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Abstract—The programming of biological cells by genetic
circuit engineering is enabling the development of man-made
devices and systems in the biochemical environment, with appli-
cations in the areas of biomedicine, security, and environmental
sensing and control, amongst others. The exchange of infor-
mation through biochemical reactions and molecule transport,
i.e., Molecular Communication (MC), stands as one of the
foundational paradigms for the design and characterization of
these systems. In a previous work, the same authors developed
an analog soft decoder design for MC based on biological circuits
inspired by the analog information processing in biochemical
reactions. While such a design was optimized for an MC channel
affected by Gaussian noise, realistic noise models in molecule
transport processes and biochemical reactions tend to deviate
from this assumption. In this paper, these models are discussed
together with the validity of their Gaussian approximations in
light of the performance of the log-likelihood ratio calculation
of the aforementioned design, numerically evaluated through
biochemical simulation. These models, which are directly derived
from the theory of molecular diffusion and stochastic chemical
reaction analysis, are formulated with a general validity with
respect to any future MC system design based on biological
circuits.

Index Terms—Molecular communication; diffusion channel;
soft detection; synthetic biology; biological circuit; Poisson noise;
Langevin equation; biochemical simulation

I. INTRODUCTION

Synthetic biology is a novel cutting edge discipline that
promises to provide tools for the engineering community to
implement devices and programs in the biological environ-
ment [9]. Biological circuits are the first attempt to a forward
engineering approach based on the property of DNA genes to
enable the flow of information signals through their mutual
activation and repression [13]. Biological circuits are directly
compared to electrical circuits in terms of functionality and en-
ergy consumptions [19], and are currently studied as the basis
of novel applications in the areas of biomedicine, security, and
environmental sensing and control, amongst others.

Within the synthetic biology community, the engineering
of cell-to-cell communication has recently gained particular
interest [15], where the exchange of information mostly be-
tween microbes is at the basis of many functionalities ranging
from studies in evolution and ecology, to distributed bio-
computation. Molecular Communication (MC) [1], [6], a novel

paradigm in communication engineering that investigates in-
formation exchange by molecular means, has been recently
proposed as a unifying discipline to guide the characteri-
zation, modeling and design of these cell communication
systems [16], [21], towards a future Internet of Things applied
to the biological and nanoscale domains [2].

In the direction of the design of novel MC components
based on biological circuits, we previously proposed an analog
soft detection decoder entirely in the biochemical domain [12].
In particular, inspired by a recent study on the efficiency
of analog computation in biological circuits [19], and based
on the seminal work in [8] on analog decoding of block
and convolutional codes with non-linear electrical networks,
we presented proof-of-concept demonstration of a design of
a biological circuit to decode parity-check-binary-encoded
molecule concentrations into log-likelihood bit values (L-
values). While biochemical simulations data of the resulting
biological circuits demonstrate very close behavior to the ideal
scheme, the underlying assumption of a Gaussian white noise
seems to have a limited validity, where realistic noise models
in biochemical reactions and molecule transport processes tend
to deviate from this assumption.

In this paper, we consider a system where the aforemen-
tioned analog soft detection decoder received modulated bits
from a diffusion-based channel. The most widely recognized
noise models in these systems are discussed together with
the validity of their Gaussian approximations. In addition,
biochemical simulation results are provided to compare the
performance of the system in different noise scenarios. These
models, which are directly derived from the theory of molec-
ular diffusion and stochastic chemical reaction analysis, are
formulated with a general validity with respect to any future
MC system design based on biological circuits.

The rest of the paper is organized as follows. In Sec. II
we introduce the main processes at the basis of our MC
system based on biological circuits and molecule diffusion. In
Sec. III we detail the Poisson-based noise model of molecular
diffusion, and derive a Gaussian noise approximation. In
Sec. IV, we detail a stochastic model of the noise in biochem-
ical reactions based on Gaussian statistics, while in Sec. V
numerical results of biochemical simulation are presented to
compare the system performance in different noise scenarios
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Fig. 1. Schematic of a system for MC soft detection via biological circuits.

in terms of differences in the soft detection. Finally, in Sec. VI
we conclude the paper.

II. A SOFT DETECTION MOLECULAR COMMUNICATION
SYSTEM

The reference MC system considered in this paper is shown
in Fig. 1, where a sequence of molecule concentrations mod-
ulated according to transmitted bits xi and propagating via
free diffusion, or Diffusion Channel, reaches an engineered
cell with concentration values yi, where a Biological Circuit
operates the soft detection of the transmitted bits xi. The
modulated concentrations are thought to be transmitted by
another engineered cell where a biological circuit operates the
modulation and emission of molecules, as described in [16],
[21]. This system is derived from the proof-of-concept design
we introduced in [12], where we presented a more com-
plex biological circuit able to decode parity-check-encoded
molecule concentrations with analog biological circuit compo-
nents, which were recently promoted as more efficient [19] that
their digital counterparts [23]. In this previous contribution, the
biological circuit was designed by optimizing its performance
with respect to a generic Gaussian noise affecting the received
molecule concentration. While this approach simplifies the
design of the circuit components, a more realistic noise model
would necessarily consider all the sources contributing to the
Diffusion Noise and Biological Circuit Noise, and, as we
detail in the following, deviate from the Gaussian assumption.
The objective of this paper is to reason on the performance of
a simplified version of the biological circuit in [12], where we
only consider the soft (analog) detection of uncoded bits, under
the condition of widely recognized realistic noise sources in
diffusion and biological circuits Vs their approximation with
a Gaussian model. The approach presented in this paper can
be extended in the future to more complex systems where
molecule diffusion and biological circuits are considered.
Next, we detail the main elements of the reference MC system
in Fig. 1.

A. The Diffusion Channel

As shown in Fig. 1, information is transmitted through
modulated molecule concentrations that reach the destination
through a molecular diffusion process. The motion of each
molecule is described by Brownian random walk where,
assuming independent movement of each molecule, molecular
diffusion can be modeled by the Fick’s laws characterized
by a homogeneous diffusion coefficient D both in space and
time [10]. We make the following assumptions:
• The transmitter, located at a distance rrx from the en-

gineered cell in Fig. 1, modulates and emits molecules
according to the bits sequence xi. Each molecule emission
happens instantaneously at the beginning of a bit time T and
emits a concentration of Q1 or Q0 [molecules/unit volume]
if a bit 1 or 0 are to be transmitted, respectively. Since
in nature cells do not usually utilize a zero release rate of
signaling molecules [15], which is also in agreement with
the evidence of basal expression rate that characterizes many
DNA genes in biological circuits [4], we consider positive
values for Q1 and Q0.

• The received modulated molecule concentrations yi are the
samples of the molecule concentration y(t) at the location
of the engineered cell in Fig. 1, considered homogeneous
around and inside the cell. The sampling time t̄i is equal to
the expected time of maximum of each modulated concen-
tration after propagation.

As a consequence of these assumptions, taking into account
the diffusion channel model [18], the received molecule con-
centrations yi is expressed as follows:

yi =
Q1/0e

−r2/(4D(t̄i−iT ))

(4πD(t̄i − iT ))3/2
= a1/0, (1)

where yi can assume two values, namely, a1 or a0 for each
i, D is the diffusion coefficient, and the sampling t̄ has to
result in sampling the propagated concentration at the so-called
Pulse Delay td [10], the time Green’s function of the diffusion
equation [11] is at its maximum, expressed as follows:

t̄ = td − iT =
r2
rx

6D
− iT. (2)

B. Soft Detection Via Biological Circuits

In this paper we utilize analog biological circuit components
to compute soft values, or the a-posteriori probability (APP)
that the received concentration yi corresponds to a transmitted
bit 0 over a transmitter bit 1, in the form of log-likelihood
ratio (LLR) of xi being 0 to the APP of it being 1. The LLR
L(xi|yi) of a transmitted bit xi given the set of all the received
concentrations {yi}I can be calculated according to

L(xi|yi) = ln
P (xi = 0|{yi}i)
P (xi = 1|{yi}I)

. (3)

In case the concentrations yk, k 6= i are not correlated with
the bit xi, the computation of the LLR of xi depends only on
yi and, therefore, the expression becomes

L(xi|yi) = ln
P (xi=0|yi)
P (xi=1|yi)

= ln
f(yi|xi=0) · P (xi=0)

f(yi|xi= b1) · P (xi= 1)



= ln
f(yi|xi=0)

f(yi|xi=1)
+ln

P (xi=0)

P (xi=1)
=L(yi|xi)+L(xi). (4)

In our case L(xi) = 0 since 0 and 1 have the same a-priori
probability. For the considered two-level transmission with
concentrations a0 and a1 over an additive white Gaussian noise
(AWGN) channel we get [8]

L(yi|xi)=ln
exp
(
−(yi−a0)2

2σ2

)
exp
(
−(yi−a1)2

2σ2

)=
(a0−a1)

σ2

[
yi−

(a1+a0)

2

]
. (5)

The sign of L(xi|yi) gives the decision about the transmitted
symbol and its magnitude gives the reliability of this decision.
As it can be observed from the above equation, when the
received signal concentration yi is lower than the threshold
yth = (a1 + a0)/2, defined by the arithmetic mean of the
concentrations a0 and a1, the LLR is positive and, therefore,
the decision about the transmitted bit is 0. Viceversa, when
yi is higher than yth, the LLR is positive and, therefore, the
decision about the transmitted bit is 1.

As shown in Fig. 1, the computation of (5) is implemented
through a biological circuit of our design. This implementation
is based on the following assumptions, which we have justified
in [12]:
• The concentrations of the molecular species, i.e., received

molecules, molecules and proteins involved in the biological
circuit, are considered homogeneous at any time instant
inside and around the cell.

• The input molecules of the biological decoding circuit can
be either the same incoming signaling molecules emitted
by the transmitter cell, and able to cross the cell membrane,
therefore resulting in a concentration inside the cell that
is the same as around the cell, or they can be molecules
resulting from a chemical reception process at the receiver
cell [16].

• All the concentration values expressed in the following are
intended as normalized with respect to the average number
of intracellular signaling molecules, typically equal to 1000
molecules per cell [3]. In the case of an E coli bacterium,
a usual chassis in synthetic biology, this corresponds to a
concentration of 1 µM = 6 · 1020 [molecules/m3].

As a consequence of these assumptions, the proposed bio-
logical circuit, which implements (5), is composed of two
main blocks, namely, the subtraction operation, and the genetic
amplifier, detailed next.

The Subtraction Operation block is realized through a
mass action chemical reaction that converts the propagated
molecules of the received concentration yi and the molecules
of species B into product molecule species P . The molecule
species B is kept by the biological circuit to a fixed concentra-
tion equal to a1+a0

2 , which is the quantity to be subtracted from
yi to get L(yi|xi) according to (5). This reaction occurs with
a forward rate kf until the remaining concentration of any of
the two molecule species is equal to the value

∣∣∣yi − (a1+a0)
2

∣∣∣.
In particular, on the one hand, if yi − (a1+a0)

2 > 0, then the
molecule of species B are completely consumed, and some

propagated molecules of the received concentration yi are
left, with a concentration value equal to the aforementioned
subtraction. On the other hand, if yi − (a1+a0)

2 < 0, the
propagated molecules of the received concentration yi will be
consumer, while some molecule of species B are left, again
with a concentration value equal to the subtraction. These two
cases feed alternatively two genetic amplifiers, as shown in
Fig. 1. The upper branch is for the positive subtracted value
and the lower branch is for the negative subtracted value.
The subtraction operation block is modeled by the following
chemical reaction rate equation (RRE) [13]:

d[P ]

dt
= kfyi[B]− kr[P ], (6)

where kr is the reverse rate. Here we assume reactions where
the forward rate is much greater than the reverse rate, as
in [14].

The Genetic Amplifier block is inspired by the biological
circuit design presented in [22], and it is implementing a
multiplication of the subtraction operation block output by
a0−a1
σ2 , as in (5). In particular, we adapted the fixed gain

amplifier design from [22] to adapt its linear range to the range
of possible values of the subtraction operation block output
|yi − (a1+a0)

2 |, and its gain to the aforementioned a0−a1
σ2 by

tuning biological circuit parameters.
A biological circuit is generally defined as a genetic regula-

tory network [13] embedded in a biological cell, where DNA
genes are linked together by chemical reactions that result
in activation and repression mechanisms that regulate their
expression into proteins, which are biological macromolecules.
By means of synthetic biology techniques, genes and chemical
reactions can be arranged to implement a specific biological
function. A gene in a biological circuit is composed of a
promoter region (e.g., Py , PB , and PharpL in Fig. 1) which
recruits the RNA Polymerase holoenzyme (RNAP) to start the
transcription of the rest of the gene into a messenger RNA
molecule (mRNA), one or more coding sequences (e.g., Py ,
PB , and PharpL in Fig. 1), which contain the information to
build a protein from component amino acids that is transcribed
into the mRNA. In addition, the Ribosome Binding Sites,
(RBSs in Fig. 1) are DNA sequences placed before the coding
sequences, transcribed as well into the mRNA, that recruit the
ribosome, which then translates the coding sequence from the
mRNA into the final protein. Amongst others, promoters can
be inducible, which happens if special proteins, or activators,
bind to the operator region near the promoter site up-regulating
the transcription of the subsequent coding sequence by in-
creasing the RNAP recruiting rate. Activators in the circuit
in Fig. 1 are the molecules Y of the received concentration
yi, the molecules B, and the molecules RS, the latter being a
synergistic activator complex formed by the proteins expressed
from the coding sequences hrpR and hrpS, shown in the
figure.

While the fixed gain amplifier in [22] is modeled in the
steady state regime, resulting in a simplified expression in
terms of Hill functions [4], in this paper, in order to properly



express and simulate the biological circuit noise, as detailed in
the following, we express our version of the biological circuit
in terms of mass action kinetics, which translates into the
following RREs:

d[Pxx]

dt
= [Sxx]−Kaxx

[Pxx][xx][RNAP ]

d[xx]

dt
= [Sxx]−Kaxx [Pxx][xx][RNAP ]

d[Sxx]

dt
= −Kaxx

[Pxx][xx][RNAP ] + [Sxx] , (7)

where these equations are replicated for xx equal to Y and
B, and [Pxx], [Sxx], and [xx] are time-varying concentration
of free promoters, promoters bound to RNAP, and molecules
Y or B, where [Y ] = yi. Without loss of generality, the con-
centration of [RNAP ], which is relatively abundant in a cell,
is approximated as a constant [13]. The constant parameter
Kaxx is the equilibrium constant of the reaction where the
promoter recruits the RNAP and the activator xx, Y or B,
respectively. Similarly, the following RREs equations complete
the chemical kinetic model of the two genetic amplifiers in
Fig. 1:

d[RS]

dt
= npkay [Sy] + npkaB [SB ]+

− nRS(KahprL
[PhprL][RS]− [ShprL]),

d[PhprL]

dt
= [ShprL]−KahprL

[PhprL][RS]nRS [RNAP ],

d[ShprL]

dt
= KahprL

[PhprL][RS]nRS [RNAP ]− [ShprL],

L(xi|yi) = nplkahprL
[ShprL], (8)

where [RS] is the concentration of the aforementioned acti-
vator complexes, and np, kay , and kaB are the number and
the rate of the expression of the activator complexes RS from
the gene with promoter PY and PB , respectively. The time
varying concentrations [Pxx], [Sxx], and [xx] and the constant
parameter KahprL

have similar definition as above, while
nRS expresses the number of activator complexes necessary
to activate the promoter PhprL, and npl and kahprL

are
the number and rate of expression of the molecules whose
concentration rate is equal to the LLR L(xi|yi). Most of
the aforementioned parameters are experimentally evaluated
in [22] with the exception of np, kay , and kaB that depend on
the RBS strength and have been tuned to obtain the desired
gain, as suggested in [22].

III. DIFFUSION NOISE

A. The Poisson Model

In a realistic scenario, the expression in (1) corresponds to
the expected value of the concentration at a given time t at
distance rrx. Molecules, in fact, move with Brownian motion
and each molecule is either inside or outside the engineered
cell at a given instant. For this reason the number of observed
(received) molecules follows a binomial distribution that can
be approximated as a Poisson counting process [14], [17]. If
the probability Pob(t) that a given molecule is observed within

the receiver volume is small and the number of transmitted
molecules Ntx is large, the number of received molecules at
time t, Nrx(t), can be approximated as a Poisson variable with
distribution

P (Nrx(t) = Ny) =
(E[Nrx(t)])Ny exp(−E[Nrx(t)])

Ny!
, (9)

where E [Nrx(t)] is the expected number of received
molecules [14], [17]. In Sec. II, we have assumed that the
received molecule concentration is sampled according to (2),
obtaining the expression in (1). As a consequence,

E[Nrx(t̄i)] = a1/0 · V, (10)

where V is the volume of the engineered cell in Fig. 1. We
obtain two different expected molecule numbers, namely, N0

and N1 depending whether the transmitted bit ai is equal to
a0 or a1, respectively. The probability mass function (pmf) of
the number of received molecules at time t̄i, conditioned to
the transmitted bit, is expressed as

P (Nrx(t̄i) = Ny|xi = 0) =
(N0)Ny exp(−N0)

Ny!
, (11)

P (Nrx(t̄i) = Ny|xi = 1) =
(N1)Ny exp(−N1)

Ny!
. (12)

The variables Crx and Nrx are have a linear relationship,
hence it is straightforward to compute the pmf for Crx
conditioned to the transmitted bit as

P (yi|xi = 0/1) =
(N0/1)yiV exp(−N0/1)

(yiV )!
. (13)

In this case, since the statistics of the noise is non-Gaussian,
the LLR calculation in (5) at the basis of our biological circuit
implementation is no longer optimal, and will incur in an error
that will be evaluated later on in this paper. By comparison,
the optimal calculation of the LRR L(yi|xi) can be obtained
by replacing (11) and (12) in (4), resulting into

L(yi|xi)=ln
(N0)

yiVexp(−N0)

(N1)yiVexp(−N1)
=yiV ln

(
N0

N1

)
−(N0−N1), (14)

where, in this case, the threshold is yth = (N0 − N1)/
(V (lnN0 − lnN1)). Since our biological circuit described in
Sec. II-B implements the calculation of (14), in the presence
of a realistic diffusion noise source, the LLR calculation will
deviate from the ideal in (14) by an error, which will be
explored in Sec. V.

B. The Gaussian Approximation

When Pob(t) is not close to one or zero and Ntx is suffi-
ciently large, the binomial distribution for the received number
of molecules can be approximated with a Gaussian distribution
with mean E[Nrx(t)] and variance σ2(t) = E[Nrx(t)](1 −
Pob(t)) [14]. We can therefore write the following expression:

P (Nrx(t) = Ny) =
exp

(
− (Ny−E[Nrx(t)])2

2E[Nrx(t)](1−Pob(t))

)
√

2πE[Nrx(t)](1− Pob(t))
, (15)

from which



P (yi) =
exp

(
− (yiV−E[Nrx(t)])2

2E[Nrx(t)](1−Pob(t))

)
√

2πE[Nrx(t)](1− Pob(t))
. (16)

Again, E[Nrx(t = td)] assumes values N0 and N1 when bit 0
or 1 is transmitted, respectively, leading to different variance
values σ2

0 and σ2
1 for transmission of different bits.

As a consequence of this Gaussian approximation of the
diffusion noise, the calculation of the LLR L(yi|xi) becomes
as follows:

L(yi|xi) =

1√
2πσ2

0

exp
(
− (yiV−N0)2

2σ2
0

)
1√

2πσ2
1

exp
(
− (yiV−N1)2

2σ2
1

) =

= ln

(
σ1

σ0

)
+

1

2σ2
1σ

2
0

{
V 2(σ2

0 − σ2
1)y2

i+

−2V (N1σ
2
0 −N0σ

2
1)yi + (N2

1σ
2
0 −N2

0σ
2
1)
}

(17)

Since the computation of this quantity in the biological domain
is far from being trivial, we could linearize this function
around the value of the decision threshold (for a hard decision
decoding) that differs from the arithmetic mean since the
variances of the noise in the two cases are different. The
new threshold can be computed either as the point where the
two Gaussian functions meet or as the point where the LLR
L(yi|xi) is zero. After resolution of a quadratic equation, we
get two opposite solutions but, since concentrations are only
positive valued, we neglect the negative term to have

yth =
1

V

1

σ2
0 − σ2

1

{
N1σ

2
0 −N0σ

2
1

+σ0σ1

√
(N0 −N1)2 − 2(σ2

0 − σ2
1) ln(σ1/σ0)

}
. (18)

By truncating the Taylor expansion of L(yi|xi) to the first
term, we get the linearized LLR Ll(yi|xi) around yth as

Ll(yi|xi)=
[
V 2(σ2

0−σ2
1)

σ2
0σ

2
1

yth−
V (N1σ

2
0−N0σ

2
1)

σ2
0σ

2
1

]
(yi−yth).

(19)
As in (5) and in (14), the expression (yi−yth) is preserved. In
Fig. 3 it is shown a comparison between the quadratic function
L(yi|xi) and its linearization Ll(yi|xi). The circle represents
the range of values of yi for which we are mostly interested
in a very good approximation, since the resulting reliability is
low yielding a critical condition. The approximation achieved
in that range is nearly perfect. We can easily adapt the
concentration [B] in the subtraction operation and the gain
of the genetic amplifier in the biological decoding circuit to
compute the new LLR in (19), while maintaining the same
design.

IV. BIOLOGICAL CIRCUIT NOISE

The randomness inherently present in the chemical reactions
underlying a biological circuit generates noise in their input-
output response. For this reason, the deterministic model of
our proposed biological circuit expressed in terms of RREs
in (7) and (8) is only accounting for the average behavior of
the biological circuit, and a proper stochastic model should be
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utilized to represent the chemical reaction noise. In this paper,
in place of more general formulations based on the chemical
master equation [20], or the τ -leaping approximate stochastic
method [5], which, similarly to the diffusion noise, is based
on a Poisson counting process, we make use of the Chemical
Langevin Equation (CLE) [7] formulation. For this, we can
rewrite the biological circuit model expressed in Section II-B
through the RREs by adding the noise contribution as a
Gaussian Process [7], as detailed in the following.

The CLE can be expressed for each chemical reaction in (7)
and (8) as follows [7]:

dXi(t)

dt
=

M∑
m=1

Vimam(X(t))+

M∑
m=1

Vim
√
am(X(t))Γm(t), (20)

where X(t) is the number of molecules for each species at
time t, am(X(t)) is the propensity function for a chemical
reaction m, which can be computed as in [13], and Vim is the
stoichiometric coefficient, which corresponds to the number
of molecules for each species that the reaction m operates
when it occurs. In our case, dXi/dt and Vimam(X(t)) are
the left hand side and each term of the sum at the right hand
side of each equation in (7) and (8), respectively, where in
place of species concentrations we substitute the number of
molecules of each species inside the volume V (concentrations
can be then computed by dividing each molecule number by
the volume V ), Γm(t) is a white noise process for the reaction
m with variance equal to 1, statistically independent from the
white noise processes of other reactions.

V. NUMERICAL RESULTS

In this Section we present the bit error rate (BER) perfor-
mance achieved using the LLR computation of transmitted bits
based on the Poisson model for the noise and that achieved
using its Gaussian approximation.

As a first step we analyze the LLR functions associated
with the two noise distributions. In Fig. 3 it is shown the
LLR given in (14) and in (17) for the Poisson and for its
Gaussian quadratic approximation, respectively, as a function
of the input concentration of molecules y. The plots have
been obtained using as parameters those reported in the Figure
caption. Figure 3 also reports the linearized LLR given (19)
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for the Gaussian quadratic approximation around yth ≈ 20.49
that results from (18) using the chosen parameters. The area
inside the circle corresponds to the values of y for which we
are mostly interested in a very good approximation, since the
resulting reliability is low yielding a critical condition. As it
can be observed, the linearized expression provides a nearly
perfect approximation for the range of values of interest and,
therefore, we used it to compute the LLR in case we use the
Gaussian approximation of the Poisson model.

The BER performance achieved in case of binary transmis-
sion using the Poisson model for the noise is here compared to
that obtained using the Gaussian approximation as a function
of the ratio (a0−a1)/σ2, where σ2 = (a1 +a0)/2 denotes the
average power of the noise that affects the two concentration
levels a0 and a1. The computation of the LLR has been done
using Matlab SimBiology environment that implements the
Soft Detection Via Biological Circuit block that is enclosed
in the dashed rectangular box of Fig. 1, through a stochastic
simulation according to the Langevin Equation model detailed
in Sec. IV. As it can be observed from the results in the figure,
the Gaussian approximation gives same BER performance as
that obtained using Poisson distribution, thus justifying its
use for evaluating performance of molecular communication
systems.

VI. CONCLUSION

In this paper we focused on the bit error rate performance of
analog soft detection for MC based on biological circuits. Soft
detection in the context of MC has been recently proposed by
the same authors in previous work using the Gaussian model
for the noise.

As is well known, in the context of MC molecule transport
by diffusion processes tend to deviate from the Gaussian model
assumption. Starting from the analysis of the diffusion effect
over the transmitted molecules in the molecular channel, we
discussed Poisson model and Gaussian approximation models
for noise distributions. We then derived the computation of
LLR, used to take soft decisions on the transmitted bits,
and evaluate the resulting performance using computer sim-
ulations. Numerical results show that the two soft detection
computations provides similar BER performance for different

values of the received concentrations that are associated with
transmitted bits, thus validating the Gaussian approximation
used for the design of LLR.
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