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Abstract— This paper addresses safe motion planning for a
manipulator, in environments shared with human operators.
We formulate the problem as an optimal control problem for
a hybrid system integrating three different operation modes:
nominal, soft safety, and hard safety. The manipulator is
assigned a nominal trajectory to reach a target position. If
no human is present, then, the manipulator tracks the nominal
trajectory; if a human enters its workspace, it tries to avoid
it but without adopting too sharp and abrupt actions, except
when strictly needed for safety. The decision on when and to
what mode to commute is taken online, via a model predictive
control approach involving a constrained optimization program
with binary variables setting the active/nonactive status of
the operating modes. The resulting control input is applied
in a receding horizon fashion and the nominal trajectory
towards the target is re-computed based on the current state
of the system. The proposed approach is applied to a realistic
simulation environment and appears computationally feasible
and promising.

I. INTRODUCTION

Modern industrial production plants are characterized
more and more by the presence of robots sharing their
workspace with humans: the most repetitive tasks are as-
signed to robots and the high cognitive ones to appropriately
trained human operators. Since industrial robots are able to
move at a high speed and they could severely injure humans
[1], a significant research effort was fostered aiming at the
development of safe motion control design methodologies
when considering coexistence scenarios with humans, see
e.g. [2], [3], or [4] for industrial robotics applications, while
[5] refer to service robotics scenarios.

We shall consider a manipulator whose task is reaching
some target configuration. If no human operator is within its
workspace, then, the manipulator can move following a nom-
inal point-to-point trajectory, which is computed ignoring the
presence of humans so as to be optimal for the assigned task.
When a human gets too close to the manipulator, some action
has to be taken. An option is to interrupt the task execution
and slow down/arrest the manipulator [2]. Alternatively, a
corrective trajectory can be planned online with the aim
of dodge the human and, at the same time, keep driving
the manipulator to the desired target position [3]. Given the
hardly predictable nature of the phenomenon, and in order to
avoid an unnecessary reduction of productivity, one can adopt
a control strategy where, at each time step, the presence of
humans is monitored and a control action is designed so as to
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compromise between tracking a nominal optimal trajectory
(performance) and avoiding humans (safety). This is actually
the approach that we adopt in the present paper.

More specifically, we formulate the safe motion planning
problem as an optimal control problem for a hybrid system
that can commute among three different operation modes:
nominal, soft safety, and hard safety. In the nominal opera-
tion mode, the manipulator follows a nominal trajectory to
reach the target position, neglecting the presence of humans.
Commercial robots are typically provided with an algorithm
for trajectory generation, and we shall use this algorithm
for the nominal operation mode. In the soft safety operation
mode, the manipulator tries to avoid humans but without
adopting too sharp and abrupt actions, which are taken in
the hard safety mode but only if needed. We design the hard
and soft safety mode controller by integrating the approaches
presented in [2], [3], and [6].

Optimization is used to decide online when and to what
mode to commute, according to the Model Predictive Control
(MPC) strategy where, at each time step, one looks at some
short term prediction horizon, solves a constrained optimiza-
tion problem to decide the operation mode and the value to
possibly assign to the hard control input, and applies the
resulting control action. Optimization is repeated at the next
time step over a moving time-window, till the desired target
is reached. The nominal trajectory towards the target is re-
computed online, according to the current state of the system.
Within the MPC scheme, human occupancy is predicted at
each time step. The MPC prediction horizon length should
then compromise between the contrasting objectives of 1)
allowing for a reliable human occupancy prediction and
the online solution of the resulting constrained optimization
problem, and 2) avoiding myopic solutions as in alternative
methods like [3] that looks only one-step ahead for human
avoidance. A different look-ahead time horizon is adopted for
the nominal trajectory design and the MPC control problem.
This is to avoid that the shorter look-ahead horizon used
in MPC negatively affects performance, leading to greedy,
myopic choices with respect to the goal of reaching the target
position.

Hybrid systems represent a powerful modeling framework
to describe complex systems where both discrete and contin-
uous input/state variables are present. Various models have
been introduced in the literature and we adopt here the
computational oriented one in [7], which is called Mixed
Logic Dynamic (MLD). MLD systems are characterized
by piecewise affine continuous dynamics and described via
affine equations and inequalities involving both continuous
and discrete variables. This makes problems that can be



rephrased as optimization programs involving linear objec-
tive functions and constraints easy to solve via mixed integer
linear programming tools [8]. Indeed, many problems have
been addressed for MLD systems, including identification
[9], model reduction, stability analysis, stabilization, and
control design [10]. Other modeling framework and ap-
proaches available in the literature, like for instance [11],
offer the possibility to include nonlinear continuous dynam-
ics but are computationally more intensive, which poses a
challenge for real-time applications.

The rest of this paper is organized as follows: Section
IT describes the proposed approach for motion planning of
a manipulator in a human-robot coexistence scenario. In
particular, the first part of Section II explains the adopted
model and how safety specifications are formulated, while
the second part presents the proposed hybrid control design
method for safe motion planning via optimization. Section
IIT provides a numerical experiment to show the efficacy of
the approach. Finally, Section IV draws some concluding
remarks.

II. PROPOSED APPROACH

In this section, we introduce an approach to safe motion
planning for a manipulator that is assigned the task of reach-
ing some target configuration in an environment shared with
human operators. Section II-A presents the kinematic model
of the manipulator as well as the constraints that model
the safety specifications, while Section II-B introduced the
proposed hybrid control strategy.

A. Kinematic model and safety specifications

Industrial manipulators can be seen as composed of a
series of rotating joints. Motion control acts at a kinematic
level by assigning the values of the joint accelerations u
(which are control variables), with a certain sample time
interval T§. The state of the system is composed of the joint
angular displacements of the manipulator, which are denoted
as q, and their derivatives ¢. The equations governing the
state evolution are then given by the discrete-time double
integrator:

) ) )
qr+1 = qi + Tsqr + 0.5T 7wy,

{dk+1 = qr + Tsug

Safety specifications adopted for motion planning mainly
follows from the approach presented in [2], where the safety
constraint is expressed in terms of the joint speeds to avoid
collisions between a manipulator and some fixed obstacle.
The basic idea is to impose that the manipulator trajectory
satisfied the condition that the distance traveled when braking
is smaller than or equal to the distance from the obstacle. If
the acceleration is constant over the time frame [kT5, (k +
1)T), then, one can determine the displacements of every
point in the kinematic chain of the manipulator as the integral
with respect to time of the velocity, and then impose the

constraint’

E(gr + qry1) < H, 2

where E and H are functions of the configuration q; and are
taken as constant over a short time period. This assumption is
satisfied in practice when the manipulator follows a smooth
trajectory since in that case the variation of the geometrical
Jacobian of the manipulator is negligible. We here extend
the constraint expressed by equation (2), to impose collision
avoidance during the entire horizon [kT5s, (k + N)Ty), as
follows:
h—1
E- (Qk+22dk+i+4k+h) <H h=12...,N. (3
i=1
Note that we have assumed here that matrices £ and H
keeps constant over [T, (k+ N)T,) and equal to the value
associated with gj. This assumption is valid if its overall
length NT} is small.

To tackle the avoidance of moving obstacles, like hu-
mans, [3] has introduced the concept of swept volumes.
The approach in [3] is model-based, in that a kinematic
model is adopted for the human operator, who is seen as
a manipulator whose motion is not controllable, but can be
predicted. Indeed we can suppose to have sensors perceiving
the scene and tracking the motion of human operators.
It is then possible (see [3] for more details) to estimate
the position and velocities of the human articulations and,
under the assumption of bounded accelerations, compute
for every anatomical part (limbs, head, etc.) the so-called
swept volume, i.e., a shape containing all of the possible
future reachable positions within a certain prediction horizon.
Swept volumes represent the fixed obstacles to avoid when
ensuring safety constraint expressed in (3). In [3], swept vol-
umes were adopted to design the proper dodging maneuver
by solving an optimization problem. Here, we adopt a similar
approach but, differently from [3], we adopt a look-ahead
time horizon that is larger than one single step, according
to an MPC approach. Our goal is to design a switching
scheme to control the manipulator and guarantee safety while
not deteriorating excessively its productivity. The proposed
switching control strategy is described in Section II-B. The
extension of the safety constraint expressed in (3) jointly
with the design of a switching scheme based on an MPC
approach represent the main contribution of this work.

B. Hybrid control strategy for safe motion planning

In this section, we shall start describing three kinds of
acceleration input for the system (1), i.e.,

e a nominal acceleration 4
« a soft corrective acceleration U podge
e a hard corrective acceleration f

that are associated with the three operation modes: normal,

soft safety, and hard safety. The first two kinds of accel-
erations are designed via a trajectory generation algorithm,

'The formulation has been adapted in comparison to the one introduced
in [2], where a constant velocity was taken into account
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Fig. 1: Switching control scheme implementing the 3 oper-
ational modes and using a Trajectory Generation Algorithm
(TGA.).

whereas the third one is chosen together with the switching
signal among the three modes, by solving an optimal control
problem for a suitably defined hybrid system. The resulting
system is schematically drawn in Figure 1, where §; and
09 are binary variables implementing the switching signal
among the three modes with input %, ¥ podge, and f.

1) Nominal operation mode: Every industrial manipulator
has an internal trajectory generator, that is able to compute a
trajectory from a starting configuration gy to an ending one
qy. This open loop trajectory is realized by a sequence of
acceleration inputs {@y, @g41, ..., U+ n—1} and is designed
via some trajectory generation algorithm, which accounts
for kinematic limitations on maximum/minimum joint ac-
celerations and maximum/minimum velocities, but not for
the presence of obstacles. In robotics, common choices for
trajectory generation are trapezoidal speed profile, cycloidal,
minimum jerk trajectory, polynomial law and others.

Here, we refer to nominal acceleration as the sequence
of acceleration inputs determined by a trajectory generation
algorithm to drive the manipulator from its current configura-
tion to the target one. In our simulation example, we shall use
the open source Reflexxes library [12] to compute nominal
accelerations, even though the proposed approach remains
applicable to any other trajectory generation algorithm. If we
apply at a certain time k an acceleration different from wuy,
we will reach a state at k + 1 different from the nominal
one. From that state, we can recompute a new sequence
of accelerations that will drive the system to the target
configuration.

2) Soft safety operation mode: The concept of safety field
introduced in [6] is used for designing the soft corrective
acceleration % podge. A safety field is basically a repulsive
field define all over the configuration space, which is pro-
duced by the set of obstacles present in the scene (also the
operator swept volumes). The safety field can be interpreted
as a set of forces acting on some points along the kinematic
chain of a manipulator as illustrated in Figure 2. [6] shows
how to compute a configuration q., induced by the safety
field such that the dodging maneuver driving to g, has a
high chance of satisfying the safety constraint, even if this
is not guaranteed 100%. By exploiting the properties of the
geometrical Jacobian of the manipulator J, [6] defines g,

Fig. 2: A generic manipulator and an obstacle (in red): arrows
symbolize the safety field induced by the obstacle.

as follows:
Gev = @1 + I3 (@trg — k) + gosr — I - Inaose (4

where JJTV is the pseudoinverse of the end effector geo-
metrical Jacobian; x., and x; are respectively the end
effector position in the cartesian space for the target final
configuration and the configuration at time step k; gosr =
chvzl JTCSF,, where CSF, is the safety field acting
on the h-th point of the kinematic chain, while J; is the
geometrical Jacobian referred to the same point.

For the configuration g.,, the manipulator results farther
from the obstacles generating the safety field, while at
the same closer to x;.4. By using a trajectory generation
algorithm, like the one implemented in the Reflexxes li-
brary, one can compute a series of accelerations that lead
the manipulator to q., from the current state, while ac-
counting for kinematic limitations of the manipulator. The
obtained sequence of acceleration inputs, truncated at time
(k + N — 1)Ty, represents the soft corrective acceleration
{UDodge.ks WDodge,k+1; - - - WDodge,k+N—1} associated with
the soft safety operation mode.

3) Hard safety operation mode: The third possible ac-
celeration input f is a hard corrective acceleration which
makes the manipulator follow a trajectory that is safe. In our
scheme, it is the only acceleration that is not computed by
a trajectory generator algorithm but is determined together
with the switching signals so as to enforce the constraints
expressed in equation (3), in those cases when other modes
cannot. As a matter of fact, the nominal acceleration input
neglects the presence of obstacles, whereas the soft corrective
acceleration input based on the safety field is not guaranteed
to be 100% safe, hence, it is sometimes necessary to apply
the acceleration f to ensure the satisfaction of the safety
constraint. Usage of this mode is penalized when designing
the switching signals so as to avoid non smooth motion.

4) Optimal switching rule design: We now have to decide
at every time step £ which mode the system has to follow
and, in case the hard safety mode is chosen, we have to
compute an optimal value for fi. These decisions are taken
jointly by formulating and solving at each time step k a
suitably defined optimization problem over the time horizon
from £ to k + N, according to the receding horizon strategy



in MPC. For the rest of this section, we will describe
how to build such a problem and compute a solution. We
start by introducing the equations governing the evolution
of the switched system that comprises the three possible
acceleration inputs:

Gi + Tty + 016 Ts(— Uk + UDodge, k)
+021,Ts (— 0k + fr) )
Q1= qr +0.5Ts(qx + qr+1)

dk+1 =

Note that, differently from (1), we do not make explicit the
dependence of g from the control input w in (5). Variables
01 and J9 in (5) are Boolean control inputs that serve the
purpose of defining the operation mode. The continuous
control input % and upeqqe are computed by a trajectory
generation algorithm as previously described and are then
treated as non controllable inputs with known values in the
optimization problem formulation. The only continuous input
to be set is f.

Equation (5) is bilinear because of the product between
the optimization variables J and f. We can however reduce
it to a linear expression by introducing an auxiliary variable
z = 0715 f and enforcing the following set of constraints
(these are results from the propositional calculus theory, see
[7]) over the time horizon of interest

M2 pti < Zgs < M2 gy
M(02k+i — 1) < 2ti — Ts froi <m(S2p4i — 1)

i = 0,...,N — 1, where m and M are suitable lower
and upper bounds on the values taken by 7 f, that is:
m = —Tsamae and M = Tsapmar, Ama, being the vec-
tor of maximal possible joint accelerations. This kinematic
limitations must be applied to f as well, by imposing

(6)

—Omaz < Jrti < Gmae, 1=0,..., N — 1. (7)

For ease of notation, we shall define: r = T,u; Ad =
Ts(—% + upodge) and Ar = —T,a. Accordingly, equation
(5) can then be rewritten as:

i1 = Gk + Tk + 01 Adg + 0ok Ar + 25,
Qrr1 = qr + 0.5T,(dr + Gri1)

Now, it is possible to unroll the system dynamics and
describe the evolution of ¢ and q during the horizon from k
to £+ N in the following compact form:

O=0,+R+ADA, + ARAy + B.Z .
Q = Q,, +05T,Q) +CQ
where we set
: =T T 17 T T 7
Q= [qk+1 Qk+N] Q= [qk+1 qk+N]
. . T T
Qu=I[a - @] Qu=[ax  a]
T .
Ai =[Ok Sikan—1] ,i=1,2
.
R=1[r] (rk+res)’ -k +-+repn-1)"]
T
Z = [Zl;r z,I_H "'@LN—J

Ady 0 0
Ad,  Adpsy 0 ]
AD = . .
: : e 0
Ady  Adgt Adpyn-1
I, 0 0 I, 0
I, I, 0 I, iI, 0
Bz = . C - Ts . .
0 : : :
I, I, I, L, I, il

with I,, denoting the identity matrix of size n, where n is
the number of degree of freedom of the manipulator. AR is
obtained similarly to AD, replacing Ad with Ar.
We next describe all constraints that must hold on the
control and state variables of the system in equation (8).
We start by the reformulation of the safety specifications
in (3) according to the introduced notations:

E-(Q,-Q+2B.Q) <H ©)
where matrix E is block-diagonal, and every block is equal

to E, while H = [H T H T] T After some manipula-
tions we can get the following expression:

A
—~E-[B. ARAD]- |A| <H+E-(R-2B.Q) (10)
Ay

The bound on the maximal and minimal joint speed can
be written as follows:

7
~Umaz < Qi + [B: AR AD] - [Ar| + R < Upas (11)
Ag

where vy, 18 an appropriately defined vector associated
with the maximal velocity.

Regarding variables A; and A, it is not sufficient to simply
impose that they are Boolean. Indeed, we want to enforce
the fact that at each time step k44, the system (5) can evolve
following only a single mode at a time. We have therefore
to add to our problem N constraints, one for each time step
k+14,i=0,1,..., N — 1, ensuring that:

A1+ Ay < 1y, (12)

where 1, is a column vector of dimension N with all
elements equal to 1.

Setting F = [} fii4 ~~f,;r+N7JT, we can group

all control variables along the reference time horizon in a
. T
single vector v = [FT ZT AT AT .

Among all admissible values for v (see the constraints in
(6), (7), and (10)—(12)), our objective is selecting the best one
that drives the the manipulator to the target configuration and
makes it accomplish its task. To this purpose we introduce
the following cost function J(v):

T(®) =1Q — Qsllw, + I [AT AJ]" lws + | Fllw, (13)

T . .
where Q = [q}r q}—] , qy being the desired target
configuration. The operator ||z||5s is equal to =" Mz. W,
Ws and W; are positive definite matrices of appropriate



Fig. 3: Trajectory followed by the manipulator and the human during part 1 of the pick and place task. A red cross indicates
the pick position, while a red square the place one. From left to right, snapshots refer to the time intervals: [0, 3.05]; [3.55,
6.55]; [7.05, 11.55]; [11.55, 13.05] (in seconds). Within [0, 6.55] seconds, the manipulator deviates from its nominal path
(which is a simple straight line in joint space connecting pick and place) to avoid collisions with the human, which is getting
closer. Frames within [7.05,13.05] show that the manipulator follows a nominal trajectory leading to the place position.

Fig. 4: Trajectory followed by the manipulator and the human during part 2 of the pick and place task. A red cross indicates
the pick position, while a red square the place one. From left to right, snapshots refer to the time intervals: [13.2,16.2];
[16.7, 20.3]; [20.8, 26.05]; [26.55, 31.45] (in seconds). A dodging maneuver is required in the time window [16.7,26.05].
Then the manipulator returns to the initial pick configuration following a nominal trajectory.

dimensions. In particular, W, is block-diagonal so that ||Q —
Qsllw, = Zf\;1 llgx+i—ay|lw, , penalizes the distance from
the target configuration, possibly giving a different weight at
each time step. The adoption of the soft or the hard corrective
accelerations are penalized so as to favor the use of the
nominal acceleration input defining the nominal trajectory
for task accomplishment.

In order to make [J(v) explicit as a function of v, one
can plug into equation (13) the expression for @ given in
(8), thus finally obtaining a quadratic form of the type:

J(w) =v"Av + Gv (14)

neglecting terms that are independent of the optimization
variables and hence do not affect the value of the minimizers.

We finally are in a position to formulate the constrained
optimization problem that is solved at every time step k, till
the target configuration is reached:

minimize J (v) in (14) (15)

subject to: (6), (7), (10), (11) and (12)

It is easily seen that this is a Mixed Integer Quadratic
Program (MIQP), since it involves continuous and discrete
optimization variables. One can then use a MIQP solvers like
Cplex [13] to compute at every step k the optimal control
input v, i.e., the operation mode and the hard corrective
acceleration input if the hard safety mode is selected.

Both switching signals §; and &5 could present some
chattering behavior. To alleviate this problem, it is convenient
to introduce in the cost function J additional terms that
penalize two consecutive values for ¢; (or J3) that are dif-
ferent: 7' (v) = T (0) + 3100 (1 ks = Ot krir) - (B pyi —
01 kvit1) + 212701(52 ki — 02k4iv1) * (O2k+i — S2kyiv1),
which is still a quadratic form.

It is worth pointing out the importance of the soft safety
mode. Applying only the hard corrective acceleration input
to avoid violating the safety constraint could drive the manip-
ulator in some local minimum for 7. Instead the safety field
is able to make it escape from this kind of configurations.

III. NUMERICAL SIMULATION EXAMPLE

We assess the performance of our approach on a numerical
simulation example where a manipulator performs a pick
and place task. The scene is shared with an operator that
walks close to the robot. We consider as a manipulator the
left arm of the ABB IRB 14000, which has 7 d.o.f. In this
experiment, we impose accelerations only to four joints, i.e,
the ones that are closest to the fixed base, and set constant
and equal to zero the position of the other three. The same
kinematic model introduced in [3] is considered for the
human. Differently from [3], here we assume to know the
actual values for positions and velocities of the human joints
(in a more realistic context they can be estimated exploiting
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Fig. 5: Trajectory of the angular position of 4 joints.

sensors, as in [3]).

The value of the sample time Ty is set equal to 0.05
s, while the MPC strategy is applied with reference to a
prediction horizon of length N - T,, where N = 5. The
cost function J(v) in (14) is adopted where W is block
diagonal with on the diagonal the identity matrices I5 and
1.5-I5, and also W, and W are block diagonal but with all
matrices on the diagonal identical and given by W, ; = 2-14,
1=1,...,5 for Wy, and Wy ; =0.1-14,i=1,...,5, for
Wrs.

Figures 3 and 4 plot some snapshots of the trajectories
followed by the manipulator and the human. Figure 3 refers
to part 1, where the manipulator moves from pick position
to place position. Figure 4 refers to part 2, where the
manipulator returns to the starting pick position. The end
effector position for pick is indicated with a red cross, while
that for place is indicated with a red square. To approximate
the occupancy of the links, several capsules are introduced.
As can be seen, the manipulator sometimes adopts corrective
maneuvers to dodge the operator, yet it keeps trying to get
closer to its target position in both part 1 and 2 of its task. In
Figure 5, the evolution of joints angular displacements g(t)
is reported for the same experiment, and it clearly shows
that the overall trajectory is quite smooth. The total time to
compute the trajectory was 12.77 s, which means that about
0.02 seconds were needed at every time step of duration 0.05
to solve the constrained optimization problem (15).

The percentage of time spent in each mode for the
proposed switching system is reported in Table I, where it
is compared with the results obtained for the same pick and
place task and human trajectory, but adopting the strategy
in [3] which commutes between a normal mode and a
human avoidance mode where some corrective acceleration
is applied (see [3] for details). The total time required to
complete the task with our approach was 30.5 s, while it is
34.2 s (12.1 % more) with the approach in [3]. This time
reduction is obtained because of the adoption of the MPC
strategy that predicts the future behavior along some (short)
look-ahead time horizon to optimize the choice of the control
action.

IV. CONCLUSIONS

Safe motion planning in human-robot coexistence scenario
is one of the main topics of interest in the area of human
robot collaboration.

nominal | soft corrective | hard corrective | avoidance
our paper 0.315 0.142 0.542 -
[3] 0.435 - - 0.565

TABLE I: Pick and place simulation example: percentage of
time spent per mode in our approach and in the one in [3].

In this work, we have shown how to exploit MPC for hy-
brid systems to design a controller that makes a manipulator
perform its task in a safe way when sharing its environment
with a human operator. The adopted strategy reduces the
problem to an optimization program of the MIQP form,
which in our simulations appears computationally affordable
for online implementation. One could actually reduce the
computational time by stopping the computations when a
feasible (and hence safe) solution is found, at the price of
deteriorating performance.
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