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AN ECLIPTIC PERSPECTIVE FOR ANALYTICAL SATELLITE
THEORIES

Ioannis Gkolias∗, Martin Lara†, and Camilla Colombo‡

Traditionally, the forces in analytical theories for Earth satellite orbits are
expressed in a coordinate frame which involves the equatorial plane. How-
ever, for distant satellites, the Moon and Sun attractions are equally impor-
tant, and those forces are expressed more conveniently in a frame associ-
ated to the ecliptic plane, given that their ephemerides are conveniently
represented in this plane. In this work, we develop an analytical satellite
theory in which all the forces are expressed with respect to the ecliptic
plane. The main advantage of the method is that, after the averaging pro-
cess, all time-dependent terms disappear from the formulation yielding a
model suitable for preliminary orbit design.

INTRODUCTION

Historically, all efforts to analytically study the orbital motion about the Earth have a
common starting point, the Main Problem of the artificial satellite theory.1 And this hap-
pens for a good reason, since the perturbations due to the Earth’s zonal harmonics are
dominant for close Earth satellites. Those perturbations are naturally expressed in an Earth
centered coordinate system that uses the equatorial as a reference plane. Therefore, when
third-body perturbations due to the Moon and the Sun are also taken into account, they
are expressed with respect to that plane.2 However, the inclination and the node of the
Moon, that are needed to estimate its disturbing effect, are expressed as non-linear func-
tions of time with respect to the equator.3 On the other hand, the lunar inclination is almost
constant with respect to the ecliptic and Moon’s node is a linear function of time on the
ecliptic. For this reason, it is a common approach in the analytical approach to apply a se-
ries of geometrical transformations, such that, the ecliptic Moon’s elements finally appear
in the expression of the disturbing potential.4, 5

In this work, we will take a slightly different approach compared to the traditional one
in the literature. Namely, we will assume a reference frame which has the ecliptic as the
fundamental plane. The two approaches are equivalent from a physical point of view,
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but in a perturbation approach there exist relevant differences that we will try to exploit.
In particular, in the ecliptic frame formulation, the analytical expansions for the luniso-
lar perturbations simplify. On the contrary, the perturbations due to the zonal harmonics
of Earth’s gravitational field now become more involved than in the equatorial plane for-
mulation, because a further rotation of the reference frame is needed. The effect of this
additional rotation is to increase the number of terms of this perturbation which have the
right ascension of the ascending node (RAAN) of the satellite as an additional argument of
the trigonometric functions. However, the balance is beneficial in some cases of interest.

The total disturbing potential, expressed in the ecliptic reference frame, will be averaged
over the fast angles. First, the dependence on the mean anomaly of the satellite will be
removed, via a standard closed form averaging procedure.6, 7 Then the effect due to the
mean anomaly of the Moon is as well averaged, also in closed form. The double averaged
Hamiltonian8, 9 still depends on the argument of the perigee and RAAN of the satellite,
and of the time —the latter explicitly appearing in the ecliptic longitude of the Sun, and
the RAAN of the Moon orbit on the ecliptic. However, the time dependence of the long-
term resulting Hamiltonian can be avoided by a further averaging. Indeed, in view of the
ecliptic plane formulation both time-dependent angles are defined in the same plane as
the satellite’s RAAN. Therefore, when a third averaging is done over the ecliptic node of
the satellite, both the time dependencies and the RAAN of the satellite disappear from the
triple averaged model. This corresponds to an elimination of the node procedure, frequently
introduced in analytical investigations.10, 11

The resulting approximate model is autonomous and one degree of freedom, thus it can
be used to study the long term behaviour of distant Earth satellites. One immediate appli-
cation of such a model is the preliminary design of frozen and disposal orbits.12, 13 Those
appear as particular solutions of the reduced model.

MODEL FORMULATION

The orbit of a massless Earth’s satellite can be modelled as a perturbed Keplerian motion,

H = Hkep +Hzonal +Hthird-body. (1)

In the above equation, the term Hkep is simply the Keplerian one

Hkep = − µ

2a
,

where µ is Earth’s gravitational parameter and a is the satellite’s semi-major axis. The
non-centralities of Earth’s gravitational field and are modelled from the potential6

Hzonal = −µ
r

∑
j≥2

(
R⊕
r

)j
Cj,0Pj,0(sinφ), (2)

where R⊕ = 6378.1 km is the mean equatorial radius of the Earth, φ the geometric latitude
of the satellite, Cj,0 the zonal harmonic coefficients and Pj,0 are the zeroth order associated
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Legendre polynomials of degree j. Finally, the third body perturbations are modelled as a
series expansion in the parallactic ratio (r/r′)6

Hthird-body = −µ
′

r′

∑
j≥2

( r
r′

)j
Pj(cosψ), (3)

where µ′ is the third body’s gravitational parameters, r and r′ the distance of the satellite
and the third body from center of the Earth respectively, Pj are the Legendre polynomials
and ψ is the angle between the position of the satellite and the third body as viewed from
the Earth.

In order to develop our analytical theory, we will need to express the positions of the
involved bodies with respect to our coordinate system. Ideally we would like to have the
Cartesian coordinates expressed as functions of the orbital elements. This is easy to do by
employing a series of geometrical rotations either along the x-axis R1 or the z-axis R3 of
our system.

The position of the satellite, in Cartesian coordinates (x, y, z), can be expressed in the
Earth ecliptic plane in terms of its orbital elements as x

y
z

 = R3(−Ω)R1(−i)R3(−θ)

 r
0
0

 (4)

where r is the distance of the satellite from the Earth, θ the argument of the latitude, i the
inclination and Ω the RAAN of the satellite. We should mention here that all the angles
are measured with respect to the ecliptic frame. The position of the Sun, in Cartesian
coordinates (x�, y�, z�), is given simply from the relation x�

y�
z�

 = R3(−θ�)

 r�
0
0

 (5)

where r� is the Sun-Earth distance and θ� is argument of Sun’s latitude. Similarly for the
Moon, we have that its position (x$, y$, z$) in the ecliptic frame is given from x$

y$
z$

 = R3(−Ω$)R1(−i$)R3(−θ$)

 r$
0
0

 (6)

where r� is the Moon-Earth distance, θ$ is the argument of Moon’s latitude, Ω$ is the
longitude of the ascending node of the Moon’s orbit on the ecliptic plane and is a linear
function of time, and i$ is the inclination of the Moon’s orbit over the ecliptic, which can
be considered constant equal to approximately 5.1◦.

Finally, the equatorial (ξ, η, ζ) fixed frame coordinates of the satellite are expressed with
respect to the ecliptic ones as  ξ

η
ζ

 = R1(−ε)

 x
y
z

 , (7)
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where ε is the obliquity of the ecliptic and is considered constant ε = 23.4◦.

In order to proceed with the averaging process we assume the quadrupolar expansion
with respect to the Earth’s gravitational expansion and third body perturbations. Under this
assumption the zonal part of the Hamiltonian reads

HJ2 =
µ

r

(
R⊕
r

)2

J2P2(sinφ) (8)

where J2 = −C2,0 = 1082.63 · 10−6 and the sinus of the latitude of the satellite sinψ is
given from the relation

sin(φ) =
ζ

r
=
z cos(ε) + y sin(ε)

r
. (9)

We proceed with an averaging, in closed form, over the satellite’s mean anomaly M to
get

H̄J2 = H̄J2(a, e, i,Ω,−,−;µ, J2, R⊕, ε) (10)

or in explicit form

H̄J2 =
R2
⊕J2µ

a3η3

(
3

2
cεcisisε cos(Ω)− 3

8
s2i s

2
ε cos(2Ω) +

1

8

(
2− 3s2i

) (
3s2ε − 2

))
, (11)

where si, ci, sε, cε are the cosine and sine functions of the satellite’s inclination i and the
obliquity of the ecliptic ε, and η =

√
1− e2.

Notice here, that unlike in the equatorial first-order averaged J2 potential, the ecliptic
one in Equation (11) is still depended on the ecliptic node of the satellite Ω. However, we
will see how do deal with those terms in the following. In fact, the more convenient form
of the third-body averaged potential will compensate for this fact.

The Sun’s perturbing potential is

H� = −n�a
3
�

r�

(
r

r�

)2

P2(cosψ�) (12)

where n� is the mean motion the Earth orbiting around the Sun and a� the semi-major axis
equal approximately to one Astronomical Unit (149598023 km) . The cosine of the angle
ψ between the position vectors of the satellite and the Sun in the geocentric ecliptic frame
is given from

cos(ψ�) =
xx� + yy� + zz�

rr�
, (13)

where the coordinates of the satellite and the Sun are given for Equation (4) and Equa-
tion (5) respectively.
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As for the zonal case, we average in closed form over the satellite’s mean anomaly and
the single-averaged potential is

H̄� = H̄�(a, e, i,Ω, ω,−, θ�;n�, a�),

or in explicit form

H̄� =− 15

32
a2e2n2

� (ci − 1) 2 cos(2θ� + 2ω − 2Ω)

− 15

32
a2e2n2

� (ci + 1) 2 cos(2θ� − 2ω − 2Ω)

− 1

16
a2
(
3e2 + 2

)
n2
�
(
3c2i − 1

)
− 3

16
a2
(
3e2 + 2

)
n2
�s

2
i cos(2θ� − 2Ω)

− 15

16
a2e2n2

�s
2
i cos(2ω),

(14)

where again ci, si are the cosine and sine of the inclination i. Finally, for the Moon’s
perturbation we have

H$ = −β
n$a

3
$

r$

(
r

r$

)2

P2(cosψ$) (15)

where n$ is the mean motion the Moon orbiting around the Earth and a$ = 384399 km
the semi-major of Moon’s orbit. The cosine of the angle ψ between the position vectors of
the satellite and the Moon in the geocentric ecliptic frame is given from

cos(ψ$) =
xx$ + yy$ + zz$

rr$
, (16)

where the coordinates of the satellite and the Moon are given for Equation (4) and Equa-
tion (6) respectively. Like we did with the Sun’s perturbing potential, we average in closed
form over the satellite’s mean anomaly to get

H̄$ = H̄$(a, e, i,Ω, ω,−,Ω$, θ$; β, n$, a$, i$). (17)

However, for the case of the Moon, we will need to perform a second averaging to
further proceed with our analytical investigation. Unlike in the case of the Sun’s argument
of latitude θ�, the one of the Moon θ$ enters the equations through a geometrical relation
that does not always couple it with that of the ecliptic RAAN Ω of the satellite. Therefore,
we proceed to eliminate this frequency, by a second averaging, also in closed form, this
time performed over the Moon’s mean anomaly. The double averaged perturbing function
for the Moon now reads

¯̄H$ = ¯̄H$(a, e, i,Ω, ω,−,Ω$,−; β, n$, a$, i$, η$), (18)
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or in explicit form

¯̄H$ =
a2βn2

$
64η3$

[
−15e2 (ci − 1) 2s2i$

cos(2(Ω$ + ω − Ω))

− 15e2 (ci + 1) 2s2i$
cos(2(Ω$ − ω − Ω))

+ 60e2 (ci − 1) ci$sisi$ cos(Ω$ + 2ω − Ω)

+ 60e2 (ci + 1) ci$sisi$ cos(Ω$ − 2ω − Ω)

− 24
(
3e2 + 2

)
cici$sisi$ cos(Ω$ − Ω)

− 30e2
(

3c2i$
− 1
)
s2i cos(2ω)

− 2
(
3e2 + 2

) (
3c2i − 1

) (
3c2i$

− 1
)

−6
(
3e2 + 2

)
s2i s

2
i$

cos(2(Ω$ − Ω))
]
,

(19)

where ci, si, ci$ , si$ are the cosine and sine functions of the satellite’s and Moon’s incli-

nation respectively and η$ =
√

1− e2$.

Putting all the averaged contributions together we get

¯̄H = H̄ + H̄� + ¯̄H$,

which is still a non-autonomous two degrees of freedom system,

¯̄H = ¯̄H(a, e, i,Ω, ω,−,Ω$(t), θ�(t);µ, J2, R⊕, ε, n�, a�, n$, a$, i$, η$).

Since the mean anomaly of the satellite has been averaged throughout the equations the
semi-major axis is constant and therefore the motion takes place in 4-dimensional phase
space (e, i, ω,Ω) and we still have the time-periodic dependencies from the ecliptic node of
the Moon Ω$(t) and the argument of latitude of the sun θ�(t) that add two additional extra
frequencies to the system. This system is very similar to the one obtained in the equatorial
single-averaged problem. However, in the ecliptic representation, there is an important
a feature that we will exploit. By a careful inspection of Equations (11),(14) and (19) we
notice that the time-dependent arguments appear always coupled with the satellite’s ecliptic
node Ω.

Therefore, we can proceed with a further elimination of the ecliptic node. This is ac-
complished by working in a suitable rotating frame and is a valid operation when the per-
turbations are of the same order, i.e. for distant Earth’s satellites. After this procedure the
averaged perturbations read

¯̄HJ2 =
J2R

2
⊕µ(3 cos2 i− 1)(3 sin2 ε− 2)

8a3η3
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¯̄H� = a2n2
�

(
−15

16
e2 cos 2ω sin2 i+

1

16
(2 + 3e2)(3 sin2 i− 2)

)
8

¯̄̄
H$ = −

a2n2
$β(3 cos2 i$ − 1)((2 + 3e2)(3 cos2 i− 1) + 15e2 sin2 i cos 2ω)

32η3$

Finally, adding all the perturbing effects we obtain the triple averaged approximation,
which results in a one degree of freedom Lidov-Kozai10, 11 type Hamiltonian

¯̄̄
H =

A

η3
(2− 3 sin2 i) +B((2 + 3e2)(2− 3 sin2 i) + 15e2 sin2 i cos 2ω)

where

A = −J2R
2
⊕µ

8a3
(2− 3 sin2 ε)

and

B = − 1

16

(
n2
� +

n2
$
η$

β
3 cos2 i$ − 1

2

)
a2

The system no longer depends on the mean anomaly M and the ecliptic RAAN of the
satellite Ω, therefore there are two integral of the motion: the semi-major axis a is constant
and also the Lidov-Kozai’s integral10, 11

√
1− e2 cos i = constant (20)

is also constant. The two quantities constitute the fundamental dynamical parameters of our
system. The triple averaged system can be studied completely analytical and provides an
integrable approximation of the full problem, suitable to understand the underlying mech-
anisms and enhance the preliminary mission design process.

PHASE SPACE STUDY

We proceed with the phase-space study of the triple averaged model derived in this work,
in order to understand the underlying dynamics for different values of the dynamical pa-
rameters. The solutions of the systems are represented as level curves for the one degree of
freedom, triple averaged model in the (e, ω) plane. For convenience, we prefer to study the
evolution in non-singular elements

k = e cosω, h = e sinω

and the equations of motion are

dk

dt
= −
√

1− h2 − k2
na2

dV (k, h)

dh
dh

dt
=

√
1− h2 − k2
na2

dV (k, h)

dk

7



where is V =
¯̄̄
H(k(e, ω), h(e, ω)) the triple averaged disturbing function expressed as a

function of the non-singular elements. The equilibrium points are solutions of the system

dk/dt = dh/dt = 0,

and their stability is determined from the eigenvalues of the linearised system of the right-
hand side of the equations of motion. As we have discussed, there are two conserved
quantities in the system and their initial values are defined from the value of the semi-
major axis and the initial value of the Lidov-Kozai integral

√
1− e2 cos i. For the second

we choose its value as the inclination of the circular e = 0 orbits. More specifically, in order
to select a specific value of the second integral we set in Equation (20) the eccentricity equal
to zero and we substitute any instance of the cos i in the triple averaged model through the
relationship

√
1− e2 cos(i) = cos(icirc)⇒ cos i =

cos(icirc)√
1− e2

.
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Figure 1. The phase-space at a = 20000 km and icirc = 20◦, typical for low inclina-
tions at all altitudes. The blue dot corresponds to the equilibrium solution for circular
orbits.

Varying the values of the dynamical parameters, four different topologies are encoun-
tered. Those are depicted in Figures 1-4. Starting from low icirc the picture of the in-plane
dynamics is quite calm as seen in Figure 1. The circular orbits are the only equilibrium of
the system, and the value of the averaged eccentricity is almost constant along any other
initial conditions. This picture holds for all altitudes at low inclinations, up to a value of
about 40◦ − 63◦ depending on the altitude.

Moving to medium inclinations, from a value of 40◦ inclination and above the phase
space changes dramatically. In Figure 2 we present the phase space topology for this case.
First, two more stable equilibrium solutions appear, whereas the equilibrium corresponding
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Figure 2. The phase-space at a = 30000 km and icirc = 60◦, typical for moderate in-
clinations at all altitudes. The blue dots correspond to the three equilibrium solutions
and the red line represents the separatrix of the unstable point.

to circular orbits has become unstable. This phenomena is knows as a pitchfork bifurca-
tion. The separatrix emanating from zero eccentricity, allow almost circular orbits to ex-
hibit large eccentricity variations within a period of their perigee oscillation. On the other
hand, there appear now, two frozen eccentric orbits for ω = π/2 and 3π/2. The red line
in Figure 2 represents the separatrix of unstable equilibrium that appears for the circular
orbits. While in Figure 1 all solution have an argument of perigee that rotates, in this case
we have also the option of librational motion within the lobes of the eight-shape figure of
the separatrix. Therefore, the separatrix is actually dividing the phase space to librational
(inside) and rotational (outside) behaviour of the ecliptic argument of perigee ω.

At medium altitudes, between 20000 and 35000 km, the picture changes one more time
when we further increase the inclinations towards even higher values. In Figure 3 we see
that another pitchfork bifurcations occurs, rendering the circular orbits stable again. The
two eccentric frozen orbit solutions still exist at ω = π/2 and 3π/2, but there are now also
two unstable eccentric frozen orbits for ω = 0 and π respectively.

Finally, the situation for high inclinations at higher altitude values is presented in Fig-
ure 4. This situation can be reached either by increasing the value of the altitude of an
initially inclined orbit or increasing the inclination at an already high altitude. The tran-
sition in the first case is done through another pitchfork bifurcation for the circular orbits,
which become unstable again while a pair of eccentric frozen orbits at ω = 0 and π appear.
In the later case, one can reach this particular phase space through two tangent (saddle-
node) bifurcations. In this case two pairs of equilibria, one stable and unstable, appear
from the rectilinear orbits, i.e. orbits with e = 1 which are represented by the unit circle in
the (h, k)-plane.
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Figure 3. The phase-space at a = 20000 km, icirc = 65◦, typical for high inclinations
at medium altitudes . The blue dots correspond to the five equilibrium solutions and
the red lines represent the separatrices of the unstable points, which form a hetero-
clinic connection in the phase space.
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Figure 4. The phase-space at a = 40000 km and icirc = 70◦, typical for high inclina-
tions at high altitudes . The blue dots correspond to the seven equilibrium solutions
and the red lines represent the separatrices of the unstable points. The inner separa-
trix stems from the unstable circular orbits while the outer one forms a heteroclinic
connection between the remaining unstable equilibria.

All the phase space transitions are summarised in Figure 5, where we present the bifurca-
tion diagram for the triple averaged model in the dynamical parameter space (a, icirc). What
we are actually observing is the interplay between the J2 and the third-body perturbations.
For inclinations smaller that 40 degrees or higher than 140, all orbits are stable with low
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Figure 5. The bifurcation diagram for the different types of motion in the dynamical
parameter space (a, icirc).

eccentricity variations. For inclinations between 40 − 140 degrees, there is a competition
between the Lidov-Kozai mechanism induced by the Sun and the Moon and the contribu-
tion of J2. More specifically, it is know that the planet’s oblateness J2 can suppress14 the
effect and stabilise all initially circular orbits. We find this to happen for Earth orbiters up to
semi-major axis values of 6 Earth radii. An exception appears in the case of orbits of about
63◦ inclination which corresponds to the critical inclination resonance. For semi-major
axis higher than 6 Earth radii, the situation changes, as the third body effects dominate, and
initially circular orbits are unstable for a wide range of inclinations. This transition, creates
a natural transition from stability to instability for inclined orbits, as moving further away
from the Earth. However, within the unstable domain, there do exist a variety of stable
frozen orbit solutions which could be exploited for interesting mission design purposes.
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Figure 6. Comparison between the analytical bifurcation limit and numerically ob-
tained stability map. The red-line corresponds to the analytical bifurcation limit com-
puted via the triple-averaged model. The background colormap gives the normalised
eccentricity diameter ∆e averaged over a set of 50 randomly set of angles for each
point in the action-like space (a− e− i).

As a final verification of our model, we proceed with a comparison of our analytical re-
sults about the stability of circular orbits of Earth’s orbiters with numerical propagation of
the double-averaged dynamics.15 In Figure 6 we superpose the analytical bifurcation curve,
obtained with the triple-averaged model to a numerically obtained dynamical map for al-
most circular orbits. The numerically averaged map is obtained by propagating for each
point in the action-like space (a, e, i) a set of 50 randomly selected angular configurations
(Ω, ω,Ω$). For each of the orbits we compute a normalised eccentricity diameter defined
as:15

∆e =
|e0 − emax|
|e0 − ere-entry|

(21)

where emax is the maximum value of the eccentricity obtained in the timespan of the nu-
merical propagation (typically about 45 lunar node periods ≈ 450 y), e0 the initial value of
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the eccentricity and ere-entry the value of the eccentricity for which the re-entry condition is
met for each semi-major axis.

Since we are interested in the stability of initially circular orbits, the grid of dynamical
map in Figure 6 is over semi-major axis a and the initial inclination of the orbit. Then for
each point we take the mean value of ∆e over the ensemble of the angular configurations.
The level of matching between our analytical results and the numerical result is striking.
We recall here that in the analytical approximation, circular orbits outside the left-most and
right-most arcs, as well as within the central arc are stable. The rest correspond to orbit
where the simplified dynamics predicts high eccentricity excursions for circular orbits (see
also Figure 5). The simple triple-averaged model captures very well the transition from
stability to instability for inclined Earth orbits as the semi-major axis increases.

Of course there are features in the full model, which are not captured in our simplified
model. For example the unstable domain around the 57◦ inclination is known to be related
with the term including the 2ω + Ω of the satellite. This kind of terms are absent from our
triple-averaged model and so their dynamics is not included in our study. However, our
model captures the main features around the critical inclination resonance and its transition
to a Lidov-Kozai instability at higher altitudes.

FROZEN AND DISPOSAL ORBIT DESIGN

The triple averaged Hamiltonian obtained in the previous section, can be used for pre-
liminary design of distant frozen orbits. Namely, we are looking for orbit with constant
perigee, which are simply the stationary solutions of the ¯̄̄H. There are two different types
of frozen solutions: one with ω = π/2 or 3π/2 and one ω = 0 and π. Those can be
exploited depending on the type of mission.

Another way we could use the insight information provided by the triple averaged model,
is to design end-of-life disposal orbits for high Earth satellites. Let us assume a semi-major
axis of about 40000 km, then the different phase spaces with respect to icirc are presented
in Figure 7. We show the different evolutions of an initial circular e = 0 and a moderately
eccentric orbit e = 0.2 orbit due to the increase in icirc. For icirc < 40◦ the circular orbit
is stable and orbit with e = 0.2 undergoes some small eccentricity variations. However,
after an icirc ≈ 50 deg, both initial orbits exhibit significant variations in the eccentricity.
These eccentricity variations keep increasing and allow us to reach even an atmospheric
re-entry value∗ within the first period of the ω oscillation. In the meantime, stable frozen
orbits co-exist in these configurations, for particular values of the eccentricity. A mission
design concept that exploits the stable equilibria during the operational lifetime, and the
unstable equilibria for a re-entry at end-of-life can become a new paradigm for a sustainable
exploitation of distant Earth orbits.

∗The re-entry altitude in this work is set to 120 km above the Earth’s surface
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Figure 7. Frozen orbit and disposal design based on the 1 degree of freedom simplified Hamiltonian.

CONCLUSION

In this work, we have averaged the problem of high Earth satellites using an ecliptic
representation of a quadrupolar approximation of the force model. The resulting 1 degree
of freedom system, resembles a Lidov-Kozai approximation for the case of the Earth and
describes the in-plane stability of the orbits. We have studied the reduced phase-space by
computing the equilibrium points and their stability and we have calculated the bifurcation
diagram for the different types of behaviour. Moreover, this simplified model gives us some
analytical insight for the orbital stability in the regions of its validity. This information
could be exploited in orbit design of distant Earth satellites.

As further work, we will recover the short-periodic terms of transformations involved
in the triple-averaged approximation. This will help us to compare the analytical results
with orbits in the full model and allow us to check if they hold the desired properties, i.e.
small eccentricity variations for the frozen orbit design case and short lifetimes for the
preliminary disposal design case. Moreover, additional perturbation terms can be added in
our model to make the approximation more accurate, namely the second order J2

2 and the
forth order Legendre polynomial P4 for the Moon’s attraction.16, 17 Finally, the ultimate goal
of this analytical treatment, is to allow us to enhance the current mission design process for
distant Earth’s satellites.

14



ACKNOWLEDGMENTS

This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No
679086 – COMPASS).

REFERENCES
[1] D. Brouwer, “Solution of the problem of artificial satellite theory without drag,” The Astronomical

Journal, Vol. 64, Nov. 1959, p. 378, 10.1086/107958.
[2] W. M. Kaula, “Development of the lunar and solar disturbing functions for a close satellite,” The Astro-

nomical Journal, Vol. 67, June 1962, p. 300, 10.1086/108729.
[3] G. E. Cook, “Luni-Solar Perturbations of the Orbit of an Earth Satellite,” Geophysical Journal, Vol. 6,

Apr. 1962, pp. 271–291, 10.1111/j.1365-246X.1962.tb00351.x.
[4] G. E. O. Giacaglia, “Lunar Perturbations of Artificial Satellites of the Earth,” Celestial Mechanics,

Vol. 9, Apr. 1974, pp. 239–267, 10.1007/BF01260515.
[5] M. T. Lane, “On analytic modeling of lunar perturbations of artificial satellites of the earth,” Celestial

Mechanics and Dynamical Astronomy, Vol. 46, 1989, pp. 287–305, 10.1007/BF00051484.
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