —5.110, as assumed in the coupled oscillator model.
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These values are greater in magnitude than the valug ef —3.62 computed for the first Hopf bifurcation of the
cylinder wake (Carini et al., 2014a), which is in good agreatwith those obtained by Sipp and Lebedev (2007)
and by Meliga and Chomaz (2011), and also greater than thesabsted by Peschard and Le Gal (1996). At the
same time, the linear coupling terms in (7) are not presetiterdouble Hopf normal form by construction. On the
contrary, in (4), the coupling between the two oscillatergiven by the third-order term&/BJ2 and B|A). It can

be shown that in the coupled oscillator model, these latten$ can be recovered by introducing a linear coordinate
transformation in order to diagonalize the linear part efitodel. However, by means of such change of coordinates,
additional third-order terms of the for®¢ A> andB|AJ? are also introduced which are not present in (4). These terms
are responsible for a nonlinear behaviour richer than thtiisodouble Hopf normal form, the significance of the latter
being limited to a neighbourhood of the codimension-twaitwétion point. The comparison between the numerical
solutions obtained from the coupled oscillator model vagythe three parametersg ¢, andn/e and the experimental
flow visualizations described by Peschard and Le Gal (199irates that the model can reproduce several flow
behaviours. Among these behaviours, the appearance ofsipgtiadic state in the transition region between the
in-phase and in-phase locked solutions shows a clear analitiythe present Floquet stability results fipg> 1.5.

6. Conclusions

The two-dimensional secondary instabilities of the ingghaynchronized vortex shedding from two side-by-
side circular cylinders have been herein investigatedjigiog a new rationale for the emerging of the flip-flopping
behaviour of the cylinder wakes at low Reynolds numbers. Byams of DNS and stability analyses, two different
mechanisms for the flip-flopping have been identified at 0.7 andg = 1.8. Forg = 0.7, the flip-flop instability is
shown to break the RT-symmetric merging process of smallegiaiies into the outer wake (which characterizes the
corresponding in-phase base flow) resulting in the biasealgamation of both eddies toward the same side of the
outer wake for more than one shedding cycle. Conversely forl.8 the flip-flopping instability is found to inhibit
the formation of the binary vortex street pattern, by préwverlike-sign vortex pairing on one side of the wake but not
on the other side. In both cases the two-dimensional Flogtabtlity analysis of the related in-phase shedding cycle,
shows that a pair of complex-conjugate modes becomes Uastafairly low Reynolds numbers, i.e. Re 6174
forg = 0.7 and Re= 5172 forg = 1.8. Two distinct domains of Floquet instability in the pardereplane ¢, Re)
are described, showing very good agreement with the resiittsned by Kang (2003) by means of DNS. Although
complicated, the spatio-temporal structure of the two &gnodes shows strong analogies with the corresponding
flip-flop mechanism. Furthermore the associated eigenfedgeency agrees well with the lowest St peak extracted
from DNS analysis, which is associated with the gap flow dvater.

These results clearly support the proposed bifurcationas@e for the emerging of the flip-flop compared to the
bi-stability interpretation conjectured by other authdrlis scenario is consistent with the existence of diffefigo
flop mechanisms at moderate and large gap spacing, a fadt vghpointed out here for the first time, to the authors’
knowledge. Furthermore, the weakly nonlinear analysifopered in the neighbourhood of the IP-AP codimension-
two bifurcation point indicates that the quasiperiodicédeébur associated with the flip-flop at large gap spacing may
be related to the nonlinear interaction between the twolaymized shedding modes.

Finally, we note that a clear connection between the low agtl Re flip-flop regimes cannot be stated based
on the present results since the present analysis is testtiz very low Reynolds numbers and it is likely that other
transitions appear at higher Re.
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