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Featured Application: mid-infrared free-space communications.

Abstract: The recent development of quantum cascade lasers, with room-temperature emission
in the mid-infrared range, opened new opportunities for the implementation of ultra-wideband
communication systems. Specifically, the mid-infrared atmospheric transparency windows,
comprising wavelengths between 3–5 µm and 8–14 µm, have great potential for free-space
communications, as they provide a wide unregulated spectrum with low Mie and Rayleigh scattering
and reduced background noise. Despite the great efforts devoted to the development of mid-infrared
sources and detectors, little attention is dedicated to the management of polarization for signal
processing. In this work, we used Ge-rich SiGe alloys to build a wideband and polarization-insensitive
mid-infrared photonic platform. We showed that the gradual index change in the SiGe alloys enabled
the design of waveguides with remarkably low birefringence, below 2 × 10−4, over ultra-wide
wavelength ranges within both atmospheric transparency windows, near wavelengths of 3.5 µm
and 9 µm. We also report on the design of a polarization-independent multimode interference
device achieving efficient power splitting in an unprecedented 4.5-µm bandwidth at around 10-µm
wavelength. The ultra-wideband polarization-insensitive building blocks presented here pave the way
for the development of high-performance on-chip photonic circuits for next-generation mid-infrared
free-space communication systems.

Keywords: photonic integrated circuits; mid-infrared; polarization-insensitive

1. Introduction

The mid-infrared (MIDIR) spectral region (2–20 µm) became a field of major applicative interest
over the past decade. Sharp and strong molecular absorption bands of various chemical compounds
in that region make the use of MIDIR radiation well-adapted for a large number of applications,
including biosensing and medical diagnosis [1–3], security and defense [4–7], and astronomy, among
others [8,9]. Such a wide range of applications led to the development of a plethora of photonic
components, including sources [10–12], waveguides, spectrometers [13,14], and modulators for
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lock-in detection [15,16]. Moreover, in order to reach higher MIDIR wavelengths, various photonic
platforms were developed, such as III-V materials [17–19], chalcogenide [20–23], and silicon and
silicon-compatible materials [24–40]. MIDIR photonic integrated circuits leveraging the mature Si
technology have great potential for low-power consumption and low-cost systems that are meant
to outperform existing technologies. Among the available group IV-compatible MIDIR platforms,
silicon germanium (SiGe), and more specifically, Ge-rich SiGe alloys exhibit a compelling combination
of flexible material tunability [34], large transparency, wideband operation [35–37], and remarkable
nonlinear properties [40]. Here, we study the use of the Ge-rich SiGe platform to develop wideband
and polarization-independent MIDIR components for free-space communications.

Earth atmosphere’s absorption spectrum contains two transparency windows in the MIDIR
region that are very interesting for free-space communications. These two MIDIR windows, which lie
within the 3–5 µm (mid-wavelength IR, MWIR) and 8–14 µm (long-wavelength IR, LWIR) wavelength
ranges, present two major advantages compared to their near-infrared (NIR) counterparts, namely
(i) reduced Rayleigh and Mie scattering [41,42], and (ii) improved robustness against spectral
radiance from the main sources of background noise in free-space optical communications (moon,
sun, earth, and city lights) [41,42]. As light arrives at the receiver point with an unknown
polarization state [43,44], we propose the development of polarization-insensitive photonic circuits for
information processing. Main geometric parameters of Ge-rich SiGe waveguides were optimized to
yield wideband polarization-independent behavior within both atmospheric transparency windows.
The difference between the effective indexes of the fundamental transverse electric (TE) mode
and the fundamental transverse magnetic (TM) mode was kept below 2 × 10−4, which enabled
the implementation of polarization-insensitive devices and circuits. Moreover, this wideband
operation allows, for example, transmitting a large number of communication channels, each carrying
information from a directly modulated MIDIR quantum cascade laser (QCL) [45]. In addition,
a wideband and polarization-insensitive Ge-rich SiGe multimode interference structure (MMI) was
optimized to operate in the second atmospheric transparency window. The operational −1 dB
bandwidth for the designed MMI extends across a wavelength of 7.5 µm to 12.65 µm. These basic
building blocks pave the way for the development of polarization-insensitive MIDIR photonic
components in on-chip transceivers for free-space communications.

2. Materials and Methods

A commercial-grade simulator eigenmode solver and propagator was used to perform calculations
for the waveguide and MMI study [46]. The refractive index of the SiGe alloy was obtained via linear
interpolation of the index with respect to germanium concentration (x) in the alloy, as described by
Equation (1), where nSi and nGe are the respective refractive indexes of Si and Ge.

nSi1−xGex = nSi(1 − x) + xnGe. (1)

For the simulation, experimental values of the Ge refractive index were used [47]. As the
simulations were performed over a wide range of wavelengths, the refractive-index dispersion was
taken into account for the Ge-rich SiGe waveguides. As an example, the refractive-index evolution of
the Si0.2Ge0.8 alloy is shown in Figure 1. For instance, at a wavelength of 3 µm, nSi = 3.43 and
nGe = 4.04. It is worth noting that, for SiGe waveguides, the mode dispersion dominates over
the material refractive-index dispersion in the MIDIR [34]. Consequently, the mode-dispersion
engineering approach by means of geometric parameter optimization was chosen to obtain the
polarization-insensitive and wideband integrated photonic components.
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Figure 1. Refractive index evolution of the Si0.2Ge0.8 alloy in the mid-infrared (MIDIR) spectral region.

3. Results

3.1. Wideband Polarization-Insensitive Waveguides

For the implementation of polarization-insensitive Ge-rich SiGe waveguides, the following
epitaxial configuration was chosen (Figure 2a): 2 µm of constant Si0.2Ge0.8 on an 11-µm-thick SiGe
graded buffer layer (GB), where the germanium concentration increased linearly in the vertical direction
until the terminal composition of Si0.21Ge0.79. The GB provides three major advantageous features: (i) it
guarantees a good material quality through the accommodation of a gradual lattice [48], (ii) it isolates
the optical mode from the silicon-rich region and the silicon substrate, avoiding loss via multi-phonon
absorption at wavelengths higher than 7 µm [49], and (iii) it allows broadband and low-loss operation
by means of combining low MIDIR material dispersion in Si and Ge, and the mode size self-adaptation
effect [34,35]. Noticeably, low propagation losses and a wideband Mach Zehnder interferometer
(MZI) operation were previously demonstrated based on this epitaxial layer [35,36]. The inspected
wavelength was limited by the available spectral range in our experimental set-up, which covered
the wavelengths between 5 µm and 8.5 µm. Flat low-loss conditions were obtained for both TE and
TM polarizations. On the basis of the above features, such an epitaxial layer is a promising candidate
for achieving a polarization-insensitive waveguide targeting both MIDIR atmospheric transparency
windows with a single-material platform. However, despite all the above-mentioned works on SiGe
platforms, polarization sensitivity is yet to be evaluated, and consequently, became the main subject of
interest in the presented work.

Firstly, the waveguide geometry was optimized to achieve polarization-independent behavior in
the MWIR range. The waveguide birefringence, i.e., the difference between effective mode indexes for
TE (neffTE) and TM (neffTM) polarizations (|neffTE-neffTM|), was studied as a function of the width
(W) and etching depth (D) for 10 different wavelengths between 3 µm and 5 µm. As an example,
the maps for the wavelengths of 3.5 µm, 4 µm, and 5 µm are shown in Figure 2b–d, respectively.
These maps clearly illustrate the wavelength dependence of the birefringence, and give insight into
the zone where polarization-insensitive geometries can be localized. One can observe the evolution
of the zero-birefringence line as a function of the wavelength. When the wavelength increases,
the zero-birefringence line shifts toward wider and deeper-etched waveguide geometries.
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Figure 2. (a) Schematic view of the waveguide cross-section. Depending on the design, the etching 
depth (D) can stop in the graded buffer layer, or in the Si0.2Ge0.8 top layer. Birefringence evolution as a 
function of waveguide dimensions for wavelengths of (b) 3.5 µm, (c) 4 µm, and (d) 5 µm. In (b–d), 
the gray line represents the zero-birefringence line, i.e., no difference between effective mode indexes 
for transverse electric (TE; neffTE) and transverse magnetic (TM; neffTM) polarizations, |neffTE − 
neffTM| = 0. The black dashed rectangle corresponds to a set of dimensions where low birefringence 
was obtained for the various wavelengths. 

Remarkably, the bottom zone including the zero-birefringence line (black dashed rectangle in 
Figure 2b–d) kept low birefringence values despite the wavelength change. Hence, wideband 
polarization-insensitive waveguide configurations were expected to be localized in this region. 

In order to finely optimize waveguide dimensions for broadband polarization-insensitive 
operation, we studied the birefringence variation as a function of the wavelength. Firstly, we defined 
the beating length Lπ as L = λ2| n − n |. (2) 

At a given wavelength, the polarization-insensitive waveguide maximizes the Lπ value. 
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Figure 2. (a) Schematic view of the waveguide cross-section. Depending on the design, the etching
depth (D) can stop in the graded buffer layer, or in the Si0.2Ge0.8 top layer. Birefringence evolution
as a function of waveguide dimensions for wavelengths of (b) 3.5 µm, (c) 4 µm, and (d) 5 µm.
In (b–d), the gray line represents the zero-birefringence line, i.e., no difference between effective
mode indexes for transverse electric (TE; neffTE) and transverse magnetic (TM; neffTM) polarizations,
|neffTE − neffTM| = 0. The black dashed rectangle corresponds to a set of dimensions where low
birefringence was obtained for the various wavelengths.

Remarkably, the bottom zone including the zero-birefringence line (black dashed rectangle
in Figure 2b–d) kept low birefringence values despite the wavelength change. Hence, wideband
polarization-insensitive waveguide configurations were expected to be localized in this region.

In order to finely optimize waveguide dimensions for broadband polarization-insensitive
operation, we studied the birefringence variation as a function of the wavelength. Firstly, we defined
the beating length Lπ as

Lπ =
λ

2
∣∣(neffTE − neffTM

)∣∣ . (2)

At a given wavelength, the polarization-insensitive waveguide maximizes the Lπ value. However,
if a broadband polarization-insensitive operation is envisioned, maximizing Lπ at a given wavelength
is not sufficient. Hence, we defined the following figure of merit:

Lgeom =

(
N

∏
i=1

Lπi

) 1
N

, (3)
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where Lgeom is the geometric mean value of Lπ over N different wavelengths. The waveguide geometry
was optimized to maximize Lgeom, thus minimizing the birefringence over the selected spectral range.
Figure 3a shows Lgeom as a function of waveguide width (W) and etching depth (D), calculated for
10 wavelengths within the MWIR range. As expected from the birefringence maps shown in Figure 2,
Lgeom was maximized in the bottom zone close to the zero-birefringence line (black dashed rectangle).
Lgeom was also maximized in the zone comprising waveguides with widths between 4 µm and 5 µm,
and etching depths between 2.5 µm and 5 µm. However, these waveguides are highly multimode,
which is not desirable for the implementation of complex circuits. Therefore, we chose W = 3.4 µm and
D = 1.9 µm as the optimal design. The field-intensity profiles for the optimized waveguide geometry
are depicted in Figure 3b,c for TE and TM modes, respectively. As can be observed, similar mode
profiles and confinements were obtained for both polarizations. Figure 3d shows the birefringence as a
function of the wavelength for the optimized waveguide. Interestingly, the proposed design ensured
birefringence below 2 × 10−4 across wavelengths of 3 µm and 4.8 µm, almost entirely covering the
atmospheric transparency MWIR window. In other words, the TE and TM modes were π-shifted only
after a propagation distance of 1.2 cm at a wavelength of 4.8 µm.
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mid-wavelength IR (MWIR) and field-intensity profiles for (b) TE polarization and (c) TM 
polarization at a 4-µm wavelength. The white dotted line delimits the frontier between the graded 
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Figure 3. (a) Lgeom (Lπ geometric mean value calculated over 10 different wavelengths) as a function
of the waveguide dimensions; the Lπ values are given in cm. Waveguide geometries optimized for
mid-wavelength IR (MWIR) and field-intensity profiles for (b) TE polarization and (c) TM polarization
at a 4-µm wavelength. The white dotted line delimits the frontier between the graded buffer and the
constant composition layer. The shown field profiles are cropped zoomed images from the bigger
simulation window. (d) Birefringence evolution as a function of the wavelength for the optimized
cross-section. The blue line marks the chosen limit for the birefringence at ∆neff = 2 × 10−4.
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A similar approach was used to design the wideband polarization-insensitive waveguide in
the LWIR. The optimized dimensions and the TE-mode field-intensity profile are presented in
Figure 4a; the waveguide was 5.4 µm wide with a 3.1-µm etching depth. Its birefringence, which is
shown in Figure 4b, was below 2 × 10−4 across the wavelengths spanning 8.22 µm to 10.36 µm
(i.e., a polarization-insensitive bandwidth larger than 2 µm). These low birefringence values correspond
to Lπ values higher than 2.5 cm on the full operational wavelength range.
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Figure 4. (a) The waveguide geometry optimized for long-wavelength IR (LWIR), and the field-intensity
profile for TE polarization at a wavelength of 9.75 µm. The field-intensity profile is a cropped zoomed
image from the bigger simulation window. The white dotted line delimits the frontier between the
graded buffer and the constant composition layer. (b) Birefringence evolution as a function of the
wavelength for the optimized cross-section. The blue line marks the chosen limit for the birefringence
at ∆neff = 2 × 10−4.

3.2. Wideband Polarization-Insensitive MMI

Following the optimization of the waveguide cross-section for wideband polarization-insensitive
operation, a wideband polarization-insensitive MMI was designed in the MIDIR LWIR range. The MMI
was designed according to the principles exposed in References [50,51]. To design such a device, it was
necessary to introduce the MMI beating length (LπMMI ), defined as

LπMMI =
λ

2
∣∣(neffmode 1

− neffmode 2

)∣∣ , (4)

where the mode effective indexes correspond to the lowest-order modes in the multimode region
for a given polarization. The length of the 1 × 2 MMI is related to the beat length by 3

8 LπMMI [50].
To design an MMI operating for both polarizations in a wideband range, it is important to consider
the evolution of 3

8 LπMMI for both TE and TM polarizations. More specifically, Figure 5a shows the
influence of the MMI width on the difference between optimal MMI lengths for TE and TM as a
function of the wavelength. The etching depth was chosen as 3.1 µm, as it was shown to provide a
polarization-insensitive waveguide in the LWIR range. Figure 5a shows that the difference between
MMI lengths in TE and TM polarizations was minimized to a width of 20 µm in the spectral range
between 7.5 and 13 µm. Increasing MMI width resulted in an increase in the difference between TE
and TM MMI optimal lengths. For a width of 20 µm, at a wavelength of 13 µm in TE polarization,
the MMI contains three modes which is the limit for obtaining MMI behavior.
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The optimized MMI design is presented in Figure 5b, whereby a 20-µm-wide and 84-µm-long
MMI was chosen with input and output tapering of 80 µm to avoid any bandwidth limitation from
the tapers. The optimized MMI structure induces a phase shift between TE and TM modes of 3.9◦ at
the output of the MMI at a wavelength of 9.75 µm (i.e., more than 40 MMIs are needed to realize a
π-shift between the TE and TM modes). The field-intensity profiles extracted from the propagation
simulations in TE and TM polarizations are shown in Figure 5c. Both polarizations exhibited similar
propagation profiles. Moreover, as shown in Figure 5d, TE and TM polarizations yielded very similar
performances, with losses lower than 1 dB in the 7.5 µm to 12.65 µm and 7.5 µm to 13 µm wavelength
ranges for TE and TM polarizations, respectively. Consequently, the MIDIR LWIR transparency
window is successfully covered with a single MMI device.

4. Discussion

The performance of the proposed Ge-rich SiGe polarization-insensitive building blocks could be
evaluated in terms of the number of channels that each structure can cover. It is important to point out
that, regardless of polarization insensitivity, another key parameter is the broadband operation of the
presented devices. As an example, if we consider a channel width of 5 nm, which can contain a QCL
laser line with a maximum width of 0.2 cm−1, we would be able to allocate more than 300 channels in
each MIDIR atmosphere transparency window with the optimized waveguide presented here (Table 1).
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Table 1. Optimized Ge-rich SiGe structures and the number of 5-nm channels that can be covered.

MIDIR 1 Transparency
Window

Component Dimensions Number of
Channels

MWIR 2 waveguide 3.4 µm width × 1.9 µm etching depth 360
LWIR 3 waveguide 5.4 µm width × 3.1 µm etching depth 428

1 MIDIR: mid infrared, 2 MWIR window: mid-wavelength infrared window, λ = 3–5 µm, 3 LWIR window:
long-wavelength infrared window, λ = 8–14 µm.

The polarization-independent wideband components reported in this work are a first step
toward the development of integrated polarization-insensitive and broadband Ge-rich SiGe photonic
circuits for MIDIR free-space communications. For instance, the polarization-insensitive wideband
MMI, and by extension, the Mach Zehnder interferometer can be employed to implement building
blocks such as Fourier-transform spectrometers [13], multiplexers and demultiplexers [52], switches,
and more.

In conclusion, the use of broadband components paves the way for the reduction of needed
components and the number of building blocks in general, which consequently results in efficient and
cost-effective ground–ground, satellite–ground, and satellite–satellite free-space communications in
the MIDIR range.
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