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Shape-matching soft mechanical 
metamaterials
M. J. Mirzaali1,2, S. Janbaz2, M. Strano1, L. Vergani1 & A. A. Zadpoor2

Architectured materials with rationally designed geometries could be used to create mechanical 
metamaterials with unprecedented or rare properties and functionalities. Here, we introduce 
“shape-matching” metamaterials where the geometry of cellular structures comprising auxetic 
and conventional unit cells is designed so as to achieve a pre-defined shape upon deformation. We 
used computational models to forward-map the space of planar shapes to the space of geometrical 
designs. The validity of the underlying computational models was first demonstrated by comparing 
their predictions with experimental observations on specimens fabricated with indirect additive 
manufacturing. The forward-maps were then used to devise the geometry of cellular structures that 
approximate the arbitrary shapes described by random Fourier’s series. Finally, we show that the 
presented metamaterials could match the contours of three real objects including a scapula model, a 
pumpkin, and a Delft Blue pottery piece. Shape-matching materials have potential applications in soft 
robotics and wearable (medical) devices.

Mechanical metamaterials are materials whose macro-scale properties such as unusual deformation characteris-
tics directly originate from their (small-scale) geometrical design1–4. Rational geometrical design of metamateri-
als could lead to properties and functionalities not usually offered by natural materials such as negative Poisson’s 
ratio (auxetics)5–7, negative compressibility4, elastic hysteresis8, independent tailoring of elastic properties9, snap-
ping deformations10, and shape-changing with vibration-mitigation capability11 and out-of-plane deformation 
through 3D design of architectured metamaterials12.

Metamaterials have also potential applications in shape-changing materials that are kinematically inspired 
by kirigami/origami-based designs13, fractal cuts14, deployable morphing15, pattern switching16, or strain ampli-
fication elements working through auxetic unit cells17. A novel objective in the design of shape-changing meta-
materials is achieving a pre-defined shape upon loading through what we here call “shape-matching” materials.

Shape-matching metamaterials have a myriad of potential applications most notably in soft robotics18,19, and 
wearable (medical) devices. For example, shape-matching metamaterials could be used to design soft grippers 
that grip delicate objects with the maximum surface contact and, thus, minimum contact force. Wearable (medi-
cal) devices such as exosuits20, prosthetics and orthotics21, and tunable mechanical memory22 are the other poten-
tial areas of application. Finally, the fashion design industry23 may also be able to benefit from shape-matching or 
form-fitting materials.

Here, we demonstrate soft shape-matching metamaterials that are designed by rationally combining auxetic, 
conventional, and transitional unit cells into a cellular solid, and are indirectly additively manufactured from 
elastomers (Fig. 1). We used an equal aspect ratio for the longitudinal and transversal dimensions of all unit cells 
for easier integration of the unit cells with different reference angles in a planar cellular structure. This enables 
us to combine auxetic and conventional unit cells in the longitudinal direction, which could be also replicated 
in the transverse direction. The arrangement of unit cells with different values of the Poisson’s ratio could then 
be used to program the lateral deformation of the cellular material upon deformation. The inverse problem of 
rationally designing a shape-matching metamaterial then reduces to the problem of finding the combinations 
of the Poisson’s ratios that give rise to the desired lateral deformation and mapping those values of the Poisson’s 
ratios back to unit cell designs.
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Methods
To design the first prototypes, we divided the length of the specimen into three regions, i.e., auxetic, transitional, 
and conventional (Fig. 1a). When designing the cellular structures, we assumed that the parameters c and w 
(Fig. 1a) are constant for both auxetic and conventional unit cells =c w( / 3). The interior angle of each unit cell 
could therefore change the geometry of the unit cell from auxetic θ° < < °(48 90 ) to conventional 

θ° < < °(90 120 ). In the transitional region, the angle of each unit cell linearly changed from the auxetic angle to 
conventional one. We fabricated four prototypes with different unit cells in each of those three regions. The total 
numbers of unit cells in the longitudinal direction, m = 18, was similar for all specimens. The total length of each 

Figure 1. (a) A schematic drawing of the auxetic and conventional unit cells. The angle, θ, varies between 
48° and 120°. (b) Four specimens with three zones (auxetic, transition and conventional) were fabricated. 
Computational models were developed for each specimen and the simulation results were compared against 
experimental observations. The specimen naming convention follows the NoANoTNoC format where “No” 
shows the number of unit cells in each region, while A, T, and, C stand for the number of unit cells in the 
auxetic, transitional, and conventional regions. In the transitional region, unit cells were linearly changed from 
auxetic to conventional unit cells. In all experimental specimens, c/w = 3. Index refers to the points at the corner 
of each unit cell where the lateral strains were calculated. (c) The strains of cellular structures calculated for 
different c/w ratios and reference angles (longitudinal strain = 20%). Numerical results were also compared with 
the analytical relation (Equation 2) in the literature24 for the calculation of lateral strains.
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specimen was therefore L = c × m. The number of unit cells in the transverse direction, n, was also fixed (n = 7). 
The width of each specimen was therefore W = 2 × n × w. The design parameters for all specimens are presented 
in Table 1.

We used indirect additive manufacturing to fabricate the specimens. A mold was designed and additively man-
ufactured using a fused deposition modeling (FDM) 3D printer (Ultimaker 2+, Geldermalsen, The Netherlands) 
from polylactic acid (PLA) filaments (MakerPoint PLA 750 gr Natural). Subsequently, an elastomeric polymer 
(Elite Double 8, Zhermack, Badia Polesine, Italy) with a one-to-one ratio of the base to catalyst was poured into 
the mold. Once the specimens had cured, i.e., after ≈1 hour, the mold was removed. The final shapes of all spec-
imens are presented in Fig. 1b.

The specimens were deformed under displacement-controlled tensile loading applied by a mechanical test 
bench (LLOYD instruments, LR5K, load cell = 100 N, displacement rate = 50 mm/min). Time, force, and dis-
placement were recorded at a sampling rate of 20 Hz. Simultaneously, the deformation was captured by a digital 

parameters c[mm] w[mm] n[−] m[−] L[mm] W[mm] tlattice[mm] tligament[mm]

15 5 7 18 270 70 7 0.7

Table 1. The parameters of the prototypes fabricated with indirect additive manufacturing.

Figure 2. The structures were designed in a way to fit the arbitrary functions (Y1–Y9). The parameters of the 
functions are listed in Table 2. The longitudinal strain for each case is equal to 20% of the total length. The actual 
deformations determined using direct numerical simulations are also shown (scaling factor = 3). Index refers to 
the middle point of each unit cell where the lateral strain is calculated.
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camera. After the test, the first and last frames of each video was selected and converted into binary images. The 
middle junctions in each unit cell at the left and right sides of the structure were highlighted by points in the 
images. Then, the highlighted regions were dilated to one pixel. The initial width of each unit cell, Wj, was calcu-
lated from the first image as: = −W X Xj j right j left, , , where j = 1:36 shows the number of points in the total length 
of the structure, also called as index, and Xj stands for the position of each point measured in terms of pixels. 
Every two points belong to one unit cell. Similarly, after deformation, the final width of each unit cell, ′Wj, was 
calculated as = −′ ′ ′W X Xj j right j left, , . Finally, the lateral strain was defined as ε =

′

j xx
W

W,
j

j
.

Computational models of the metamaterials were created with ABAQUS, 6.14. A hyperplastic Neo-Hookean 
material model ( = .C MPa0 10610 and = . −D MPa0 031

1) and plane-stress elements (CPS8) were used in the 
models. The material coefficients were determined using the standard experimental protocols for testing elasto-
meric materials in tension (ASTM D412 Type C) and compression (ASTM D 575–91). The out-of-plane thick-
ness, tlattice, of the structure and the thickness of each ligament, tligament were respectively set to 10 mm and 1 mm. 
Two reference points were defined at the top and bottom of the model and were tied to two nodes from the corre-
sponding locations. The bottom reference point was fixed while the top reference point was displaced far enough 
to create 20% longitudinal strain. An implicit nonlinear solver (Abaqus Standard) was used for the simulations. 
The lateral strain calculated for the computational models were evaluated in a way similar to those of the 

Functions a1 a2 a3 α

Y1 0.15 0 0 0.5

Y2 0 0.15 0 0.5

Y3 0 0 0.15 0.5

Y4 0.068 0.068 0.068 0.5

Y5 0.15 0 0.075 0.5

Y6 0.075 −0.09 0.045 0.5

Y7 0.068 0.068 0.068 1

Y8 0.105 −0.053 −0.053 1

Y9 0.15 0 0.075 1

Table 2. The random parameters used in the definition of the functions (Y1–Y9).

Figure 3. Matching the shapes of three real objects including an anatomical model of the scapula (a), a 
pumpkin (b), and a Delft Blue pottery piece (a vase) (c). (d) The flowchart of the design procedure.
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experiments. Several node sets were defined at the internal hinges of the unit cells located at the left and right 
sides of the structure. The mean lateral displacements U U,j left j right, ,  were calculated for each node set. The lateral 
strain was then obtained as: ε =

−
j xx

U U

W,
j right j left, , .

The lateral strains obtained computationally were found to be in good agreement with experimental observa-
tions (Fig. 1b). Having evaluated the accuracy of the computational models, we expanded them to include other 
c/w ratios, i.e. 2, and 4, for fully auxetic and conventional lattice structures (Fig. 1c). In those simulations, the total 
number of unit cells in the structure was kept the same to enable comparison with previous results and the lateral 
strain was calculated at the middle of the cellular structure. Our calculations showed changing this ratio does not 
drastically change the lateral strains especially for the auxetic unit cells (Fig. 1c). Therefore, we continued to use 

=c w/ 3 as a reference ratio in the following designs. Furthermore, the computational results showed an almost 
linear relationship between the lateral strains and the angle of the unit cells (Fig. 1c). This linear relation was used 
as the basis of our designs in the next steps, where the applied longitudinal strain was fixed at 20%:

ε θ=− . + .0 005 0 39 (1)xx

We compared our numerical simulations with the analytical relation found in the literature24. Lateral strain in 
the conventional and the re-entrant honeycombs can be calculated as:

ε = −
δ θ

θ
sin

b cos (2)x

where, b and θ are the geometrical parameters of each unit cell (Fig. 1a) and δ = −.
θ
(c h)0 2

cos
 as we fixed the 

applied longitudinal strain at 20%. The geometrical parameters, i.e. θb, , c and h, were considered separately for 
individual unit cells and the final lateral strains were compared with the numerical simulations. This comparison 
shows a good agreement between the numerical and analytical results (Fig. 1c).

We also performed experiments to evaluate the effects of the number of unit cells in the transverse direction 
of the structure on the lateral deformation (see the Supplementary Materials). We found that the number of the 
unit cells in the transverse direction only influences the amplitude of the deformations but not the lateral strains 
of the structure.

Results and Discussion
Having verified our computational models against experiments for a number of designs, we developed a rational 
design platform based on the results of the computational models to achieve lateral deformations that match the 
contour of an arbitrarily-shaped object. If the contour of the lateral deformation is discretized into a finite number 
of sub-regions, auxetic and conventional unit cells could be used to create the desired lateral deformation using 
Equation (1). The superposition of the deformations of all unit cells was hypothesized to create the target shape. 
To assess the validity of that hypothesis, we created a number of arbitrarily-defined strain functions (Y1–Y9) 
using a three-terms Fourier’s-like series:

αω αω αω= − + − + −Y a x a x a xsin( ( 1)) sin(2 ( 1)) sin(3 ( 1)) (3)1 2 3

where the parameters ω = 0.37 and αa a a, , ,1 2 3  (Table 2) were parametrically selected in order to achieve sub-
stantially different mode of deformations and covering a wide range of deformed shapes (Fig. 2). x is the index of 
each unit cells in the longitudinal direction and changes between 1 and 18 (the total number of unit cells in the 
longitudinal direction of the cellular structure). Using Equation (1), we selected the angles of the auxetic and 
conventional unit cells such that their predicted deformation would follow the strain functions generated by 
Equation (3) using the above-mentioned coefficients (Fig. 2). We then created computational models to deter-
mine the actual deformation of the cellular structures that were designed using the predictions of Equation (1). 
Comparison between the actual deformations and the target strain functions showed that the cellular structures 
designed using Equation (1) could closely follow the target shape in all considered cases (Fig. 2).

In the last step, we aimed to design cellular structures that would match the shapes of three real objects includ-
ing an anatomical model of the scapula (Sawbones, Vashon Island, USA), a pumpkin, and a piece of Delft Blue 
pottery (a vase) (Fig. 3). All objects were photographed from the top view, which was then used to describe the 
contours of the objects. The resulting contours then served as the target shapes for the design of the cellular struc-
tures. We selected the reference angles of the auxetic and conventional unit cells such that, according to Equation 
(1), their lateral deformations match the captured contours as closely as possible. The total number of unit cells in 
the transverse and longitudinal directions are therefore the only parameters that could be freely chosen with more 
unit cells along the length of the structure resulting in smoother approximations of the target curve. To use 
Equation (1), the design of the cellular structure needs to satisfy =c w/ 3, which could be achieved by isotropic 
scaling of the entire structure. Assuming that we require a 20% deformation of the metamaterial to match the 
shape of the objects, the length of the cellular structures could be determined using a deformation ratio of 1.2. 
Given the total length of the specimen and the parameter c, the maximum number of unit cells along the length 
of the structure, m, was calculated. Having assumed the number of unit cells in the transverse direction, n + 1, the 
lateral strain could be calculated, which must be in the range of the minimum and maximum strains that fully 
auxetic and conventional structures could achieve. Finally, the reference angles of the unit cells were selected 
using Equation (1). A flowchart in Fig. 3d shows the different design steps.

The cellular structures designed to match the shapes of the selected objects achieved reasonable approxima-
tions of their target contours (Fig. 3a–c). The shapes of the objects used here were selected based on the poten-
tial applications of shape-matching metamaterials. Moreover, each object represented different types of shape 
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variations. For instance, the contour of the pumpkin requires the highest deformation amplitude. To achieve such 
high amplitudes, it is necessary to define more unit cells in the lateral direction of the structure (Fig. 3b). The 
vase, on the other hand, has the smallest length among three objects. Therefore, application of a scaling factor is 
required when designing the shape-matching metamaterial (Fig. 3c).

The fact that a simple equation such as Equation (1) and the superposition principle are very effective in 
designing soft metamaterials (whose deformation is nonlinear in nature) is quite remarkable and enables the fast 
design of shape-matching metamaterials without the need for (nonlinear) optimization algorithms. The presented 
technique could be expanded for the prediction of the deformations at lower (i.e., micro-) scales. While we used 
here mechanical loading to deform the specimens, shape-matching could also be activated using magnetic, ther-
mal, or electrical stimuli. Shape memory polymers are the other candidates for such designs25–28.

There are some limitations in the presented approach that are dictated by the maximum strains that could 
be achieved by conventional and auxetic unit cell. In general, auxetic unit cells tend to deform faster than the 
conventional ones and reach a level of saturation and robustness at higher longitudinal strains. This affects the 
connection between conventional and auxetic unit cells and prevents the conventional unit cells from complete 
deformation (see the Supplementary Information). For this reason, we fixed the level of axial strain to 20% so 
that we will ensure different unit cells can reach their maximum expansion without being affected by the adjacent 
unit cells.

The next steps would entail extending the presented technique to the case of three-dimensional shapes such as 
the shapes described by the surface of the human body. One way of creating 3D structure is rolling the proposed 
2D lattice structures to create tube-like structures. The shape-matching behavior of such axisymmetric structures 
is expected to be similar to those of 2D structures. For arbitrary 3D shapes, similar discretization method on sur-
faces rather than lines can be applied, although the complexity of the problem will increase due to the unknown 
interaction of individual unit cells. Direct 3D printing with similar elastomeric polymers could be used for the 
production of such 3D structures.

In summary, we presented a design platform for the rational design of shape-matching soft mechanical met-
amaterials that combine functionally graded auxetic and conventional unit cells. The platform is shown to be 
able to match the arbitrary shapes created by three-term Fourier’s series as well as the shape of real objects. 
Shape-matching materials have potential applications in soft robotics, wearable (medical) devices, and fashion 
industry.
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