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This work presents a hybrid random/fuzzy approach for uncertainty quantification in electromagnetic modelling, which combines
probability and possibility theory in order to properly account for both aleatory and epistemic uncertainty, respectively. In
particular, a typical intrasystem electromagnetic-compatibility problem in aerospace applications is considered, where some
parameters are affected by fabrication tolerances or other kinds of randomness (aleatory uncertainty) and others are inherently
deterministic but unknown due to human’s lack of knowledge (epistemic uncertainty). Namely, a differential-signal line in a satellite
is subject to crosstalk due to a nearby dc power line carrying conducted emissions generated by a dc-dc converter in a wide
frequency range (up to 100MHz). The nonideal features of the signal line (e.g., weak unbalance of terminal loads) are treated
as random variables (RVs), whereas the mutual position of signal and power line is characterized by possibility theory through
suitable fuzzy variables. Such a hybrid approach allows deriving a general and exhaustive description of uncertainty of the target
variable of interest, that is, the differential noise voltage induced in the signal line. The obtained results are compared versus a
conventional Monte Carlo simulation where all parameters are treated as RVs, and the advantages of the proposed approach (in
terms of completeness and richness of information gained about sensitivity of results) are highlighted.

1. Introduction

In recent years, development and application of novel sta-
tistical techniques have received increasing attention from
researchers and engineers working in the electromagnetic-
compatibility (EMC) field, since EMC problems usually
involve several parameters with unknown or variable values.
Several alternative techniques to the traditional Monte Carlo
(MC) method have been proposed, with the objective to alle-
viate the computational burden associated with the repeated-
run simulations required by MC. Among these, advanced
techniques based on implementation of polynomial-chaos
expansion [1–4] and stochastic collocation [5], as well as
stochastic reduced-order models [6, 7], are worth mention-
ing, since they allow getting fast and accurate estimates of the
statistical moments, characterizing the variability of output
quantities, with few computational resources.

All these techniques are based on the representation of
uncertain parameters by random variables (RVs) assigned
with suitable probability distribution functions (pdfs). Such

a priori knowledge and statistical insight, however, are
somehow unfeasible for all uncertain parameters. Indeed,
the uncertainty affecting some parameters is actually due to
lack of knowledge, rather than due to stochastic variability.
This is for instance the case of uncontrolled but deterministic
parameters, whose values are unknown because they are
dependent on the specific, yet not controlled, realization of
the system (e.g., the position of a cable in a test setup, which
depends on the choice of the human operator running the
test). From the theoretical viewpoint, assuming a specific pdf
rather than another one for these parameters is not justified
by the available knowledge and may prevent obtaining reli-
able estimates of the actual variability of output quantities.

This problem is common in several engineering sectors,
such as, for instance, in the field of risk assessment [8–10]
and structural reliability [11–14]. In these sectors, the concept
of epistemic (rather than aleatory) uncertainty as well as
the use of nonprobabilistic approaches has been introduced
several years ago, with the objective of properly manag-
ing the aforesaid lack (of) and/or imprecise knowledge.

Hindawi
Mathematical Problems in Engineering
Volume 2018, Article ID 7921048, 9 pages
https://doi.org/10.1155/2018/7921048



2 Mathematical Problems in Engineering

In particular, several contributions (nonlimited to the afore-
said sectors) make use of possibility theory and repre-
sent system parameters affected by epistemic uncertainty
through fuzzy variables (FVs). Their variability is described
by possibility distributions assigned by experts based on the
plausibility—rather than on the actual frequency of occur-
rence, as in probability theory—of a given event. Since real-
case systems usually involve parameters affected by epistemic
and stochastic/aleatory uncertainty, a great deal of effort
was put in the development of uncertainty quantification
(UQ) techniques that are able to manage hybrid problems
characterized by the presence of both fuzzy and random
variables [8, 15–17].

Little has been done so far in the field of EMC and Signal
Integrity (SI) [18, 19], which anyway highlights the limitations
of classical probabilistic approaches also in this field. For
instance, in [18] a fuzzy-based approach was proposed to
evaluate the risk of susceptibility to electromagnetic radiation
of electronic systems. In [19], a polynomial-chaos-based
techniquewas presented for the propagating epistemic uncer-
tainty in high-speed circuits. In these examples, however,
fully possibilistic problems are addressed, where all uncertain
parameters are modelled through FVs.

This work presents the application of a hybrid
possibilistic-probabilistic approach in a typical intrasystem
EMC problem in the aerospace industry. Namely, conducted
emissions (CE) generated by a dc-dc converter in the electric
system of a satellite are coupled to a victim differential-signal
line through crosstalk, since the line runs in parallel and
in close proximity to the dc power bus where CE are prop-
agating. Different uncertainties characterize the problem,
including the unknown position of the victim signal line
with respect to the power bus (epistemic uncertainty), and
the unbalance of terminal loads due to fabrication tolerances
and/or parasitic effects (aleatory uncertainty). Suitable RVs
and FVs are defined and a hybrid probabilistic/possibilistic
algorithm based on MC simulation is applied to predict the
noise voltage induced in the signal line in a wide frequency
range (up to 100MHz) and to characterize its uncertainty.
Although significant simplifications to the real-case scenario
were introduced, the proposed analysis allows highlighting
the advantage in terms of completeness of the obtained infor-
mation with respect to a fully probabilistic MC approach.

The paper is organized as follows. A brief introduction to
possibility theory and fuzzy sets is presented in Section 2 to
explain the fundamental concepts exploited in this work.The
hybrid UQmethod used to account both for FVs and for RVs
is presented in Section 3. On such basis, the intrasystem EMC
problem is presented and solved in Section 4. Completeness
and quality of the obtained results are critically discussed.
Finally, Section 5 draws concluding remarks.

2. Possibility Theory and Fuzzy Sets

According to possibility theory [20], imprecise or lack of
information on the variability of input parameters is repre-
sented through possibility distribution functions, 𝜋(𝑥):

𝜋 : R → [0, 1] , ∃𝑥 ∈ R : 𝜋 (𝑥) = 1, (1)

which provide convex mapping of the real-number interval
[0, 1]. The values of 𝜋(𝑥) represent the degree of plausibility
of an event, that is, the likelihood that a value 𝑥 of variable
𝑋may lie in a given interval [𝑥1, 𝑥2]. Accordingly, possibility𝜋(𝑥) = 0 is assigned to impossible values, whereas 𝜋(𝑥) = 1
denotes fully plausible values for 𝑥. Since such an assign-
ment has nothing to do with the frequentist interpretation
underlying probability distributions, but it rather represents
a plausibility estimation provided by experts, possibility
distributions do not undergo any area constraint.

The mathematical framework to deal with possibility
distributions is the theory of fuzzy sets [20]. The uncertainty
affecting the variable 𝑋 is therefore modelled through a FV,
that is, through a convex membership function coincident
with the possibility distribution 𝜋(𝑥). Depending on the
available information on 𝑋, different membership functions
can be assigned (i.e., rectangular, triangular, trapezoidal,
etc.). For instance, the rectangular possibility distribution
shown in Figure 1 well represents total lack of knowledge (or
total ignorance) about the distribution of 𝑋 on the assigned
interval [𝑥1, 𝑥2].

Possibility,Π, and necessity,𝑁, measures associated with
the possibility distribution 𝜋(𝑥) in (1) are introduced as

Π (𝐴) = sup
𝑥∈𝐴

𝜋 (𝑥) ,
𝑁 (𝐴) = 1 − sup

𝑥∉𝐴

𝜋 (𝑥) , (2)

where 𝐴 is a subset of R. The former measure estimates
the consistency of 𝐴 with the knowledge described by 𝜋(𝑥).
The latter evaluates how much an event is implied by the
knowledge of 𝜋(𝑥). For a subset 𝐴, Π and 𝑁 always satisfy
the inequality𝑁(𝐴) ≤ Π(𝐴), as it can be easily appreciated in
Figure 2, where possibility and necessity measures associated
with the rectangular possibility distribution in Figure 1 are
shown. Moreover, given the interval 𝐴 = (−∞, 𝑥], these
measures can be interpreted as upper and lower bounds [21]
to the family of infinite probability cdfs,𝑃(𝐴); that is,𝑁(𝐴) ≤
𝑃(𝐴) ≤ Π(𝐴). This property implies that imprecision of
the input (and output) parameters is modelled by a set of
cdfs instead of by a specific cdf, whose choice is usually not
supported by the available knowledge.

FVs can also be interpreted as a series of nested confi-
dence intervals, known as 𝛼-cuts𝐴𝛼 = [inf𝛼, sup𝛼], as shown
in Figure 3 for a triangular membership function.The degree
of confidence that𝑋 is contained in 𝐴𝛼 is equal to

𝑁(𝐴𝛼) = 1 − sup
𝑥∉𝐴
𝛼

𝜋 (𝑥) = 1 − 𝛼. (3)

The 𝛼-cut corresponding to 𝛼 = 0 is the support of 𝜋(𝑥) with
𝑁(𝐴𝛼) = 1, whereas the interval that corresponds to 𝛼 = 1
is the core of the possibility distribution and is characterized
by 𝑁(𝐴𝛼) = 0. Hence, a FV is fully identified either by its
member function, or, equivalently, by the knowledge of a
sufficient number of 𝛼-cuts 𝐴𝛼 = [inf𝛼, sup𝛼], ∀𝛼 ∈ [0, 1].
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Figure 1: Rectangular possibility distribution with support [𝑥1, 𝑥2].
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Figure 2: Possibility Π and necessity 𝑁 measures associated with
the rectangular possibility distribution in Figure 1.

3. Uncertainty Propagation

In common engineering problems, only a few of the param-
eters usually call for a fully possibilistic representation,
since the availability of experimental data as well as a
deep insight into the underlying physical phenomena often
allow providing most unknown parameters with a reliable
representation in terms of probability distribution functions.
Hence, a great deal of mathematics has been developed
for UQ in hybrid problems, in which random parameters,
characterized by probability distribution functions, coexist
with fuzzy parameters, whose epistemic uncertainty requires
a representation in terms of possibility distributions.

A possible approach is to transform the probability
distribution functions associated with the random variables
into the corresponding possibility functions (by the trans-
formation in [22, 23]) and to solve a purely possibilistic
problem.

Conversely, the hybrid approach here exploited retains
the random/fuzzy nature of the involved parameters and
resorts to MC repeated runs and aggregation of the obtained
results in order to propagate the uncertainty [8, 15].

3.1. MCHybrid Algorithm. Let us consider the generic model
𝑧 = 𝑓(𝑥1, . . . , 𝑥𝑀, 𝑥𝑀+1, . . . , 𝑥𝑁), characterized by𝑀 proba-
bilistic parameters 𝑥1, . . . , 𝑥𝑀 and𝑁-𝑀 possibilistic param-
eters 𝑥𝑀+1, . . . , 𝑥𝑁. The uncertainty of 𝑧 can be evaluated by
the following algorithm.

First, a realization of the 𝑀 probabilistic parameters
is generated. For this specific realization, a specific 𝛼-cut
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Figure 3: Examples of 𝛼-cuts (i.e.,𝐴𝛼=0.2 and𝐴𝛼=0.8) for a triangular
possibility distribution.

is considered for the 𝑀-𝑁 probabilistic variables, and the
extreme values of the interval𝐴𝛼 = [inf𝛼, sup𝛼] of the output
variable 𝑧 are evaluated. Repeating this for all 𝛼-cuts from
𝛼 = 0 to 𝛼 = 1 allows determining the possibility distribution
function of the specific MC realization under analysis. This
procedure, repeated for every MC realization of the 𝑀
probabilistic parameters, yields a cluster of membership
functions, describing the variability of the output parameter
𝑧.

If the simple model 𝑧 = 𝑓(𝑥, 𝑦) = 𝑦𝑥2, where 𝑥 is a FV
with triangular membership function with support [2, 4] and
mode 3 and 𝑦 is a RV with normal probability distribution,
𝑁(𝜇, 𝜎), withmean value 𝜇 = 1 and standard deviation 𝜎 = 1,
the result of the aforesaid hybrid MC algorithm is the family
of curves plotted in Figure 4(a), obtained by fifty different
realizations of the probabilistic variable 𝑦.
3.2. Aggregation. To aggregate the cluster of curves obtained
by MC simulation in a single membership function charac-
terizing the variability of the output variable 𝑧, the method
proposed by Guyonnet et al. [15] is adopted. For every 𝛼-cut
of 𝑧, the extreme values inf𝛼, sup𝛼 are evaluated by computing
the corresponding cdfs and by choosing a quantile 𝑞, so
that inf𝛼 corresponds to the (1 − 𝑞) quantile of minimum
values and sup𝛼 to the 𝑞 quantile of maximum values. For the
model 𝑧 = 𝑓(𝑥, 𝑦) = 𝑦𝑥2, such an aggregation procedure is
exemplified in Figures 4(b)–4(d) for 𝑞 = 0.95. In Figure 4(b),
the cdfs of the minimum (red curve) and maximum (blue
curve) values of the generic 𝛼-cut of the output variable 𝑧
are evaluated, and the extreme values inf𝛼, sup𝛼 for such
an 𝛼-cut are evaluated as the 5% quantile of the minimum
and 95% quantile of the maximum values. Repeating this
evaluation for all 𝛼-cuts yields the possibility distribution
function in Figure 4(c) and the possibility measures Π, 𝑁
shown in Figure 4(d), which characterized the variability of
the output variable 𝑧.
4. An Intrasystem Compatibility Case Study

In this section, the MC hybrid approach is applied to the
solution of an intrasystem compatibility problem often aris-
ing in complex systems, where sensitive signal lines coexist
in close proximity with power lines. Particularly, the specific



4 Mathematical Problems in Engineering

−20 0 20 40 60
0

0.2

0.4

0.6

0.8

1

z


(z

)

(a)
a

sup

inf

0

0.2

0.4

0.6

0.8

1

−20 0 20 40 60

０
Ｌ(
f

≤
a
)

aＧＣＨ aＧ；Ｒ

1 − q = 0.05

q = 0.95

(b)

z

0

0.2

0.4

0.6

0.8

1


(z
)

−20 0 20 40 60

(c)

z

0

0.2

0.4

0.6

0.8

1

NΠ
, N Π

−20 0 20 40 60

(d)

Figure 4: Hybrid MC approach and aggregation procedure for the hybrid model 𝑧 = 𝑓(𝑥, 𝑦) = 𝑦𝑥2: (a) family of membership functions
obtained by hybrid MC simulation, (b) application of the aggregation method [15] for a generic 𝛼-cut, resulting (c) possibility distribution 𝜋,
and (d) possibility, Π, and necessity,𝑁, measures characterizing the variability of the output variable 𝑧.

case study here analyzed is developed with reference to
typical signal and power lines exploited onboard satellites.
Indeed, in these systems the electrical power is generally
distributed through 24-V dc power busses equipped with dc-
dc converters to adapt the 24-V distribution voltage to the
actual voltage levels required by sensors and payloads. The
conducted emissions generated by these switching devices
propagate along the dc bus andmay couple through crosstalk
(i.e., near-field coupling) with nearby signal lines, thus pos-
sibly interfering with signal transmission. Due to stringent
space constraints, the final arrangement of the involved
signal and power lines is usually unknown to the designer.
Furthermore, RF leakage due to improper connection of
components, nonideal shielding of cables, connectors, and
metallic enclosures, and nonideal realization of the involved
circuitry, for example, possible asymmetries leading to imbal-
ance, has to be considered, since they may unpredictably
contribute to the susceptibility of the signal line, thus possibly
leading to communication failure. All these aspects suggest
that evaluating the risk of interference requires a statistical
instead of a deterministic approach to the problem.

4.1. Description and Modelling of the Test Setup. Since the
objective here is to investigate the potential and possi-
ble advantages of the above-described hybrid approaches
in addressing EMC problems rather than to provide an
exhaustive description of the complexity of the system under
analysis, a simplified model of the test setup is here exploited,

which involves a reduced number of uncertain/uncontrolled
parameters.

A principle drawing is shown in Figure 5. In this test
setup, a two-conductor power line running above ground
(representative for the satellite chassis) is connected at the left
end to a dc-dc converter for aerospace applications.The other
line end is terminated with a Line Impedance Stabilization
Network (LISN), whose circuit diagram (see Figure 5) and
values of involved circuit components (i.e., 𝐶𝑝 = 1.5 𝜇F,
𝐶𝑔 = 1 pF, 𝐿 = 2 𝜇H, and 𝑅 = 50Ω) conform with [24]
and are the most suitable to represent the output impedance
of power conditioning and distribution units used onboard
satellites. A differential line (victim circuit) runs parallel to
the power line and is terminated in communications units
with differential front-ends.

For the sake of modelling, the behavioral model in
[25, 26] is exploited for the dc-dc converter. Accordingly,
the active part of the converter is represented by means
of two current sources (connected between each wire in
the power line and ground), whose frequency spectra are
exacted from measurement data. For the specific dc-dc
converter here considered, the spectra of such current sources
are shown in Figure 6. Moreover, the passive part of the
converter is modelled by a 2 × 2 matrix of admittances,
whose frequency response (not reported here for the sake
of brevity) was retrieved from the scattering parameters
measured at the input pins of the dc-dc converter switched
off.
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Figure 6: Frequency spectra of the equivalent current sources 𝐼S1,𝐼S2 modelling the active part of the dc-dc converter [25, 26].

To predict the interference induced by crosstalk at the
terminations of the signal line, the communications units
are treated as passive circuits and simply modelled by 2 × 2
impedance matrices with expression

ZNE = diag {𝑍𝐷2 ,
𝑍𝐷
2 } , (4)

ZFE = diag {𝑍𝐷 (1 + 𝛿)2 , 𝑍𝐷 (1 − 𝛿)2 } , (5)

where𝑍𝐷 denotes the differential-mode (DM) characteristics
impedance of the signal line. In (5), coefficient 𝛿 is introduced
to account for possible imbalance affecting the terminal units.
Without loss of generality, in this example only the far-end

unit is assumed to be affected by imbalance. The random
variability of the associated coefficient 𝛿will be characterized
in the following subsection.

Eventually, a cross-sectional view of the wiring structures
under analysis is shown in Figure 5. Without loss of gener-
ality, geometrical and electrical characteristics of the wires
belonging to the power and the signal lines are assumed to
be the same; that is, inner radius 𝑟𝑤 = 0.4mm, thickness
and permittivity of the dielectric jacket 𝑡 = 0.2mm (hence,
𝑟𝑏 = 𝑟𝑤+𝑡 = 0.6mm), and 𝜀𝑟 = 2.3, respectively. Both lines are
2-m long.The power line is sketched on the left, and its layout
is assumed to be constant and fully known, with height above
ground ℎ = 50mm. Conversely, unknown positioning and
layout of the signal line (sketched on the right) with respect to
the power line are described by three geometrical parameters
𝑑, 𝜃, and 𝜑, whose variability will be characterized in terms of
RVs or FVs in the following subsection.

4.2. Definition of Random and Fuzzy Variables. In this sub-
section a suitable possibilistic/probabilistic description of the
unknown variability affecting the parameters 𝛿, 𝑑, 𝜃, and 𝜑
is provided. As previously observed, not all these parameters
can be considered to be affected by epistemic uncertainty, and
therefore not all of them require a description in terms of FVs.

This is, for instance, the case of coefficient 𝛿 in (5), whose
value (ideally equal to zero) is strictly related to tolerances and
nonideal realization of the involved circuit components [27].
Based on this interpretation, this coefficient can be better
described by an RV with normal distribution 𝑁(𝜇𝛿, 𝜎𝛿) and
mean value 𝜇𝛿 = 0. In this specific example, a standard
deviation 𝜎𝛿 = 0.1 is assumed.

Similar reasoning leads to a probabilistic description also
for the angle 𝜑, which identifies the rotation of the two wires
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Figure 7: (a) Joint possibility distribution 𝜋(𝑑, 𝜃) and (b) one of its generic 𝛼-cuts.

in the signal line around their axis. Indeed, this parameter
may randomly change along the cable axis even after system
installation. Hence, such a purely random variability can be
adequately represented by an RV with uniform distribution
in the interval [0∘, 180∘].

The geometrical parameters describing reciprocal posi-
tioning of the signal line (victim circuit) with respect to the
power line (generator circuit) are conversely represented by
means of FVs, since their variability is not known nor certain,
as they are strongly dependent on the specific installation.
Hence, with the objective to account for different plausible
arrangements, the parameters 𝜃 and 𝑑 are hereinafter mod-
elled by means of suitable possibility distributions. To this
end, identification of a preferable value as well as a reasonable
interval of variation for these parameters allows representing
their variability by means of triangular possibility distri-
bution. More precisely, a triangular possibility distribution
with support [60∘, 120∘] and preferable value (mode) 90∘ is
assigned to 𝜃.

Conversely, as far as 𝑑 is concerned, a triangular distribu-
tion with support spanning from 4 ⋅ 𝑟𝑏 (minimum distance
obtained when the inner wires of the two lines are in contact,
for 𝜑 = 0) up to 8 cm, and mode 4 cm, is exploited.

The joint possibility distribution 𝜋(𝑑, 𝜃) associated with
the possibilistic variables (FVs) 𝑑, 𝜃 is shown in Figure 7(a).
From this 3D plot, the possibility distribution of each FV can
be retrieved by projection on the 𝜋-𝑑 and on the 𝜋-𝜃 plane,
respectively.

4.3. Prediction of the Voltage Induced at the Terminals of the
Signal Line. In order to get statistical estimates of the unde-
sired voltages induced at the terminations of the signal line,
a distributed circuit model [28] of the four-wire transmis-
sion line running above ground (with variable cross-section
in Figure 5) is combined with the hybrid MC procedure
described in Section 3.1. To this end, 100 random extractions
of the stochastic parameters 𝛿 and 𝜑 were combined with
51 𝛼-cuts of the possibilistic parameters 𝑑, 𝜃 (a generic 𝛼-
cut is shown in Figure 7(b)). For each line cross-section, a
numerical routine based on themethod of moments [29] was
used to efficiently evaluate the per unit length parameters
required for line solution. Particularly, the analysis reported
in the following focuses on the spread of the voltage 𝑉NE
induced at the termination of the signal line closer to the
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dc-dc converter (near end, NE), since the maximum inter-
ference is expected at this termination.

Plausible values of 𝑉NE are represented frequency by
frequency by a family of scattered possibility distributions,
as those shown in Figure 8, which were obtained at fre-
quency 𝑓 = 92.22MHz. These curves are then aggregated
frequency by frequency according to the Guyonnet method
(see Section 3.2), choosing a conservative quantile 𝑞 =
0.95. For the generic frequency 𝑓 = 92.22MHz, the
aggregated possibility distribution is represented by the solid-
black curve in Figure 8. Equivalently, the aggregationmethod
can be directly applied to the corresponding possibility Π
and necessity 𝑁 measures. This is exemplified in Figure 9,
where the black-solid and black-dashed curves represent the
aggregated Π and 𝑁 measures obtained at 𝑓 = 92.22MHz,
respectively. For each frequency, the obtained limiting cdfs
include the 95% of the possible values that 𝑉NE may assume
at every frequency.

4.4. Comparison versus a Conventional Full-Probabilistic
Approach. Eventually, the obtained results are compared
versus those provided by purely stochastic MC simulation,
where all random variables are assigned probabilistic instead
of possibilistic distributions. To this end, also parameters
𝑑 and 𝜃, previously modelled as FVs, are here treated
as probabilistic random variables, and their variability is
modelled through uniform probability distributions hav-
ing the same support as the possibility distributions 𝜋
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previously exploited. Ten thousand extractions of the result-
ing random parameters 𝛿, 𝜑, 𝑑, 𝜃 are considered for MC
simulation.

Comparison of purely stochastic MC results versus those
obtained by the hybrid method puts in evidence the potential
of the possibilistic/probabilistic approach to provide a more
complete description of the variability of the output voltage
𝑉NE. As a matter of fact, at every frequency point, the cdf of
the voltage 𝑉NE predicted through the purely stochastic MC
method is bounded by the possibility and necessity measures
predicted by the hybrid approach, as shown in Figure 10
for the specific frequency 𝑓 = 92.22MHz. By the light of
(3), it is worth noting that the probabilistic cdf is just one
among infinite others that are possible, similarly bounded
by Π and 𝑁, since it is a strict consequence of the uniform
probability distributions assumed for 𝑑 and 𝜃 (by improperly
adding unjustified information, on the viewpoint of epistemic
uncertainty).

The frequency response of the near-end voltage 𝑉NE in
the frequency interval from 1 up to 100MHz is shown in
Figure 11. In this figure, the cluster of colored lines represents
the 104 frequency responses obtained by full-probabilistic
MC simulation. Conversely, black curves represent upper
and lower bounds obtained by selecting for every frequency
point the 0.025 and 0.975 𝛼-cut of the possibility Π and the
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Figure 11: Spread of the frequency responses of the near-end
voltage 𝑉NE: colored lines are obtained by 104 purely stochastic MC
simulations; black lines are upper and lower bounds obtained by the
hybrid approach.

necessity 𝑁 measures, respectively, obtained by the hybrid
approach. One can appreciate that such a 97.5% confidence
interval represents a tight bound for the 104 full-probabilistic
MC simulations and exclude only a few very improbable
outliers.

5. Conclusion

In this work, a hybrid random-fuzzy approach (involving
both FVs and RVs) has been applied to UQ in an intrasystem
EMC case study, dealing with crosstalk between differential-
signal lines and power lines in a satellite. Target of the
analysis has been the differential-mode voltage induced in the
weakly unbalanced terminal loads of the signal line due to CE
generated by a dc-dc converter flowing into the power bus.
The mutual position between signal line and power line has
been considered as unknown but deterministic (due to lack
of knowledge); hence the relevant epistemic uncertainty has
been characterized through FVs. Conversely, some aleatory
and nonideal characteristics of the signal line such as the tilt
angle and the weak unbalance of terminal loads have been
characterized through RVs.

Although simplified, since several other nonidealities
should be considered in order to get reliable intrasystem
compatibility assessment, such a model and the obtained
results confirm that the proposed approach has the potential
to provide a general and complete characterization of output
sensitivity to model parameters affected both by aleatory and
epistemic uncertainty. This fact has been demonstrated by
the comparison versus conventional MC approach, where
all uncertain parameters are treated as RVs. It turns out
that more rich information about UQ of the induced noise
voltage is provided by the hybrid random-fuzzy approach
(like possibility and necessity measures) than the mere sta-
tistical characterization offered by the cdf obtained through
conventional MC. In particular, the possibility of providing
lower and upper bounds to the frequency responses of the
output quantities (in this case the induced DM voltage) and
of assigning these limit curves with a more/less conservative
confidence level turn out to be attractive not only in the
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aerospace case study here analyzed, but also in EMC prob-
lems in general. As amatter of fact, the degree of susceptibility
of complex systems usually depends on compliance with
noise thresholds that are set by experts in the relevant
field but are often identified through qualitative, rather
than quantitative, observations of the system vulnerability
[18].
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