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Abstract
This work is focused on exploring the applicability of intelligent methods in assessing porosity and
permeability in the context of reservoir characterization. The main motivation underlying our study is
that appropriate estimation of reservoir petrophysical parameters such as porosity and/or permeability is
a key step for in-situ hydrocarbon reservoir evaluation. We ground our analysis on information on log-
depth, caliper, conductivity, sonic logging, natural gamma, density and neutron porosity, water saturation,
percentage of shale volume, and type of lithology collected from well loggings in an oil field in the middle-
east (a total number of 11 exploratory wells are considered). Data also include porosities and permeabilities
evaluated on core samples from the same wells. All these data are embedded in a neural network-based
approach which enables us to establish input-output relationships in terms of an optimized number of
input variables. Three diverse intelligent techniques are tested. These include: (i) classical artificial neural
networks; (ii) artificial neural networks based on principal component analysis (PCA) transformation; and
(iii) statistical neural networks based on a bagging approach. Our results suggest that the statistical neural
network is most effective for the field setting considered. The application of this neural network with 9
input parameters provides reliable performances in 94% and 81% of the cases, respectively in the training
and validation phases, for the estimation of porosity. A trained network with 10 input parameters leads
to successfull reproduction of permeability values in 85% and 79.5% of the cases, respectively during
training and validation of the network. Results from this study are expected to be transferable to applications
involving evaluation of petrophysical properties of a target reservoir in the presence of incomplete well
log datasets.

Introduction
Petrophysical propetises (such as porosity and permeability) are critical variables for the characterization of
hydrocarbon reservoirs. In general, characterization of porosity and permeability may be assessed through
the analysis of core samples, well logging, well testing, field production data and seismic information.
Data collected from well logging are frequently available to provide valuable (albeit indirect) information
about mineralogy, texture, sedimentary structures and fluid content of a reservoir (e.g., Wong et al., 2000
and references therein). There are also some empirical models available to infer porosity and permeability
from well log data upon relying on a variety of input information (e.g., Coates and Dumanoir, 1973;
Johnson, 1994). The development of modern well logging tools, techniques and systems has favored
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the use of such empirical models, which involve a reduced cost and time investment when compared to
conventional coreflooding experiments. In this context, regression techniques are then typically applied to
project available core plug datasets onto unsampled locations in the reservoir and then employ the ensuing
results to estimate permeability and porosity. The quality of these estimates is strongly affected by the
degree of system heterogeneity and by the ability of the available sample plugs to be representative of the
spatial distribution of the target petrophysical characteristics. Outcomes of such an analysis are typically
applicable solely for the characterization of the wells where cores and plugs are taken from (Ligtenberg
and Wansink, 2001).

Statistical approaches and intelligent techniques such as artificial neural networks (ANN) have been
proposed as versatile tools to deal with estimations of rock petrophysical characteristics (Wong et al.,
2000). Some recent investigations suggest that ANNs can be superior to other regular statistical methods in
predicting porosity and permeability from well logging data (e.g., Mohaghegh, 2005; Lim, 2005; Aminian et
al., 2005). ANN is a nonparametric tool which has become increasingly popular to analyze and interpret well
logging data in the presence of incomplete information. ANNs are essentially translated into computer codes
attempting to mimic biological learning processes of the human nervous system (Huang et al., 1996; Huang
and Williamson, 1997). One of the main capabilities of ANNs is pattern recognition, due to their capability
of assimilating the nature of the dependency between input and output variables of a target process. Since
learning is essentially based on pattern recognition, a trained network classifies learned patterns and provides
predictions of desired outputs (Mohaghegh, 2000). ANN approaches are attractive mainly because (i) there
is no need to completely analyze the mathematical formulation rendering the physical processes governing
a system evolution and (ii) they are essentially free from linearity assumptions for the interpolation of the
quantities of interest (Helle et al., 2001). We rely here on ANNs and take advantage of their ability to serve
as a nonlinear regression technique to transfer at unsampled locations information collected at a selected
set of well logging from standard core analyses.

We analyze the ability of three diverse intelligent techniques to provide estimates of porosity and
permeability of an oil reservoir in the middle-east. These techniques include (i) classical artificial neural
networks (ANNs); (ii) artificial neural networks based on principal component analysis (PCA); and (iii)
statistical neural networks based on bagging technique. For all of the employed techniques, we design and
train a back-propagation neural network (BPNN) for the reproduction of porosity and permeability based on
data collected from well logging. The optimum trained network is then applied to predict relevant reservoir
properties at wells with incomplete/missed logging information.

Defining input variables is critical to obtain appropriate predictions of the desired outputs from ANNs.
Selecting input variables governing the process considered may be challenging in the presence of (i) a large
number of potential input variables; (ii) correlations between these, which can give rise to redundancy; and
(iii) some variables which are practically not influential to the target process. Preliminary statistical analyses
are then useful, because they assist to identifying the occurrence of such issues.

It is expected that the quality and efficiency of the training of a network can increase through
the application of targeted pre-processing statistical analyses to the available dataset, such as principal
component analysis (PCA). The latter enables us to highlight input/output characteristic features needed to
design an efficient ANN (see, e.g., Olsson et al., 2004; Gibbs et al., 2006; and Bowden, 2003 for additional
details). Ranaee et al. (2014) show that (linear/non-linear) PCA techniques can be considered as a viable
pre-processing step to conveniently decrease the complexity of the system by reducing the dimensionality
of the input variable space and improve the efficiency of training ANNs while preserving the accuracy of
the ensuing results.

In the following we present a summary of the techniques we employ to evaluate prosity and permeability
as target quantities of interest as well as their applications to the field setting considered.
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Materials and methods
Artificial Neural networks (ANNs) have been successfully used in a variety of petroleum engineering
applications, including reservoir characterization and optimization of field operations (Mohaghegh, 2000;
Tamhane et al., 2000; Lim et al., 2004). ANNs can (in principle) learn and mimic underlying relationships
between a provided set of input and output (desired) data. A trained network is then capable of classifying
a newly emerging pattern between input-output and providing system responses based on the knowledge
acquired from previously introduced/acquired patterns. A trained ANN can then be used as a surrogate
for a mathematical model which is either unknown or known but associated with a marked degree of
complexity (Silpngarmlers et al., 2002). These surrogate models have the added value of being able to
capture nonlinearities of relationships between variables (e.g., Ranaee et al., 2014 and references therein).
Hence, the performance of the neural network critically depends on the reliability of the training process.

Figure 1 depicts a schematic three-layer ANN system. In general, one can resort to (i) supervised or
(ii) unsupervised techniques to train a network (Mohaghegh, 2000). We employ here a supervised back-
propagation algorithm (BPNN) which is the most widely used ANN training algorithm (Haykin, 1999;
Lim, 2003; Aminian and Ameri, 2005). The available dataset is subdivided into sub-sets which are then
employed for (i) training, (ii) validation, and (iii) as a test bed for the neural network. A BPNN training
process includes feeding training samples as input vectors to the network, calculating prediction errors (e.g.,
in terms of mean square error, MSE) with respect to measured values of the desired model output, and
then tuning the weights of the network to minimize such errors (Chen, 2006). In this study we employ the
Levenberg-Marquardt optimization algorithm for the training of the system (Hagan and Menhaj, 1994). The
BPNN is based on the following formulation

Figure 1—Structure of the designed three-layer neural network

(1)

Here, O* and I respectively are the output and input variables; N1 is the dimension of the input vector
and N2 is the number of hidden neurons; ωij is the connection weight from i-th input neuron to the j-th
hidden neuron and Wj is the overall weight of j-th neuron; ω0j and W0 are the related bias weights; and f is
the activation function (see Chen, 2006 for additional details). In this work all networks are trained with a
linear activation function for the input layer and a tangent-sigmoid activation function for the hidden and
output layers.

We also apply a bagging technique based on bootstrap sampling to generate multiple training sets from
the original training database. The neural network would then be trained from each of these training sets
(Breiman, 1994). Considering Figure 2, a bootstrap sample is constructed from a data set of dimension



4 SPE-185922-MS

β (with β = 1…. N1), by randomly sampling from the space of N1 original input variables (see (1)) with
replacement (Step 1). Note that, due to replacement, some patterns may be selected more than once while
some other patterns might not selected at all. It is expected that a bootstrap sample contains about 67% of
the original data set patterns (Breiman, 1996). Next, each bootstrap data set is used to train a neural network
(Step 2 in Figure 2). The predictions generated by each of these networks are then averaged to generate so-
called bagged ANN ensemble predictions (Step 3 in Figure 2), which are expected to be associated with
an improved degree of stability.

Figure 2—Schematic representation of a bagged ANN

Results and discussion

Data processing
The available dataset includes core and well log data. The core data comprise laboratory experiments
(i.e., data on porosity and permeability) performed on diverse core samples taken from 11 wells between
depths of 2482.59 and 2923.95 m (below ground level). Figure 3 depicts a scatterplot of porosity (ϕ) versus
permeability (K) data associated with the above mentioned laboratory experiments. The observed scattering
of the data points is typically due to heterogeneity of the characteristics of the analyzed reservoir.

Figure 3—Scatterplot of porosity (ϕ) versus permeability (K) data
stemming from laboratory core experiments associated with 11 wells

Table 1 lists descriptive statistics of the data obtained from 3296 core samples extracted from 9
exploration wells. Our analysis reveal that porosity data are well interpreted by a Gaussian distribution
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(details not shown). The mild sample skewness might be due to the presence of clay in the reservoir rock
texture. Observations of permeability are associated with an average value of 152.5 mD and are positively
skewed. These results indicate heterogenity of the reservoir characteristics, a result which is consistent with
the geological make-up of the cores examined, mainly composed by crushed limestone and sandstone rocks.

Table 1—Descriptive statistics of porosity and permeability data obtained from core samples.

Number of
observations Mean Median Minimum Maximum Std.Dev. Skewness Kurtosis

Permeability
(mD) 3296 152/49 1.86 5 7240 542.32 5.47 36.52

Porosity (%) 3296 13/51 12.8 3.50 37.21 6.95 0.46 -0.16

Well logging data are also collected from 8 wells for the analysis of porosity and permeability. These data
include neutron porosity (NPHI), sonic logging (DT), gamma ray (GR), caliper (CALIP), density (RHOB),
resistivity (Rt), well logging depth (Depth), laterolog deep (LLD), water saturation (Sw) of origin rocks and
dominant lithology such as shale (V-Shale). Table 2 lists descriptive statistics of these well log data. It can
be seen that CALIP, Rt, RHOB and V-Shale are positively skewed with high Kurtosis, thus supporting a
general picture of a heterogeneous reservoir.

Table 2—Statistical description of the well logging data.

Observation
numbers Mean Median Minimum Maximum Std.Dev. Skewness Kurtosis

Depth 3296 2689.1 2688.9 2482.59 2923.95 99.56 -0.14 -0.4

CALIP 3296 7.92 8.37 5.63 22.19 2.27 1.63 4.6

Rt 3296 0.34 0.17 0.052 7.08 0.52 4.35 2.86

DT 3296 71.03 68.01 49.4433 133.69 12.22 0.41 -1.03

GR 3296 44.75 40.45 4.04 182.5 23.64 1.04 1.55

NPHI 3296 0.18 0.18 0.05 0.58 0.08 1.14 3.21

LLD 3296 0.12 0.12 0.03 0.38 0.08 0.16 -0.84

RHOB 3296 2.45 2.48 2.92 3.02 0.2 -0.84 2.17

Sw 3296 0.56 0.53 0.04 1 0.34 0.04 -1.36

V-Shale 3296 0.16 0.11 0.02 0.86 0.17 1.41 1.67

Figure 4 depicts the bivariate correlation matrix between variables of the analyzed dataset. Porosity shows
the highest correlatios with DT, RHOB, LLD, NPHI and SW. Permeability displays the highest correlations
with RHOP, DT, Depth, NPHI, Rt and SW.
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Figure 4—Bivariate correlation matrix of the analized dataset

Principal component analysis (PCA)
Principal Component Analysis (PCA) enables us to reduce the number of input variables for ANN models.
Application of the method is well documented and esentially results in a new set of variables, which
are defined as orthogonal principal components. It is commonplace to retain only the first few principal
components which are needed to describe the total variance of the original data up to a given level of
accuracy. The variance explained by each of the principal components is given in Figure 5 for porosity
and permeability. These results suggest that the first 3 principal components explain almost 80 % of the
variability of either porosity or permeability due to variation of the input parameters.

Figure 5—Percent variability explained by the first 6 principal components for (a) porosity (ϕ) and (b) permeability (K)

Coefficients associated with the original variables in the space of the first 8 principal components (PCi

with i =1, …, 8) are listed in Table 3. According to Table 3a, the absolute values of the 3 largest coefficients
in the space of the first three principal components (PC1, PC2, and PC3) are mainly associated with RHOB,
NPHI, GR, Sw and DT (see numbers in bold in Table 3b). This means that the first 3 principal components
(which contribute to almost 80% of the variance of the output) are mainly given by a weighted mixture of
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these variables. A corresponding analysis is performed for permeability. As a result, one can observe that the
the first three principal components are mainly associated with DT, GR, Depth, Rt, RHOB, NPHI, and Sw.

Table 3—Coefficients of the system parameters contributing to the
first 8 principal components for (a) porosity (#) and (b) permeability (K)

(a)

Principal component
Parameter

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Rt 0.0 73 0.184 -0.104 0.090 0.436 0.154 -0.296 -0.024

RHOB 0.495 0.090 -0.325 -0.090 0.142 -0.592 0.364 0.485

GR -0.028 0.507 0.112 -0.418 0.613 0.098 0.012 -0.192

NPHI 0.389 0.252 -0.046 -0.177 -0.364 0.660 0.106 0.346

DT 0.170 -0.041 -0.380 -0.683 0.197 0.261 0.560 -0.477

Sw -0.452 -0.246 0.104 0.210 0.379 0.314 0.354 0.559

Depth -0.241 0. 123 0.061 0.437 -0.258 -0.116 0.571 -0.262

LLD 0.25 -0.22 -0.12 -0.26 0.18 -0.06 0.14 -0.23

V-Shale -0.18 -0.14 0.25 0.02 0.16 -0.21 0.7 -0.03

CALIP 0.15 -0.08 0.19 -0.21 0.23 -0.01 0.20 0.06

ϕ 0.25 -0.22 -0.88 -0.26 0.18 0.02 -0.06 0.001

(b)

Principal component
Parameter

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Depth -0.056 0.533 -0.296 -0.368 0.668 -0.183 -0.032 0.099

RHOB -0.171 0.607 0.037 -0.019 -0.575 -0.183 -0.482 0.066

NPHI -0.519 0.027 0.158 -0.044 0.057 0.593 0.018 0.589

GR 0.049 0.184 0.804 0.361 0.324 -0.271 -0.011 0.088

DT -0.511 -0.075 -0.002 -0.141 -0.209 -0.571 0.574 0.121

Sw 0.524 -0.091 -0.166 0.062 -0.107 -0.253 0.014 0.781

LLD 0.138 0.129 0.063 0.031 -0.211 0.342 0.658 -0.084

V-Shale -0.01 -0.16 -0.13 0.21 -0.13 0.29 0.22 0.24

CALIP 0.15 -0.05 0.12 -0.18 0.21 -0.09 0.17 -0.06

Rt -0.45 -0.25 -0.10 -0.21 -0.38 0.31 0.35 -0.56

K -0.213 0.144 -0.456 0.841 0.123 -0.026 0.052 0.003

The results of a bivariate correlation analysis performed on the well logging variables selected through
PCA are depicted in Figure 6. These results suggest that porosity is mainly correlated with DT, NPHI and
GR and permeability is mainly correlated with GR, Sw, and DT and NPHI.
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Figure 6—Correlation matrix for (a) porosity (φ) and (b) permeability (K) and the well log variables selected through PCA

Artificial Neural Networks (ANNs)
Input variables to ANNs comprise well logging data. Porosity and permeability data associated with the
core samples from the same wells are taken as target outputs. A total of 3296 data points are employed to
train, validate and test designed networks. The available dataset is divided into two categories. The first
group comprises 65% of the total sampling points and is assigned to the process of network training and
validation. Two third of these data points are use for training ANNs and the rest is employed for validation
of the trained networks. An inadequate selection of data points for training ANNs may cause insufficient
learning, and thus, poor ability of the network to provide reliable results. It is then critical that data selection
for training networks ensure coverage of the entire available dataset. All data are normalized between 0.1
and 0.9 to improve the learning ability of the neural networks. This choice is due to the observation that
tangent sigmoid activation function cannot attain zero or unit values.

Training ANNs aims at attaining the best possible correlation coefficient (R2) and minimum MSE
between predicted and observed values of prosity and permeability. The number of hidden layers and the
corresponding number of neurons are varied to determine the best structure of the network leading to an
optimized performance in reproducing the data. We compare training performance of the networks containig
a number of hidden layers ranging between 1 and 3. It is found that satisfactory results are obtained with
networks associated with a single hidden layer (details not shown). This is consistent with prior studies (e.g.,
Horink et al., 1989; Haykin, 1991; Bhatt et al., 2001) indicating a single hidden layer including enough
neurons can be sufficient to cope with settings associated with a relatively high degree of complexity.

A scatterplot of the results constructed from a trained classical network yields values of R2 = 73.7 % and
72.2%, respectively for porosity and permeability estimates.

Following the application of PCA, 5 and 6 well loging variables (see Figure 6) are respectively used
as inputs to the networks for the assessment of porosity and permeability. Compared to the results from
classical ANNs, training of PCA-based ANNs are associated with slightly improved values of R2 = 79.8 %
and 74.1%, respectively for porosity and permeability.

We then employ a bagging technique basd on bootstrap resampling to generate multiple training sets
and use these to train an ensemble of ANNs (see Figure 2). The predictions generated by each network
are averaged to generate more stable bagged ANN ensemble predictions. A number of 20 training data
sets are generated on the basis of bootstrap resampling technique. These are provided to the networks
according to the BPNN training technique. A configuration based on 9 input variables and 18 neurons in the
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hidden layer is selected as the optimum structure for the calculation of porosity. Such a network provides
reliable performances for porosity (with R2 = 94% at the validation stage). The same structure (with 10
input variables and 24 neurons in the hidden layer) is ranked as best for reproducing permeability data.
Validation of the optimum network yield a value of R2 = 85% to abservations of permeability. Table 4 lists
results corresponding to the performance of optimum networks of different kinds in terms of correlation
coefficent (R2) and mean squer error (MSE).

Table 4—Validation performance of optimal neural networks for reproduction of porosity, φ, and permeability, K

Optimal network geometry
(input-hidden-output lyers) R2 MSE

Type of neural network
ϕ K ϕ K ϕ (%) K(mD)

Classical neural network 9-22-1 10-24-1 73.7% 72.2% 0.0089 0.0074

PCA neural network 5-20-1 7-20-1 79.8% 74.1% 0.0085 0.0092

Bagged neural network 9-22-1 10-24-1 94% 85% 0.001 0.0034

Finally, we employ the optimum bagged NNs to predict porosity and permeability in 3 wells which are
not used in the calculations and where incomplete well logging information is available. Figures 7 and 8
respectively illustrate the prediction results of porosity and permeability based on optimzed bagging ANN
for these three wells. Solid lines correspond to the bagged neural network predictions, core data being
represented by circles. As one can observe, there is a genrally good agreement between values predicted
from optimum bagged ANNs with data of porosity and permeability.

Figure 7—Prediction of porosity from optimum bagged ANN for the wells with incomplete well logging data

Figure 8—Prediction of permeability from optimum bagged ANN for the wells with incomplete well logging data
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Conclusions
Our work leads to the following major conclusions:

• The main scope of this work was to show the advantage of relying on intelligent methods (i.e.,
artificial neural network) to estimate permeability and porosity using some available laboratory
core data and well logging information.

• Results show that ANNs can be a viable and computationally cheap solution for dealing with
incomplete set of petrophysical information, their implementation being not hampered in the
absence of a complete characterization of the geological model of a reservoir.

• Principal Component Analysis (PCA) suggests that it is possible to reduce the dimensionality of
the input variables. It is then observed that PCA based neural network models are characterized by
a slightly improved performance in comparison with the classical neural networks.

• A trained bagged neural network provides results of improved quality as compared against those
obtained from both PCA based and classical neural network models.
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