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Abstract: Nanoremediation, which is the use of nanoparticles and nanomaterials for environmental
remediation, is widely explored and proposed for preservation of ecosystems that suffer from the
increase in human population, pollution, and urbanization. We herein report a critical analysis of
nanotechnologies for water remediation by assessing their sustainability in terms of efficient removal
of pollutants, appropriate methods for monitoring their effectiveness, and protocols for the evaluation
of any potential environmental risks. Our purpose is to furnish fruitful guidelines for sustainable
water management, able to promote nanoremediation also at European level. In this context, we
describe new nanostructured polysaccharide-based materials obtained from renewable resources
as alternative efficient and ecosafe solutions for water nano-treatment. We also provide eco-design
indications to improve the sustainability of the production of these materials, based on life-cycle
assessment methodology.
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1. Introduction

The increasing and rapid deterioration and degradation of the water quality is one of the
most challenging issues facing the 21st century. It can be ascribed to a variety of factors such as
population growth, the effects of climate change on the hydrologic cycle and increasing pollution.
Globally, extensive research has been performed to address such urgent environmental issues and
new technologies have been developed to remediate water pollution by both organic and inorganic
contaminants. However, the cost and challenge associated with the treatment of both groundwater
and wastewater and the increasing awareness of environmental risks calls for continued improvement
and innovation. Nanotechnology has significantly contributed to remarkable industrial and societal
changes over recent decades. Among the wide variety of fields of application of nanotechnology,
considerable efforts have been devoted to exploiting the potential of engineered nanomaterials
(ENMs) for environmental remediation, commonly referred to as “nanoremediation” [1]. Compared
to conventional in situ remediation techniques, such as thermal treatment, air sparging, chemical
oxidation and bioremediation, often coupled with on-site pump-and-treat processes [2], which are
known to be expensive, partially effective and time-consuming, nanoremediation has emerged as
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a new clean-up method that is less costly, more effective as well as environmentally, socially, and
economically sustainable [3,4]. Indeed, nanotechnologies allow treatment of contaminated media
in situ and minimize the addition of further chemicals in the clean-up process [5]. The unique
properties of ENMs are particularly advantageous for large-scale in situ remediation of contaminated
waters and have certainly boosted the efficiency of nanotechnology-based decontamination strategies,
compared to “conventional” approaches [6,7]. ENMs, due to their nanometric size, present a very
high and reactive surface area, compared to the same volume of bulk material. They can also be
tuned with desired properties by tailoring the synthetic processes to meet case-specific needs and
overcome applicative limitations stemming from the complexity of environmental matrices to be
treated. Additionally, the far-reaching mobility of ENMs in aquatic media maximizes their potential
for treating large volumes of contaminated environmental matrices [8]. According to the Project
of Environmental Nanotechnology web site and United States Environmental Protection Agency
(USEPA), in the last ten years, almost 70 sites have been successfully treated worldwide at field scale,
by using nanoremediation techniques. These approaches have significantly reduced time frame (days
vs. months) and operational costs (up to 80%) in comparison with conventional methods [4,9]. It has
been estimated that there are more than 2.5 million potentially polluted sites in Europe which need
to be remediated, and that 350,000 contaminated sites could represent a potential risk to humans or
the environment [10]. Moreover, a remediation technology must attend to cost-benefit approaches
considering practical immediate issues and long-term expectancies.

Despite such promising expectations, environmental and human risk assessment associated
with the use of ENMs is still a matter of debate and nanoremediation is seen still as an emerging
technology [6]. It has been slowly applied in Europe [11] probably because of the emerging societal
worries on nanotechnology and the current lack of regulatory and proper legislative supports [12–14].

We herein report a critical analysis on the use of the ENMs for water remediation, with the aim
of sharing the strategy developed within the NanoBonD project (Nanomaterials for Remediation
of Environmental Matrices associated to Dewatering), funded in the framework POR CReO FESR
Tuscany 2014–2020, whose objective is the development of innovative, ecofriendly and ecosafe
polysaccharide-based nanotechnologies for the remediation of contaminated sediments and waters.

2. Eco-Design of ENMs for Environmental Remediation

The particularly desirable ENMs characteristics, which make them suitable for environmental
remediation, can negatively rebound of the safety of application of such materials in water
remediation [15]. The current debate relies on the balance between known benefits of nanoremediation
and potential risks associated to the use of ENMs in natural environments mainly due to their mobility,
transformations and ultimately potential ecotoxicity [16]. Costs and benefits are not always easy to
handle especially for emerging materials, at least at the beginning when unexplored aspects are still
present and contradictory results exist considering both human health and environmental effects.
Certainly, some concerns occur regarding their use in contaminated water bodies and potential “side
effects”: once dispersed their mobility could increase the ability to be up taken by plants or animals
at the site or further away and adversely affect them. The mobility, small size, and overall reactivity
of ENMs can therefore dramatically improve the transport of ENMs in water compartments, as
they could potentially reach undesired targets and lead to hazardous effects. Additionally, a typical
nanoremediation process entails that ENMs are dispersed in environmental compartments, such
as ground or surface waters, which are defined by peculiar levels of ionic strength, dissolved
oxygen and dissolved organic matter (DOM) contents, and other physico-chemical parameters.
The interactions of ENMs with such complex media can alter significantly both the chemical and
physical nature of the “as-manufactured” materials and led to the formation of significantly different
“weathered” or “aged” species [17]. As an example, silver [18–20] and copper [21] nanoparticles are
converted into the corresponding sulfides species via sulfidation processes, once dispersed in natural
waters. The dispersion quality of ENMs can be equally affected, often leading either to homo- and
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hetero-aggregation phenomena or to an improved colloidal stability in natural waters [22], thus
significantly influencing their mobility and determining their association with different environmental
compartments. The former case can result in faster sedimentation phenomena [23], with ENMs
likely ending up in the sediment-associated fractions. However, adsorption onto organic or inorganic
colloids or coating by polysaccharides or humic/fulvic substances, in some cases can improve steric
stabilization of ENMs [24,25], causing them to travel longer distances in the water column leading to
an enhanced transport. Such distinct behavior stems from the complex interplay between different
water chemistries, such as multivalent cations, natural colloids, and DOM, and ENMs properties,
governing their environmental partition, which rebounds on exposure and hazard levels and ultimately
ecotoxicity [17,26,27]. Therefore, ENMs behavior pose questions regarding their environmental fate
and impact after release in the environment, beyond the envisaged benefits in terms of contaminant
removal or degradation, with consequent environmental costs [28]. Indeed, one key issue is the
possibility to retrieve and/or remove ENMs, after they have exerted their action. This is to some
extent possible with magnetic ENMs, such as magnetite nanoparticles, which can be recovered with
the application of weak electromagnetic fields once the remediation process is over [29]. Nevertheless,
major challenges are experienced with the vast majority of non-magnetic ENMs, as an effective
removal from remediated environmental media is often limited or completely impractical. To this
end, efforts to assess and model the fate of different ENMs in a wide range of environmental matrices,
and to track relevant physico-chemical transformations, are much needed to anticipate potential
endpoints [28,30–33]. Additionally, the complexity of environmental matrices requires novel and
tailored detection and characterization technologies and strategies [34].

Potential ENMs bioaccumulation due to ingestion, dermal contact, and inhalation in wildlife is still
unknown as well as their potential role to act as a Trojan horse by increasing the uptake of contaminants
to be remediated in exposed organisms [35–38]. Far more important, the current technical limitations
in ENMs detection in environmental matrices as well as a proper risk assessment procedure are still
challenging and limiting its development worldwide [39].

It is hence wise to foresee possible scenarios of ENMs interactions with natural ecosystems and
to screen for their potential ecotoxicity toward different levels of biological organization [17,40–42].
In this light, adaptations of existing ecotoxicity tests, together with ad hoc testing strategies for
nanomaterials, have been recently developed and recommended [43–47]. A recent body of literature
has been produced over the past few years concerning the hazard posed by ENMs and different
nanoformulations actually employed for nanoremediation purposes, as reported in Table 1. Indeed, for
most of the applied nanoscale materials in nanoremediation, several adverse effects in both terrestrial
and aquatic organisms have been reported, thus certainly increasing governmental as well as public
concerns related to their in situ application [48,49] (see Table 1). Among the tested ENMs, nZVI
and iron oxides-based formulations received much attention, compared to other ENMs types, due
to their consistent usage in ground- and surface water remediation [50]. Hjorth and co-workers [48]
tested different commercially available engineered Fe nanomaterials, including nZVI, Fe oxides and
hybrid products made of iron-carbon and iron-aluminosilicate nanocomposites, at concentrations
close to environmentally realistic usage scenarios and in some cases below the concentration of
100 mg/L, which is, according to EU regulations, the baseline concentration for environmental hazard
labeling of chemicals. Interestingly, among the tested ENMs, a ball-milled nZVI caused significant
toxicity below 100 mg/L, affecting E. coli bacterial growth, R. sativus root elongation and increasing
L. variegatus mortality, and the authors hypothesized ROS mediated damages as the main toxicity
driver. Conversely, hybrid iron ENMs were not found toxic up to 100 mg/L. Keller et al. [51] proposed
the release of Fe2+ and Fe3+ ions, together with oxidative stress, as the main cause of the remarkable
toxicity caused by different nZVI ENMs toward fresh and seawater phytoplankton and the crustacean
D. magna. Similarly, in a more recent study from Nguyen et al. [49], nZVI seems responsible for
conspicuous ROS generation in the unicellular green alga Chlamydomonas sp., compared to other
tested non-zerovalent Fe nanomaterials such as Fe-zeolites and Nano-Goethite, or hybrid materials
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such as Carbon-Iron, which generated much lower, yet significant, ROS levels. Other phytoplankton
functional endpoints were affected by Fe ENMs exposure, such as the photosystem II quantum
yield, Chlorophyll a content, cell growth rate and cell membrane damage, with the nZVI being more
toxic compared to the other tested ENMs. The author linked such toxicity trends to the content
of Fe(0) that caused high release of Fe(II) and Fe(III), which could be in turn be taken up by cells
causing oxidative stress [52,53]. On the other hand, such mechanism was to some extent limited
concerning the other tested material, due to surface passivation or absence of zerovalent iron in the
formulation [49]. Oxidative stress and ROS generation has been recognized as the main cause of
toxicity induced by titanium oxides ENMs as well [54]. TiO2 nanomaterials are popular photocatalysts
employed in the remediation of polluted surface- or groundwaters and for wastewater treatments,
by enhancing the photodegradation of organic contaminants and promoting water disinfection [55].
Miller et al. [56] demonstrated that, under realistic levels of ultraviolet radiation, the toxicity of TiO2

NPs is exacerbated toward three out of four tested marine microalgae species, compared to UV-blocked
treatment, significantly inhibiting cell growth rates. This was due to an overall increase in ROS
production in seawater contaminated with TiO2 NPs, which can deeply affect phytoplankton primary
producers and compromise ecosystem functionality. Loss of membrane integrity and decrease in
cell viability were identified by Mathur et al. [57] as the main toxic effects toward the bacterium
M. caseolyticus exposed to low dose of TiO2 NPs, with such effects being more pronounced under
ultraviolet (UV) A radiation. However, the authors demonstrated that TiO2 NPs can interact with
bacterial biofilms, pointing out that ENMs trapping by exopolymeric substances could, to some
extent, decrease their mobility and potentially play a role in modulating their toxicity. In a 2017
review, Callaghan and MacCormack [58] gathered abundant data regarding the lack of acute mortality
of common TiO2 nanoformulations toward different fish species exposed under environmentally
realistic conditions. However, the authors highlighted how, under chronic exposure, TiO2 ENMs
promoted diverse physiological alterations, ranging from gill histopathology and brain dysfunctions
to swimming impairment. Similarly, zinc oxide (ZnO) ENMs are excellent photocatalysts that hold
promises in nanoremediation of polluted water bodies via degradation of organic pollutants, such
as endocrine disrupting compounds [59,60]. Therefore, the main toxicity mechanism proposed for
ZnO ENMs is oxidative stress promoted by ROS production [61]. However, differently from TiO2 NP,
ZnO-based nanoformulation are soluble in water, and since nanoparticles have higher surface area
to volume ratios than bulk counterparts they often display faster dissolution, making the release of
zinc ions and zinc hydroxides [62] a primary concern for ecotoxicology [63]. Indeed, Miller et al. [64]
showed that, without enhanced UV illumination, ZnO NPs significantly decreased the growth rate
of four different marine phytoplankton species, possibly due to dissolution phenomena, while TiO2

NPs caused negligible effects under the same exposure conditions. Other studies [65] confirmed
such trend reporting ZnO NPs toxicity to the freshwater microalga P. subcapitata, also showing very
similar no-observed-effect-concentrations for both nano- and bulk ZnO. The absence of a nanospecific
effect in promoting ZnO ENMs toxicity was also confirmed by Mortimer and co-workers [66] who
gathered similar EC50 values for bulk and nanosized ZnO and Zn2+ ions toward the ciliated protozoa
T. thermophila.

Carbon nanotubes (CNT), either single- or multi-walled, have been successfully exploited in many
technological fields, including wastewater treatment [67]. Therefore, this class of carbon-based ENMs
are currently being released in the environment. Concerns have been raised about their environmental
behavior and impacts on living organisms [68] and some ecotoxicological evidences have been
produced regarding their effects toward different organisms. Hanna and co-workers [69] showed that
CNT can be accumulated in the tissues of exposed marine mussels and can decrease phytoplankton
clearance rate at low concentrations, while higher concentration can elicit toxic responses. Moreover,
to date, there is no shortage of data regarding the toxic effects of CNT on both fish and crustacean
species, as highlighted in a recent review from Callaghan and MacCormack [58]. DNA damage
and ROS formation have been proposed as the primary drivers of CNT-induced toxicity in model
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organisms and the authors pointed out that interactions of CNT with organic and inorganic “classical”
pollutants are an important factor in carbon nanotubes toxicity assessment. Indeed, Boncel et al. [70]
evidenced the high adsorption capacity of CNT toward both heavy metals and hydrocarbons, pointing
out that Trojan horse effects are likely to occur when they are discharged in previously contaminated
water bodies.

Moreover, such effects have been described over different level of biological organizations,
ranging from plants [71] and algae [49] to aquatic invertebrate and vertebrate species [48,72],
identifying diverse toxicological endpoints. Such evidences highlight the necessity to move toward
different nanoformulations and usage strategies when applying ENMs and ENMs-based products to
natural waters.

The “safety by design” concept is not new in nanotoxicology and it has been widely applied
in other sectors (drug delivery and development) [73]. It is based on avoiding those undesirable
properties of ENMs, which turn to be hazardous for environment and human health, in the process
of ENMs design. Only those properties which will maintain ENMs efficacy and safety should be
incorporated as a design parameter during product development. Environmental risk assessment of
ENMs should provide suitable ecotoxicity data in terms of exposure and effects to non-target organisms
which will help to recognize those ENMs properties as for instance behavior and transformations
in environmental media which could affect interaction with living organisms and consequently
toxicity. Such knowledge should be used to select only those properties of ENMs which will guarantee
their ecofriendly and sustainable application also for environmental remediation [32]. Therefore, an
eco-design of ENMs for environmental application obtained from an ecotoxicological testing strategy
will allow the selection of the best ecofriendly and ecological sustainable ENMs and will significantly
limit any potential side effects in term of no toxicological risk for natural ecosystems. A thorough
ecosafe predictive assessment approach is proposed based on the following key aspects: gather
information on ENMs behavior in environmental media to be remediated in terms of physico/chemical
transformations occurring, which might affect their reactivity and fate and identify potential ENMs
biological targets and provide a mechanism-based assessment of ecotoxicity from single model species
up to ecosystem level (from microcosm to mesocosm and in situ studies). Upon observed ecotoxicity,
ENMs should be modified up to become ecosafe, also by defining their behavior and transformation
once released into the natural environment (Figure 1). Standardized methodologies able to assess
ENMs effectiveness, environmental safety, and economic sustainability within the context of existing
environmental regulations are thus urgently needed. All these aspects will certainly support patenting
and pilot applications of new ENMs developed based on ecosafety by design approach.
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Table 1. Documented ecotoxicity of selected ENMs for environmental remediation.

Nanoparticles
Type Remediation Mechanism Remediated

Contaminants Potential Toxicity Test Organisms Reference

nZVI Adsorption; oxidation;
reduction

metals; chlorinated
pollutants

Algal growth inhibition; ROS generation; oxidative
stress; disruption of membrane integrity; genotoxicity;
morphological alterations of roots; oxygen consumption

bacteria; freshwater microalga;
freshwater crustaceans;
earthworm; plant

[48,49,74,75]

Iron-based
ENMs

Adsorption; oxidation;
reduction

metals; microbiological
contaminants

Algal growth inhibition; ROS generation; oxidative
stress; disruption of membrane integrity; genotoxicity;
mutagenicity; reproduction impairment

bacteria; freshwater microalga;
freshwater crustaceans;
earthworm; plant; fish

[48,49,72]

TiO2 Photodegradation organic contaminants
ROS generation; oxidative stress; membrane damage;
cell viability reduction; reproduction impairment;
tissues alterations and gill histopathology; neurotoxicity

bacteria; crustacean; plant; fish [57,58,60,76]

ZnO
Photocatalysis;
photodegradation;
adsorption

organic contaminants;
heavy metals

Algal growth inhibition; ROS generation; gill damage;
embryotoxicity; metal stress via dissolution and ion
release; membrane damages

bacteria; freshwater microalga;
crustacean; fish [58,60,61,77]

CNT-based
ENMs

Catalytic facilitation;
adsorption

organic contaminants;
heavy metals

toxicity enhancement of contaminants; carrying of
pollutants; ROS generation; growth rate inhibition;
membrane damage

bacteria; microalga;
crustaceans; mollusks [58,69,70,78]
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3. Life-Cycle Assessment of ENMs

The progressive diffusion of ENMs in many fields, including nanoremediation, and the global
consensus that their release into the environment will increase, has led not only to the urge of a sound
evaluation of their toxicity effects on human health and on the environment, but also to the need for
the evaluation of their environmental sustainability.

Life-cycle assessment (LCA) is a well-established tool, nowadays largely used to evaluate the
potential environmental impacts of a product system (product or service) over its whole life cycle,
from the extraction and acquisition of raw materials, to the core production process, use and end of
life treatment, either recovery or final disposal [79,80].

The method consists in the compilation and evaluation of the inputs, outputs, and the potential
environmental impacts of a product system throughout its entire life cycle, ”from cradle to grave”.
LCA is considered a holistic method since it provides the assessment of the potential environmental
impacts on several environmental categories, mainly on global and regional scale, such as global
warming potential, ozone depletion potential, acidification potential, resource depletion etc. Moreover,
LCA permits to define the environmental hotspots of a product system, to analyze alternative solutions
that provide performance improvement and to make comparison of different scenarios, therefore
proving to be a powerful tool for supporting eco-design and decision-making.

LCA is deemed to be the suitable tool to assess the environmental impacts of emerging
technologies such as nanotechnologies and nano-enabled products, also in comparison to conventional
technologies [81–83]. This application is largely debated in the scientific literature and at the same time
is present also in policy documents [84,85].

Although LCA is strongly recommended as tool to assess the sustainability of ENMs throughout
their life cycle, the scientific community currently agrees on the several information gaps, which
hamper the proper application of LCA in the field [86,87]. These gaps regard mainly two broad issues,
namely the difficulty of including the whole life cycle of ENMs and to fully assess their impacts on
human toxicity and ecotoxicity. The first issue stems from the lack, in the life-cycle inventory, of specific
features and properties of the new nanomaterials that differentiate them from the corresponding bulk
material and of the quantification of their release into the environment across their life-cycle [84]. The
second issue, instead, regards the application of the impact assessment methods, which currently do
not allow consideration of the nanospecific impacts on human health and ecotoxicity. In fact, on the
one hand the fate of ENMs in the environment is poorly modeled and quantitatively assessed and on
the other hand, current impact assessment tools (e.g., USEtoxTM) still lack to consider nanospecific
properties and thus are not able to provide suitable characterization factors to include them in the
assessment of impacts on health and environment.

Several review articles on the application of LCA to nanotechnologies and ENMs have been
published that show the main gaps that prevent the majority of the LCA studies to be considered
fully comprehensive [81,84–88]. The main conclusions of these reviews can be summarized as follows.
Studies regarding LCA and ENMs are not very abundant, although increasing in the recent years,
as to show the growing interest in the issue. However most of them mention the barriers and the
challenges in the application of LCA on ENMs, but do not provide concrete solutions to overcome
them. For instance, many studies focus only on the production stage, from cradle to gate, leaving out
the use and end of life stages, mostly due to scarce availability of data regarding the potential release
and fate of ENMs to and into the environment during these stages [81,84,88]. Consequently, the choice
of the functional unit is often weight-based (e.g., 1 kg), instead of based on the functionality provided.
This approach prevents the valorization of the augmented functionalities typical of ENMs that improve
their performance in the use stage. This can be particularly significant in case of comparison with bulk
materials, since the inclusion of the use stage would allow mitigation of the large impacts often found
in the production stage of nanomaterials [68,81].

Therefore, to perform cradle-to-grave analyses, scholars agree on the urge of populating the
inventory data of ENMs, regarding the release to environment compartments in the different life-cycle
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stages: in the production stage (release in the environment, workers exposure), in the use stage
(planned release or unintentional release to the different environmental matrices), and in the end of
life stage (e.g., in incineration or landfilling). As long as the assessment of such emissions release
is not established by the scientific community, data regarding physico-chemical features of ENMs
should be included in the inventory (e.g., particle number, the size distribution, surface charge, surface
composition etc.). In particular, information regarding shape, dimension, properties, and surface
chemistry, which are known to affect the interaction with the environment, are required to distinguish
material flows of nanoproducts from bulk materials [68,88]. Since the definition of this information is
very challenging, some authors suggest that, if scalability exists, it is then possible to apply traditional
characterization approach, using the corresponding bulk emissions in the Life Cycle Inventory (LCI)
and the same toxicity assessment approaches to determine the characterization factors [81].

The second critical issue regards the lack of suitable characterization factors (CFs) for the indoor
and outdoor release of ENMs, with the major consequence that ecotoxicological impacts are not
adequately represented by current available impact assessment methods. The main reason relies on the
fact that nanospecific fate, transport, and toxicity effects in the environmental compartments (air, water,
and soil) are not fully known [80,83,84]. In this context, the integration with ecotoxicological studies is
very important both for developing CFs and inventory data. However, the definition of suitable CFs
for these impacts is still a main unsolved challenge. In fact, most of the LCA studies on ENMs currently
provide only results on common impact categories such as global warming potential, Water depletion,
Acidification potential etc., which do not account for the nanospecificity of the materials [89,90].

Different approaches have been pursued to include these nanospecific aspects in the impact
assessment phase of LCA. There are a few attempts in the literature, each very specific for the material
considered, to develop suitable CFs of ENMs for the toxicity impact categories (human and ecological
toxicity). For instance, Walser et al. [91], based on literature data, modeled the environmental impacts
of the release of silver nanoparticles with biocidal function from T-shirts. The CFs for the aquatic
environment were calculated with the USES-LCA model, since only the bioavailable silver fraction
from the wastewater treatment plant was considered relevant. Eckelman et al. [92] applied the
USEtoxTM model to calculate the CFs for the freshwater ecotoxicity for carbon nanotubes. For a
conservative scenario and a realistic scenario, they obtained a CF of 29,000 PAF m3 day kg−1 and of
3700 PAF m3 day kg−1, respectively. Salieri et al. [93] provided freshwater ecotoxicity CFs for titanium
dioxide nanoparticles (nano-TiO2), by using USEtoxTM characterization model. The authors developed
a specific multimedia fate model that includes specific nanospecific fate processes (i.e., sedimentation,
aggregation with suspended particle matter, etc.) and applied a HC50 value calculated from EC50

values taken from the literature, to obtain a CF for the toxic impact of freshwater ecotoxicity of
0.28 PAF m3 day kg−1.

Another largely explored approach to include the impacts of ENMs on human health and the
environment in sustainability assessment is the integration of LCA with other methodologies, such
as Risk Assessment (RA). Although the two methods have different aim, they can be considered
complementary in the evaluation of environmental impacts. Moreover, this integration can also
guarantee the consideration of local critical specific parameters that would not be included in LCA
evaluation [81].

Grieger et al. [82] identified two main approaches: life cycle-based RA (namely, traditional RA
based on a life-cycle perspective) and combined use of RA and LCA (conventional LCA integrated by
RA in specific life-cycle steps).

In the first approach, the challenge is to integrate the exposure assessment over the different
life-cycle stages with the identification of the qualitative and quantitative characteristics of the release
and their interaction with the environmental matrix. A few studies report this approach and they
mostly agree that the exposure situations depend on the ENM nature and on the life-cycle stage and
handling method [94,95].
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In the combined use of LCA and RA, the approach is to apply the two methods separately.
For instance, Barberio et al. [96] proposed a framework to combine the use of LCA and a qualitative
RA and applied this to a case study on the production of nanofluid alumina. The combined use of both
tools provides a more comprehensive evaluation of the impacts and better support a Safe-by-Design
approach and the decision-making process.

The state of the art described so far leads us to the conclusion that LCA is certainly a valuable
and powerful tool for the sustainability assessment of emerging technologies, even though several
methodological issues need to be solved to provide a comprehensive assessment in the field of
nanotechnologies. Indeed, its main limits will be overcome with the progress of the ecotoxicological
characterization, as highlighted in the previous paragraph. Nevertheless, at the current stage, LCA can
be fruitfully applied to the emerging technologies as an eco-design tool to identify the most impacting
steps of the production stage and suggest alternatives to improve the environmental impacts not only
at the lab scale but also in their transition from the laboratory scale to the semi industrial or industrial
scale. Indeed, the application of life-cycle thinking (LCT) approach to the development of emerging
nanotechnologies is strongly recommended at the early stage since it is evident that the technological
maturity and scale of production affect the environmental impacts of the production processes [97].
Gavankar et al. investigated a case study on carbon nanotubes (CNTs) manufacturing showing that
regardless of synthesis technique, CNT manufacturing becomes less energy intensive upon increasing
technological readiness, thus reducing its environmental impacts. This confirms the relevance of the
scale of production in life-cycle inventory practices.

In this sense LCA can support the development of Green Nanotechnology, namely the
implementation of cleaner and greener production methods based on synthetic strategies without using
raw materials, containing scarce natural resources or hazardous substances, and applying production
methods that require low energy and resources (e.g., water) consumption [98].

However, the application of LCA should always include the whole life cycle of the nano-product
to provide a complete picture of the sustainability of the product, without overestimating or
underestimating the environmental impacts generated in the different life cycle stages. Dhingra et al.
report a case study on an automotive exterior body panels, which shows that the perceived
environmental benefits of nano-based products in the use stage may be overestimated, without
examining the impacts in the other life-cycle stages, particularly Materials Processing and
Manufacturing [99]. As also evidenced by Carpenter et al. [100], we consider the evaluation of
the life-cycle environmental impacts of ENMs materials particularly important in water and soil
remediation applications, where large quantities of nanostructured materials are likely to be required

4. Cellulose- and Starch-Based Nanostructured Materials

Even if, at the beginning of this millennium, application of nanotechnology to environmental
remediation was expected to grow rapidly [11], we should recognize that the process of its
implementation at full, or at least pilot scale is limited to a few examples, mostly related to the
use of zero-valent iron nanoparticles (nZVI) [6,101]. Indeed, ongoing innovation pursued by scientific
community continuously exploits the potential advantages that could be achieved by using ENMs
in water and soil treatment [5,101]. However, as recently claimed by Bartke et al. [102], “any new
technology has to prove that is complementing or improving existing technologies, at an appropriate
economic cost and acceptable risks” [102]. Nanotechnology applied to environmental remediation
cannot represent an exception. On the contrary, more than other approaches, it suffers from the
uncertainty about the fate of ENMs, with the consequent distrust of society. For this reason, besides the
ongoing progress on nZVI [103–106] and iron oxide nanoparticles [107], new materials are emerging
in the field of water nano-treatment, aiming to combine the advantages of nanotechnology with
the use of renewable, sustainable, and ecofriendly sources, possibly derived from waste production,
in accordance with the virtuous supply chain of circular economy. Moreover, the switching from
nanosized systems to nanostructured micro-dimensioned scaffolds could allow overcoming of the
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potential risks related to the use of ENMs, while taking advantage of the enhanced performances
obtained by operating in the nanoscale dimension [46]. In our opinion, following this approach would
represent a first, although still not decisive step toward the development of ecosafe solutions for
water decontamination. In this context, cellulose and starch derivatives have attracted our attention as
valuable starting materials, meeting most of the requirements above mentioned.

Starch is an important and sustainable natural source, from which it is possible to obtain a variety
of products of industrial interest, following either chemical or biochemical approaches [108]. Among
the wide range of possible transformations, enzymatic degradation of starch by bacteria leads to the
formation of cyclodextrins (CDs), which are cyclic oligosaccharides containing 6 (α-CD), 7 (β-CD),
or 8 (γ-CD) glucose units. These macrocyclic entities, shaped like cones, display a geometrically
well-defined hydrophobic central cavity and a hydrophilic external surface. This intrinsic characteristic
gives the CDs molecular recognition and complexation properties [109]. For this reason, CDs have
found ample application in the field of drug delivery and in cosmetics [110,111]. The host-guest
interactions with apolar and polar molecules can be modulated by functionalization on the secondary
hydroxyl groups extending from the wider edge, or by the formation of CD-metal complexes
and CD-inorganic nanoparticle systems [112]. Moreover, selective grafting on the same hydroxyl
moieties can be used to introduce additional properties for advanced applications. As examples,
we have recently proposed 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)-labeled β-CDs as potential
supramolecular vectors for magnetic resonance imaging [113,114], and N-hydroxyphthalimide
(NHPI)-labeled β-CDs as suitable supramolecular pro-oxidant organocatalysts [115] for regulation of
oxidative stress, taking advantage of their high biocompatibility and negligible toxicity. More recently
CDs have been also proposed as suitable systems for water remediation, even if, being partially soluble
in water, they need to be immobilized on appropriate supports or to be cross-linked, to exploit their
adsorption properties [116]. For example, water insoluble β-CD-epichlorohydrin (β-CD-EPI) polymers
have been widely investigated in sorption processes for the removal of contaminants from water
solutions [117]. However, cross-linkers such as EPI or glutaraldehyde (GLA) have been reported to
be highly toxic for humans and animals [118,119]. A few years ago, Trotta et al. [120,121] developed
and patented a new class of highly cross-linked CD polymers, referred to as CD nanosponges (CDNS).
CDNS can be obtained following one-step synthetic protocols by reacting CDs (and in particular β-CDs)
with polyfunctional cross-linkers, such as pyromellitic dianhydride (PMA), carbonyl diimidazole (CDI),
and the dianhydride derived from ethylenediamine-tetracetic acid (EDTA) [122].

In recent years, with the synergistic cooperation of different research groups, we have contributed
to define the nanoporous structure of PMA- and EDTA-CDNS by the combined use of different
and complementary techniques, such as Fourier transform infrared absorption in attenuated total
reflectance geometry (FTIR-ATR) and Raman spectroscopies [123–129], high resolution magic angle
spinning (HR-MAS) [130,131] and solid-state NMR spectroscopy [132], and Small Angle Neutron
Scattering (SANS) experiments [133]. With a network of both CD hydrophobic cavities and more
hydrophilic channels, these nanosponges show versatile adsorption properties, extended to both
heavy metal ions and organic pollutants. Indeed, in 2015 Zhao et al. reported this bifunctional
adsorbent behavior for EDTA-CDNS, indicating an adsorption capacity of 1.241 and 1.106 mmol g−1

for Cu(II) and Cd(II), respectively, and a heterogeneous adsorption capacity of 0.262, 0.169, and
0.280 mmol g−1 for Methylene Blue, Safranin O, and Crystal Violet, respectively [134]. These excellent
adsorption performances, combined with their safety for human beings and environment, render
CDNS valuable examples of nanostructured systems, and led us to further implement their formulation
in NanoBonD project, to produce new, more efficient materials for water treatment. However, these
materials will not be further discussed in the following sections. Another renewable source of relevant
interest is cellulose. It is a biodegradable and biocompatible carbohydrate polymer consisting of
β-D-glucopyranose units. The favorable combination of both physic-mechanical features and chemical
ones, the latter due to the high concentration of functional hydroxyl groups on the macromolecule
backbone, has made this natural source highly attractive for the design and development of several
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organic devices. In particular, it is possible to cleave the hierarchical structure of native cellulose
via mechanical or chemical approaches, promoting nanofibrillation and consequent production of
nanocellulose (NC), in the form of cellulose nanocrystals (CNCs) or cellulose nanofibers (CNFs).

NC has been widely investigated in the last decade [135,136], and its use has been suggested for
different applications, including food science, packaging, catalysis, development of energy storage
devices. No less important, sustainable cellulose nanomaterials are becoming increasingly attractive
also for their potential use in environmental remediation and water/wastewater processes, such as
sorption, membrane filtration, catalytic degradation, and disinfection. Both CNCs and CNFs have
been widely investigated for this purpose, and very recent reviews furnish a detailed state of the art
based on a wide overview of the literature [100,137–142].

CNCs are usually obtained by acidic hydrolysis of cellulose fibers. Their absorption properties are
mainly ascribed to the interaction of the negative charges, introduced during the hydrolysis process,
with a wide range of transition metals and of organic dyes positively charged. Moreover, they can be
further functionalized, for example by introducing carboxylic groups, with the aim of increasing their
adsorption properties, or amino-moieties, to extend their interaction capability to negatively charged
systems. More recently, they have been also proposed as stabilizers and delivery vehicles of nZVI for
groundwater remediation, providing colloidal suspension with high mobility [142]. However, the
synthesis of CNCs requires aggressive conditions to disintegrate the amorphous regions of pristine
cellulose fibers. This implies a loss of starting material, with consequent low atom-economy efficiency
of the process, which could affect implementation at industrial scale. For this reason, CNFs can
be considered even more attractive. They can be obtained by simple mechanical disintegration of
plant cellulose fibers in water, even if this technique leads to the damage of nanofiber structures. An
alternative route to produce CNFs consists into the oxidation of cellulose pulp. Among the several
protocols reported in the literature for this purpose, the most investigated one is the TEMPO-mediated
oxidation by NaClO/NaBr system [143,144]. Following this approach, it is possible to partially convert
the alcoholic groups in the C6 position of the glucopyranosic units to the corresponding carboxylic
acids. Moving at basic pH, the deprotonation of carboxylic groups occurs, introducing negative charges
on the backbone of the single nanofibers, and favoring the physical nano-defibrillation of the cellulose
hierarchical structure by simple electrostatic repulsion between CNFs (Figure 2). Consequently, if the
oxidation occurs under controlled and mild conditions, it is possible to obtain CNFs with diameters of
5–100 nm and lengths up to 5 µm, characterized by a high surface area and good mechanical strength.
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5. The NanoBonD Action

In accordance with the requirements above mentioned for a sustainable nanotechnology, both from
the environmental and the economic point of view, we considered the TEMPO-mediated oxidation
of cellulose as the most promising technique for the first step in the design of a scalable and ecosafe
material for water treatment. Moreover, the introduction of carboxylic units on CNFs backbone
also provides linking hooks for further grafting and/or reticulation, without requiring intermediate
chemical reactions. The cross-linking of CNFs becomes a crucial step for the design of nanostructured
units, overcoming the derived limits by the use of nanosized particles in the environment.

Following this route, in 2015 we reported a thermal protocol for the one-pot cross-linking of
TEMPO-oxidized and ultra-sonicated (TOUS) CNFs, putting the bases for a new composite material
further developed within the NanoBonD project (Figure 3) [145]. The synthesis was inspired by the
freeze-drying process previously reported for the formulation of CNF-based cellular solids [146],
which we also used as templates for the design of ceramic [147] and eumelanin-coated organic
xerogels [148]. Briefly, a hydrogel of TOUS-CNFs is mixed with water solutions of branched
polyethyleneimine (bPEI). The resulting gels are put in molds, frozen, and dried by sublimation,
affording the corresponding aerogels, whose porosity derives from the ice-templating action of
water. The new materials disaggregate in water. However, a simple thermal treatment at about
100 ◦C promotes the formation of amide bonds between the carboxylic groups of TOUS-CNFs and
the primary amines of the polycationic polymer. The result is a nanostructured aerogel (cellulose
nanosponge (CNS)) exploiting superb efficiency in the removal, by adsorption, of a wide range of
contaminants from Milli-Q water. Figure 3G shows the adsorption performance of CNS (1.2 G L−1)
from a 150 ppm Milli-Q water solution of a wide range of heavy metals. The capture efficiency results
to be good for Cu(II) (84 mg/g) and Cd(II) (77 mg/g), and even better for Zn(II) (101 mg/g) and Pb(II)
(160 mg/g), while adsorption of Cr(III) is less effective (18 mg/g) (unpublished results). Moreover,
CNS have a bifunctional adsorbent behavior, as we demonstrated their capture efficiency also toward
representative phenols, used as precursors in the synthesis of several drugs and fungicides, and
emerging contaminants such as amoxicillin [145].

Since our first report, several approaches have been reported for promoting the cross-linking
between NC and bPEI, with the aim of synthesizing efficient composite adsorbents for heavy metal
ions, all of them requiring chemical co-cross-linkers and/or activators. In 2016, Ge et al. [149] suggested
the use of a “one-step” method to synthesize composite cellulose/PEI hydrogels in LiOH/urea water
solution, by using EPI as cross-linker. The obtained material resulted particularly efficient for the
adsorption of Cu(II) and other metal ions [149]. In the same year, Zhang and co-workers reported a
TOUS-CNFs/bPEI reticulation protocol, promoted by GLA. This process required the pre-hydrolysis
of cellulose fibers with HCl solution at 80 ◦C before the oxidation step, and the use of methanol
solvent in the cross-linking phase [150]. However, as previously discussed, EPI and GLA do not
represent the best choice in terms ecotoxicity and human safety. More recently, a material very
similar to that developed by our group was described by Zhao et al. [151] to be an efficient system
for rare earth elements recovery, such as La(III), Eu (III), and Er (III). However, in this case the
formation of the amide bonds was promoted by the activation of carboxylic acids and amines using
N-(3-dimethylamino)propyl)-N′-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide
(NHS), with TOUS-CNCs: EDC and TOUS-CNCs: NHS 1:1 ratios (w/w). Moreover, according to this
procedure, oxidation was conducted onto pre-formed and commercially available CNCs, while the
purification step required cycles of dialysis. Compared to these procedures, in our protocol cellulose
pulp oxidation represents the unique chemical step of the entire process, rendering this approach
commercially appealing and easily scalable. Moreover, we have demonstrated that this synthetic
approach could be conducted using pre-functionalized bPEI, without affecting the sponge-like
morphology and the chemical stability of the composite but introducing additional properties to
the adsorbent. As proof of concept we reported the cross-linking of TOUS-CNFs with bPEI grafted
with pNO2-phenyl urea, achieving an aerogel which was successfully used for the heterogeneous
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sensing of fluoride anions in DMSO solution [152]. More recently, we have also suggested a smart
strategy to increase the content of carboxylic moieties in the hydrogel formulation, without excessively
stress the oxidation of pristine cellulose. In fact, it has been verified how the oxidation conversion is
limited, even when NaClO is used in large excess. Nevertheless, a higher number of carboxylic groups
would allow increase of cross-linking, maximizing the yield of the synthetic process. For this reason,
we suggested the introduction of citric acid as co-crosslinker in the formulation to be freeze-dried. This
simple, till sustainable modification allowed increase of both the mechanical and the chemical stability
of the new adsorbents, without affecting its characteristic of eco-sustainability [153].
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Although the choice of a renewable starting material, the selection of a cheap and scalable
synthetic process, and the high efficiency in the removal of contaminants and pollutants from water are
crucial criteria toward the full-scale implementation, all these aspects are not sufficient by themselves
the for validation of this new nanotechnology which, due to its final application, also requires high
standards of ecosafety. To reach this goal, within the NanoBonD project both the formulation and the
synthetic process have been further modified and optimized, following an eco-design approach and
the guideline of a detailed life-cycle assessment analysis.

Moreover, in a long-term perspective, since most water and soil remediation applications are likely
to require large quantities of ENMs, the cost, feasibility, and life-cycle considerations of manufacturing
these materials on a large scale must be considered, as also evidenced by Carpenter et al. [100].

LCA was applied since the early stage of the development of the synthetic process of the CNFs
nanosponges, analyzing the inputs and outputs of each process step, regarding energy and material
flows, emissions, and waste (Figure 4).
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The specific purpose was to identify the environmental hotspots and provide basis for
environmental improvement actions. Starting from the lab scale process, the main hotspots were found
in the energy and water consuming steps, the raw materials and the solvents used in the washing steps,
which impact not only in the resource consumption but also in the waste disposal stage. Therefore,
actions to decrease the impacts of these categories were undertaken and an optimized synthetic strategy
was proposed regarding mostly (i) the change of formulation ratio among cellulose, bPEI and citric
acid, favoring higher yields in CNS; (ii) the change of washing solvents from organic (methanol) to
aqueous; and (iii) the conduction of the purification step under milder conditions, lowering energy
consumption. The optimized process was again evaluated with LCA and the analysis showed
interesting improvements on most of the environmental impact categories assessed (e.g., climate
change, acidification, etc.). However, the results confirmed that major improvements will be achieved
with the optimization of the energy consuming steps, likely to be achieved in a scale-up configuration.

This approach made the overall synthetic protocol suitable for further scale-up. Indeed, the
TEMPO/KBr/NaClO system is widely used for different industrial processes and, within the
NanoBonD project, it has been possible to apply this oxidative approach in the conversion of different
sources of cellulose at pilot scale, managing production of final CNS material in the order of kilograms
for in-field demonstrative treatments on real matrices. However, implementation of the synthetic
protocol is still under way to reduce the energy costs mainly associated to the lyophilization step.

A critical comparison of the proposed approach with the most consolidated technologies for
wastewater treatment allows the outlining of advantages and limits in the use of CNS for water
remediation, over the choice of a renewable and recyclable starting material. Among these we mention
chemical precipitation (namely hydroxide, sulfide or chelating precipitation), the use of ion exchange
resins or activated carbon, membrane filtration and electrochemical treatments [154–156]. As a general
concept, it should be remarked that the selection of an optimal treatment technique would depend on
the initial metal concentration. Processes such as chemical precipitation and electrochemical treatments
are quite effective in the case of wastewater streams with high concentration of heavy metals but



Materials 2018, 11, 1228 15 of 23

tend to fail at low concentrations of contaminants. On the other hand, adsorption, ion exchange and
membrane filtration are effective at much lower concentrations but tend to be particularly expensive
for treating large volumes [155].

In this context, the heavy metal removal efficiency of CNS is comparable to that obtained with
different approaches for some analytes, while for other ones it must be still considered insufficient.
However, the amount of adsorbent used per unit volume of water (1.2 g L−1) is at least an order of
magnitude lower than that usually required by using standard adsorbents (i.e., ion exchange resins,
zeolites and activated carbons) or membranes, and an increment in the adsorbent concentration might
lead to further improvements in decontamination efficiency.

Moreover, most of standard technologies (e.g., precipitation and, in some cases, ultrafiltration and
ion exchange resins) require a careful pH control and/or a specific pH to work at their optimum. On the
contrary, CNS have been purposely designed to exploit their adsorption efficiency at pH = 7.6, also
acting as buffer in different water matrices, so that pH adjustment is not required in field application.

Similar to activated carbons and ion exchange resins, CNS can be regenerated several times by
counter-current washing with acidic solutions, maintaining good to excellent adsorption performances.
However, being constituted by a bio-organic matrix, in this case the adsorbent material can eventually
be disposed by combustion, while other technologies generate waste.

Finally, further strengths of the use of CNS as adsorbent units for wastewater treatment are
(i) their bifunctional action toward both organic and inorganic contaminants, while with standard
approaches the coupling of different technologies is usually required; and (ii) their versatility for
application in different water matrices, including marine water.

6. Conclusions and Outlook

Nanoremediation can provide enormous benefits and with appropriate strategies and
(nano)solutions allowing reduction of uncertainties and environmental and human risks, they will
satisfy regulatory requirements, boost circular economy, and support a fully effective deployment of
the sector. Main recommendations are that ecosafety obtained by an eco-design approach should be
recognized as a priority feature. Ecotoxicity testing should be more ecologically grounded and include
more realistic environmental scenarios. Research and innovation should focus on greener, sustainable,
and smart (nano)solutions with the aim of providing a more ecofriendly nanoremediation.

Regarding the environmental sustainability assessment of ENMs, it is acknowledged that LCA is
a valuable tool to implement the LCT strategy. However, the full implementation is far from being
feasible due to many unsolved methodological issues, which will very likely progress in parallel with
the ecotoxicological characterization.

Nevertheless, at present, LCA can provide sound support for the eco-design of emerging ENMs,
which is very important already at the early stage of their development, at the lab scale, and can guide
usefully the transition to the scale-up phase. The experience carried out in the NanoBonD project
confirms the validity of this approach.
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