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The relaxation rates and contractile properties of inspiratory muscles are altered with 
inspiratory muscle weakness and fatigue. This fact plays an important role in neuro-
muscular disorders patients and had never been extensively studied in amyotrophic 
lateral sclerosis (ALS). In this cross-sectional study, these parameters were investi-
gated non-invasively through nasal inspiratory sniff pressure test (SNIP) in 39 middle 
stage spinal onset ALS subjects and compared with 39 healthy controls. ALS patients 
were also divided into three subgroups according to a decline in their percentage of 
predicted forced vital capacity (FVC%pred) as well as a decline in the ALS functional 
rating scale score and its respiratory subscore (R-subscore) in order to determine the 
best parameter linked to early respiratory muscle weakness. When compared with 
healthy subjects, middle stage ALS subjects exhibited a significantly lower (p < 0.0001) 
maximum relaxation rate and maximum rate of pressure development (MRPD), as well 
as a significantly higher (p < 0.0001) tau (τ), contraction time, and half-relaxation time. 
The results from receiver operating characteristic curves showed that MRPD (AUC 
0.735, p < 0.001) and FVC%pred (AUC 0.749, p = 0.009) were the best discriminator 
parameters between ALS patients with ≤30 and >30 points in the ALS functional 
rating scale. In addition, 1/2RT (AUC 0.720, p = 0.01), FVC%pred (AUC 0.700, p = 0.03), 
τ (AUC 0.824, p < 0.0001), and MRPD (AUC 0.721, p = 0.01) were the parameters 
more sensitive in detecting a fall of three points in the R-subscore. On the other 
hand, MRPD (AUC 0.781, p < 0.001), τ (AUC 0.794, p = 0.0001), and percentage of 
predicted of SNIP (AUC 0.769, p = 0.002) were the parameters able to detect a fall 
in 30% of the FVC%pred in middle stage ALS patients. The contractile properties and 
relaxation rates of the diaphragm are altered in middle stage spinal onset ALS when 
compared with healthy subjects. These parameters are able to discriminate between 
those middle stage ALS subjects with early decline in inspiratory muscle function and 
those who not.

Keywords: amyotrophic lateral sclerosis, forced vital capacity, inspiratory muscle weakness, relaxation rates, 
respiratory subscore, sniff nasal inspiratory pressure
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inTrODUcTiOn

Amyotrophic lateral sclerosis (ALS) is a rare neurodegenerative 
disorder characterized by progressive weakness of the skel-
etal and respiratory muscle (1). The median survival from first 
symptoms ranges from 2 to 4 years (2), and although respiratory 
insufficiency can be present in approximately 3% of patients  
(3, 4), it frequently emerges in the late phase of the disease 
representing the most frequent cause of death (1).

Global assessment scores, such as the ALS functional rating 
scale (5) (ALSFRS-R), is a useful and valid parameter in predict-
ing survival in this population (6, 7) and has proved to be related 
to forced vital capacity (8) (FVC). Since respiratory function 
and muscle strength are of clinical importance and represent 
crucial factors influencing survival in ALS (9, 10), the monitor-
ing of these parameters is essential during disease progression. 
The gold standard measurement of respiratory muscle strength 
involves the insertion of esophageal and/or gastric balloon cath-
eters through the nose (11). However, the sniff nasal inspiratory 
pressure (SNIP) has been proposed as a non-invasive alternative 
method and proved to accurately reflect diaphragm strength (12) 
and global inspiratory muscle strength (13).

In ALS patients, the already weakened respiratory muscles are 
easily suitable to fatigue (14) and this fact may play an important 
role in the development of ventilatory failure (15). It has been 
demonstrated that the relaxation rate of inspiratory muscles is 
altered by the development of inspiratory muscle fatigue (16, 17)  
and that relaxation rates obtained from a maximal sniff accu-
rately reflect those obtained from esophageal pressure (16, 18). 
Relaxation rates can be described in terms of maximum relaxa-
tion rate (MRR), half-relaxation time (1/2RT), and time constant 
of the pressure decay curve (τ, tau) after voluntary contraction 
of a muscle (16). Furthermore, the contractile properties of the 
diaphragm [namely, maximum rate of pressure development 
(MRPD) and contraction time (CT)] are also altered in fatigue 
and have been used as an index of the motor output of the 
respiratory center (19) as well as to assess inspiratory muscle 
function (11, 20, 21).

Apart from fatigue in healthy subjects (16–18, 22–24), physi-
ological and/or disease-related changes in diaphragm relaxation 
have not been extensively investigated in ALS patients through  
the SNIP test. The present work aimed to non-invasively measure 
the relaxation rates and the contractile properties of the inspira-
tory muscles in ALS patients through SNIP test (1) in compari-
son to healthy subjects and (2) in relation to early respiratory 
symptoms in order to determine the best parameter linked to 
early respiratory muscle weakness. We hypothesized that these 
parameters are altered in ALS patients and can be indicators of 
inspiratory muscle weakness.

MaTerials anD MeThODs

subjects
This cross-sectional study was conducted according to the World 
Medical Association Declaration of Helsinki and approved by 
the Research Ethics Committee under number 1.344.512/2015. 

All individuals involved in the study signed an informed con-
sent form.

We investigated 39 subjects with ALS (22 males), recruited 
from the Hospital Universirátio Onofre Lopes and diagnosed by a 
neurologist according to the El Escorial criteria (25) as “Probable 
or definite,” and 39 healthy controls (19 males). ALS subjects 
with cardiovascular, pulmonary, or other neurological diseases, 
as well as with bulbar dysfunction signs or tracheostomy were not 
included. Those who failed to perform the assessments or refuse 
to participate in the study were excluded.

Control group included self-reported age-matched healthy 
subjects with no history of cardiovascular, neurological or pul-
monary diseases. Those with FVC and FEV1 <80% of predicted 
were excluded.

spirometry
Spirometry was performed using a Koko Digidoser spirometer 
(nSpire Health, Longmont, CO, USA) and carried out with the 
subjects positioned sitting on a chair with feet supported and 
trunk flexion of 90° according to the ATS/ERS guidelines (11). 
All values obtained were compared with absolute and percentage 
of predicted values for the Brazilian population (26).

respiratory Muscle strength
Maximum inspiratory and expiratory pressures [maximum 
inspiratory pressure (MIP) and maximum expiratory pressure 
(MEP), respectively] and SNIP were measured using a digital 
manometer (NEPEB-Labcare, Belo Horizonte) with the subjects 
seated on a chair. MIP was measured starting from residual 
volume and MEP from total lung capacity, while SNIP was 
performed starting from functional residual capacity (FRC) (27). 
Data obtained were compared with previous reference values (28, 
29), and the highest value of each test was considered for analysis.

sniP curve analysis
All subjects were asked to perform a short, sharp inspiratory 
effort through the nostrils with lips closed. Since some sniff 
parameters can be affected by changes in muscle length and the 
activity of expiratory muscles could interfere in the analysis, 
the sniff maneuvers were performed from FRC and a passive 
relaxation right after reaching the peak of pressure was requested  
(23, 30). At least 10 maximal sniffs, with an interval of about 30 s 
in between, were performed by all subjects. The following criteria 
were used to select those sniffs suitable for analysis: (1) sniff 
performed from FRC; (2) peak pressure maintained for less than 
50 ms; (3) duration of the inspiratory effort less than 500 ms; and 
(4) sniff pressure waveform with smooth decay curve (16, 31).

Figure  1 shows the parameters derived from the SNIP test. 
From the sniff maneuver trace, CT and 1/2RT were calculated 
as the time to reach the peak pressure of the sniff and the half-
time of the relaxation curve, respectively (32). MRPD, expressed 
as cmH2O·ms−1, was calculated as the negative peak of the first 
derivative of pressure–time curve (21, 33) while MRR, expressed 
as milliseconds−1, was defined as the positive peak of the first 
derivative of pressure–time curve normalized to the sniff peak 
pressure, in order to make contractions of different intensities 
comparable (18).
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FigUre 1 | Representative tracings of the sniff nasal inspiratory pressure (SNIP) test and its parameters. (a) Tracings of SNIP change; peak sniff pressure (Psniff); 
time to reach Psniff, contraction time (CT); and half-time of the relaxation curve (1/2RT). (B) Derivative signal of sniff pressure (dPressure sniff/dT = cmH2O/ms); negative 
peak dPsniff/dT, maximum rate of pressure development (MRPD) positive peak dPsniff/dT normalized by Psniff, maximum relaxation rate (MRR). (c) Decay portion of the 
sniff pressure plotted on semilog scale vs. time (ms). Linear black portion indicates a single exponential function with a time constant, τ = 1/slope. cmH2O, 
centimeters of water.
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The time constant (τ), was also calculated. When the natural 
logarithm of pressure is plotted as a function of time, the lower 
50–70% of the pressure decay follows a straight line (18, 34) 
(Figure  1C), indicating that the pressure follows a monoex-
ponential decay with a time constant τ (τ  =  1/slope). For the 
measurement of τ to be accepted, the correlation coefficient of 
the individual regression line (ln P vs. time) had to be ≥0.96 (35).

Sniff nasal inspiratory pressure curve analysis was performed 
by custom software developed in MATLAB (The MathWorksInc, 
Natick, MA, USA).

Functionality and stage of the Disease
Functionality was measured using the ALSFRS-R (maximum 
48 points), validated for the Brazilian population (5), as well as 

its respiratory subscore (R-subscore) alone (36) (maximum 12 
points). In addition, the stage of the disease was determined 
according to disease progression proposed by Roche et al. (37).

statistical analysis
To statistical analysis, data from ALS subjects were divided 
into three subgroups, defined by the degree of decline of the  
(1) respiratory function (2, 38, 39) (≤70 and >70 of FVC%pred),  
(2) ALSFRS-R total score (≤30 and >30 points), and  
(3) R-subscore (≤9 and >9 points) (40, 41).

Data are expressed as median [25–75th percentile] unless 
otherwise stated. Normality and distribution of data were per-
formed using Shapiro–Wilk test. Data between ALS and healthy 
subjects (intergroup analysis) were studied using the unpaired 
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TaBle 1 | Characteristics of the subjects in relation to anthropometric data, 
absolute and predicted values of lung function, respiratory muscle strength,  
and functional capacity.

healthy als p

Subjects (n) 39 39 –
Age (years) 47.9 ± 11.1 52.9 ± 12.5 0.111
Height (ms) 1.63 ± 0.1 1.65 ± 0.1 0.500
Weight (kg) 69.6 ± 11 65 ± 13 0.100
BMI (kg/m2) 26.2 ± 5.6 23.9 ± 5.7 0.07
FVC (L) 3.79 ± 0.8 2.49 ± 1.06 <0.0001
FVC%pred 98.8 ± 10.7 63.1 ± 23.1 <0.0001
FEV1 (L) 3.10 ± 0.68 1.87 ± 0.83 <0.0001
FEV1%pred 98.8 ± 10.4 58.5 ± 21.9 <0.0001
FVC/FEV1 0.81 ± 0.04 0.76 ± 0.12 0.008
FVC/FEV1%pred 100.1 ± 4.4 94.3 ± 15.6 0.02
FEF25–75% 3.29 ± 0.87 1.86 ± 1.05 <0.0001
PEF (L/s) 6.41 ± 1.91 3.32 ± 2.19 <0.0001
SNIP (cmH2O) 103.3 ± 29.4 48.36 ± 27.04 <0.0001
SNIP%pred 100.4 ± 24 47.2 ± 24.7 <0.0001
MIP (cmH2O) 105 ± 27.45 48.1 ± 22.50 <0.0001
MIP%pred 103.3 ± 20.9 48.4 ± 22.7 <0.0001
MEP (cmH2O) 125.4 ± 36.46 58.46 ± 31.92 <0.0001
MEP%pred 121.8 ± 31.9 56.6 ± 32.1 <0.0001
ALSFRS-R – 32.5 ± 8.8 –
Respiratory subscore – 10 ± 2 –

Data presented as mean ± SD.
FVC, forced vital capacity; FEV1, forced expiratory volume in the first second; FEV1/
FVC, ratio of forced expiratory volume in the first second to forced vital capacity; 
FEF25–75%, forced expiratory flow at 25–75%; PEF, peak expiratory flow; MIP, maximum 
inspiratory pressure; MEP, maximum expiratory pressure; SNIP, sniff nasal inspiratory 
pressure; ALSFRS-R, amyotrophic lateral sclerosis functional rating scale-revised; 
%pred, percentage of predicted; cmH2O, centimeters of water.
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t-test or Mann–Whitney test for parametric and non-parametric 
data, respectively. One-way ANOVA or Kruskal–Wallis test was 
applied to compare subgroup with control group data and, in the 
event of statistical significance; Bonferroni’s or Dunn’s post hoc 
test was applied, respectively, to identify differences between 
groups.

To avoid type II error, the power of the study was calculated 
as well as effect sizes for all data. For parametric data, effect 
sizes were calculated using Cohen’s d for intergroup analysis 
and Cohen’s f for subgroup analysis (42). For non-parametric 
data, Cohen’s d was calculated for intergroup analysis accord-
ing to Fritz et al. (43) and ε2 for subgroup analysis according to 
Tomczak and Tomczak (44) (see Supplementary Material).

Receiver operating characteristic (ROC) curves were cal-
culated for SNIP parameters between middle stage ALS and 
healthy subjects, as well as between subgroups. The area under 
the curve (AUC) and its 95% confidence interval were calcu-
lated. Optimal cutoff point and its 95% confidence interval were 
also calculated for each parameter according to the Youden 
index (45).

Inferential data analysis was performed using GraphPad 
Prism® software version 6.01. The power of the study and effect 
sizes were analyzed using G*Power software, version 3.1.9.2 
(Kiel, Germany), and ROC curves were analyzed using MedCalc 
(Ostend, Belgium) version 14.8.1. For all statistical analysis, 
a p-value of <0.05 (two-sided) was considered as statistically 
significant.

resUlTs

Data related to diagnosis criteria, region of onset, clinical 
phenotype as well as the presence of familial ALS and cognitive 
impairment of all ALS included in the study are shown in Table 
S1 in Supplementary Material. Anthropometric, spirometric, 
respiratory muscle strength, and functionality data are shown 
in Table 1. ALS subjects were characterized by significant lower 
spirometric and respiratory muscle strength values. All ALS 
subjects were classified as middle stage. The mean ALSFRS-R 
score was 32.5 ± 8.8 (67.7 ± 18.3%), and the mean R-subscore was 
10 ± 2 (83.3 ± 16.6) (see Table S2 in Supplementary Material).

All parameters extracted from the sniff curve were sig-
nificantly different between ALS and healthy subjects. A signifi-
cantly lower MRR (p < 0.0001, Cohen’s d = 0.44) and MRPD 
(p  <  0.0001, Cohen’s d  =  0.71) were found in ALS subjects, 
as well as a higher CT (p < 0.0001, Cohen’s d = 1.21), 1/2RT 
(p < 0.001, Cohen’s d = 0.42), and τ (p < 0.0001, Cohen’s d = 0.64)  
(Figure 2).

A post  hoc analysis considering a p-value of <0.01 and the 
calculated effect size for τ between ALS and healthy subjects 
(Cohen’s d = 0.64) showed a statistical power (1 − β) = 0.99 for 
this study.

alsFrs-r, r-subscore, and FVc%pred 
subgroups
As shown in Table 2, all subgroups of ALS subjects presented a 
lower FVC%pred, SNIP%pred, MRR, and MRPD and higher CT, 1/2RT, 
and τ when compared with healthy subjects. However, subjects 

with functional capacity ≤30 (13 subjects) exhibited significantly 
lower values of FVC%pred when compared to ALS subjects with 
>30 points; and those with ≤9 (14 subjects) presented a signifi-
cantly lower FVC%pred as well as higher 1/2RT and τ values when 
compared to those with >9 points. On the other hand, when ALS 
subjects were classified according to FVC%pred, those with <70% 
exhibited significantly higher τ and lower SNIP%pred values when 
compared to ALS with values >70%.

rOc analysis
Since SNIP%pred is one of the respiratory prognostic markers mostly 
considered in ALS (38, 46), this parameter was also included in 
the ROC analysis. As shown in Table 3, all sniff parameters were 
significantly able to discriminate between ALS and healthy. Of 
these, MRPD was the parameter with the highest AUC. When 
dividing the ALS subjects between those with ALSFRS-R score 
≤30 and >30, only the MRPD and FVC%pred were statistically 
significant (Table  4). However, when taking into account the 
subdivision between those ALS with R-subscore ≤9 and >9 
points, MRPD, 1/2RT, τ, and FVC%pred showed to be statistically 
significant (Table 5). On the other hand, MRPD, τ, and SNIP%pred 
parameters were statistically significant when subjects were clas-
sified according to FVC%pred classification (Table 6; Figure 3).

DiscUssiOn

The main findings of this study are that (1) the sniff test provides 
parameters, apart from its peak pressure, able to discriminate 

https://www.frontiersin.org/Neurology/
https://www.frontiersin.org
https://www.frontiersin.org/Neurology/archive


FigUre 2 | Data are shown as median [25–75th percentile]. Comparisons between the parameters obtained from the sniff nasal inspiratory pressure (SNIP)  
curve [maximum relaxation rate (MRR), maximum rate of pressure development (MRPD), contraction time, half-relaxation time (1/2RT), and tau (τ)] and percentage 
of predicted of the SNIP test (SNIP%pred) between amyotrophic lateral sclerosis (ALS) and healthy subjects. cmH2O: centimeters of water; +, mean for parametric 
analysis.
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between healthy and middle stage ALS subjects, and that  
(2) some of these parameters, namely τ, MRPD, and 1/2RT,  
are more sensitive in detecting impaired inspiratory muscle 
func tion in ALS than the peak pressure itself.

According to Kyroussis et al. (22), measurements of relaxa-
tion rates obtained from nasal sniffs accurately reflects those 

from esophageal pressure curves and can be used as an index of 
the onset and recovery of respiratory muscle fatigue. Moreover, 
measurements of nasal sniffs are simple, tolerated, and mini-
mally invasive and can provide a quantitative response index to 
fatigue and therapeutic interventions in neuromuscular disease 
patients (47, 48). In our study, all parameters derived from the 
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SNIP curve were significantly different between middle stage 
ALS and healthy subjects, being in agreement with two previous 
studies performed in subjects with neuromuscular disorders  
(47, 49). Evangelista et al. (49), observed that a reduced MRR  
was reliable in identifying the delayed relaxation of the respira-
tory muscles in myotonic dystrophy type 1 patients when com-
pared to healthy controls; while Garcia-Rio et al. (47), despite 
heterogeneity of the study population, found that the decreased 
MRR of neuromuscular disease patients was accompanied by the 
deterioration in the functional reserve of the diaphragm as well 
as of the inspiratory muscles.

The rationale for measuring relaxation rates from pressure 
curves is based on the assumption that the decay portion of the 
curve, when expiration is totally passive, corresponds to the rela-
xation phase of inspiratory muscle contraction (18). The decrease 
in MRR and increase in τ are adaptive mechanisms and had  
been shown to be an early sign of the onset of fatigue (17, 50).  
The alterations of these parameters occur before the decrease 
in peak diaphragmatic pressure (17, 31, 47). When respiratory 
muscles do develop fatigue the peak pressure decreases linearly 
with the slowing of the MRR and exponentially with the increase 
of τ due to common or concomitant metabolic changes of the 
muscle fiber (17, 34, 51). In addition, the loss of muscular force 
during fatigue makes the muscle contractile speed to decrease 
resulting in an increase in CT and prolongation of relaxation 
time as an adaptive mechanism (52, 53) which is also related to 
intracellular and metabolic factors (i.e., the decline of the calcium 
uptake from the sarcoplasmic reticulum, depletion of ATP, and 
intracellular acidosis) (48, 54).

To our knowledge, apart from various studies about the 
relaxation rate in healthy adults (21, 23, 33) and different dis-
eases [COPD (51), cystic fibrosis (55, 56), and intubated patients 
weaning from mechanical ventilation (31)], the literature is 
scarce about the measurements of MRPD, τ, CT, and 1/2RT in 
neuromuscular disease patients precluding the possibility of 
comparing our data to data derived from a similar population. 
Our results showed a decreased MRPD in middle stage ALS when 
compared to healthy subjects and, as it is derived from the initial 
incline of the SNIP curve and reflects respiratory muscle function 
(11) as well as respiratory motor output (19), we believe that this 
parameter is linked to the decreased capacity of the diaphragm 
to generate force and expand the lungs (39). Furthermore, as 
the already weakened respiratory muscles of patients with ALS 
are easily fatigable (14), the results found about the contractile 
properties (CT and MRPD) and dynamics of relaxation (MRR, τ, 
and 1/2RT) of the diaphragm (11, 16) indicates a high respiratory 
muscle load and reinforces the hypothesis that the middle stage 
ALS subjects were presumably at risk of developing respiratory 
muscle fatigue (14, 18, 21, 33, 56).

The ALSFRS-R is a simple and reliable scale that predicts 
survival and can be used as the only functional outcome measure 
in early phase trials (40), while its R-subscore was designed to 
assess indirectly the respiratory function (36) being also sensitive 
in detecting early respiratory symptoms of ventilatory insuf-
ficiency (57–59). Castrillo-Viguera et  al. (41) suggested that 
a percentage change of at least 20–25% in the slope of decline 
of the ALSFRS-R scale would represent a clinically meaningful 
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TaBle 3 | Receiver operating characteristic analysis between healthy and ALS subjects.

healthy and als

aUc (95% ci) Optimal cutoff (95% ci) sensitivity (%) specificity (%) p

MRR (ms–1) 0.755 (0.645 to 0.845) 0.0073 (0.0068 to 0.0073) 66.67 89.74 <0.0001
MRPD (cmH2O ms–1) 0.916 (0.830 to 0.967) −0.420 (−0.540 to −0.398.5) 74.36 97.44 <0.0001
τ (ms) 0.874 (0.779 to 0.938) 66 (53.7 to 79.8) 74.36 89.74 <0.0001
1/2 RT (ms) 0.743 (0.631 to 0.835) 154 (120.9 to 164) 71.79 71.79 <0.0001
CT (ms) 0.795 (0.688 to 0.878) 215 (202 to 262) 69.23 82.05 <0.0001
SNIP (%pred) 0.936 (0.856 to 0.979) 81.5 (73.7 to 81.5) 92.31 84.62 <0.0001
FVC (%pred) 0.911 (0.825 to 0.964) 81.1 (67.9 to 83.7) 79.49 97.44 <0.0001

AUC, area under curve; CI, confidence interval; MRR, maximum relaxation rate; MRPD, maximum rate of pressure development; τ, tau; 1/2RT, half-relaxation time; CT, contraction 
time; SNIP, sniff nasal inspiratory pressure; FVC, forced vital capacity; ES, effect size; %pred, percentage of predicted; cmH2O, centimeter of water; ALS, amyotrophic lateral 
sclerosis.

TaBle 5 | Receiver operating characteristic analysis between ALS subjects classified according to a decrease in the respiratory subscore (R-subscore) of the 
ALSFRS-R scale.

als—r-subscore

aUc (95% ci) Optimal cutoff (95% ci) sensitivity (%) specificity (%) p

MRR (ms–1) 0.654 (0.485 to 0.799) 0.0065 (0.0053 to 0.0086) 64.29 72 0.130
MRPD (cmH2O ·ms–1) 0.721 (0.555 to 0.853) −0.300 (−0.500 to −0.288) 71.43 72 0.01
τ (ms) 0.824 (0.669 to 0.927) 89.1 (70.1 to 168) 85.71 72 <0.0001
1/2 RT (ms) 0.720 (0.553 to 0.852) 160 (158 to 256) 92.86 52 0.01
CT (ms) 0.657 (0.488 to 0.801) 232 (199 to 280) 78.57 64 0.08
SNIP (%pred) 0.614 (0.445 to 0.765) 67 (60 to 67) 100 32 0.216
FVC (%pred) 0.700 (0.532 to 0.836) 67.5 (63.7 to 106) 85.71 52 0.03

AUC, area under curve; CI, confidence interval; MRR, maximum relaxation rate, MRPD, maximum rate of pressure development; τ, tau; 1/2RT, half-relaxation time; CT, contraction 
time; SNIP, sniff nasal inspiratory pressure; FVC, forced vital capacity; ES, effect size; %pred, percentage of predicted; cmH2O, centimeter of water; ALS, amyotrophic lateral 
sclerosis.

TaBle 4 | Receiver operating characteristic analysis between ALS subjects classified according to a decrease in the ALSFRS-R scale score.

als—alsFrs-r

aUc (95% ci) Optimal cutoff (95% ci) sensitivity (%) specificity (%) p

MRR (ms–1) 0.533 (0.366 to 0.694) 0.0053 (0.0031 to 0.0073) 30.77 100 0.779
MRPD (cmH2O·ms–1) 0.735 (0.570 to 0.863) −0.300 (−0.535.7 to −0.232.1) 76.92 73.98 <0.001
τ (ms) 0.655 (0.486 to 0.800) 89.08 (48.5 to 147.6) 69.23 61.24 0.094
1/2 RT (ms) 0.506 (0.341 to 0.669) 160 (106 to 206) 76.92 42.31 0.853
CT (ms) 0.648 (0.479 to 0.794) 250 (198 to 282) 76.92 65.38 0.118
SNIP (%pred) 0.618 (0.449 to 0.769) 46.33 (17.4 to 67.0) 76.92 53.85 0.194
FVC (%pred) 0.749 (0.584 to 0.873) 41.7 (35.3 to 106.3) 53.85 92.31 0.009

ALSFRS-R, amyotrophic lateral sclerosis functional rating scale-revised; AUC, area under curve; CI, confidence interval; MRR, maximum relaxation rate, MRPD, maximum rate of 
pressure development; τ, tau; 1/2RT, half-relaxation time; CT, contraction time; SNIP, sniff nasal inspiratory pressure; FVC, forced vital capacity; ES, effect size; %pred, percentage of 
predicted; cmH2O, centimeter of water; ALS, amyotrophic lateral sclerosis.
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TaBle 6 | Receiver operating characteristic analysis between ALS subjects classified according to a decrease in FVC.

als—FVc%pred

aUc (95% ci) Optimal cutoff (95% ci) sensitivity (%) specificity (%) p

MRR (ms–1) 0.572 (0.485 to 0.799) 0.0086 (0.0053 to 0.0086) 95.83 26.67 0.467
MRPD (cmH2O·ms–1) 0.781 (0.555 to 0.853) −0.460 (−0.500 to −0.288) 95.83 53.33 <0.001
τ (ms) 0.794 (0.669 to 0.927) 73.1 (70.1 to 168) 79.17 73.33 0.0001
1/2 RT (ms) 0.632 (0.553 to 0.852) 174 (158 to 256) 62.50 73.33 0.162
CT (ms) 0.536 (0.488 to 0.801) 304 (199 to 280) 100 13.33 0.713
SNIP (%pred) 0.769 (0.445 to 0.765) 46.7 (60 to 67) 79.17 73.33 0.002

AUC, area under curve; CI, confidence interval; MRR, maximum relaxation rate, MRPD, maximum rate of pressure development; τ, tau; 1/2RT, half-relaxation time; CT, contraction 
time; SNIP, sniff nasal inspiratory pressure; FVC, forced vital capacity; ES, effect size; %pred, percentage of predicted; cmH2O, centimeter of water; ALS, amyotrophic lateral 
sclerosis.
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effect. Because of this, we chose to subdivide the ALS subjects 
into those with ALSFRS-R of ≤30 and >30 points (decline of 15 
points—37.5%) and with the R-subscore of ≤9 and >9 points 
(decline of 3 points—25%). Moreover, as changes in FVC%pred over 
time strongly predicts respiratory muscle weakness, ventilatory 
failure and death in ALS (2, 38, 39), subjects were also subdivided 
into ≤70 and >70% FVC%pred subgroups.

The value of the FVC%pred was the only parameter that dif-
fered between middle stage ALS subjects of both ALSFRS-R 
and R-subscore subgroups, possibly because the decrease of 
this parameter is not related only to respiratory musculature 
function (36, 60). On the other hand, when subdividing accord-
ing to the R-subscore, 1/2RT, and τ values were significantly 
different between middle stage ALS subjects which demonstrate 
that these diaphragmatic properties (32, 61) are probably 
related to the respiratory function assessed by this subdomain. 
Presumably, the most interesting fact is that SNIP%pred, a 
parameter that reflects the diaphragmatic strength and predicts 
survival in ALS (62), only differ between those middle stage 
ALS subjects classified according to the decline in FVC%pred. 
Although data were collected in a single point of the disease 
stage, it is known that the peak pressure of sniff test declines 
less when compared to the decline in ALSFRS-R (8) leading 
us to consider that SNIP%pred is not a parameter that is sensitive 
to small changes in the ALSFRS-R and R-subscore. Regarding 
MRPD and τ, the results were not surprising since the first is 
related to respiratory muscle function (11) as well as related to 
neural adaptations (19, 20, 63) and the second increases well 
before diaphragmatic pressure is reduced during respiratory 
muscle weakness or fatigue (17, 34).

The results of the ROC curves show that all parameters 
extracted from the sniff curve can highly discriminate middle 
stage ALS from healthy subjects. When taking into account the 
functional decline of ALS subjects, only MRPD and FVC%pred 
could predict a fall in 37.5% of the ALSFRS-R score. Among 
all parameters, τ provides the highest discriminative power in 
predicting a decline of 25% in the R-subscore. This power was 
even higher than FVC%pred, possibly because the R-subscore is 

less sensitive in predicting a fall in FVC%pred (57). Moreover, as 
ALS patients with R-subscore <11 points are considered with 
relevant symptoms of respiratory distress as well as at risk of 
respiratory insufficiency (57, 58) and peak pressure of sniff test 
could not detect a fall in the ALSFRS-R and R-subscore, we 
believe that the SNIP%pred might not be a parameter as reliable as 
some parameters extracted from the SNIP curve (i.e., τ, MRPD, 
and 1/2RT) or FVC%pred in detecting a clinically meaningful 
decline in functional and respiratory status. The SNIP%pred was 
reliable in detecting respiratory muscle weakness (39, 60) in our 
middle stage ALS subjects only when considering the FVC%pred 
classification; nevertheless, MRPD and τ parameters were still 
more sensitive than SNIP%pred.

It is unlikely that the results found are investigator related 
since all measurements were performed by the same experi-
enced respiratory physiotherapist. We believe that four are 
the main limitations of the study. First, even with a calculated 
statistical power of 1 − β = 0.99, our ALS cohort may be limited 
in terms of sample size; second, the mean age of ALS included 
is lower than those of the main epidemiological studies (64, 65);  
third, we included only ALS patients at middle stage of the 
disease; and fourth, not all subjects could be paired by the same 
exact age and BMI. Further studies including patients with 
other motor neuron disorders are needed. Finally, ongoing 
longitudinal studies are already investigating these parameters 
during varying levels of disease progression in order to identify 
differences between patients with and without the need for 
non-invasive ventilation as well as the optimal parameter and 
its cutoff point able to predict an appropriate timing for the 
initiation of non-invasive ventilation.

In terms of clinical applicability, the calculation of the 
SNIP curve parameters can be easily performed and give more 
information about the state of the respiratory muscles, thus 
possibly allowing an early detection of weakness or fatigue 
before respiratory failure is reached (35, 53) as well as early 
implementation of new therapeutic interventions before  
the beginning of the peak pressure decay of the SNIP curve 
(17, 31, 51).

FigUre 3 | Receiver operating characteristic curves of sniff nasal inspiratory pressure (SNIP) parameters that showed to be statistically significant in middle stage 
ALS subjects according to a decline in the percentage of predicted forced vital capacity (FVC) and in the ALSFRS-R score and R-subscore.
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cOnclUsiOn

The contractile properties and relaxation rates of the diaphragm 
are altered in middle stage spinal onset ALS when compared with 
healthy subjects. When assessed through the nasal inspiratory 
sniff test, these parameters are able to discriminate between those 
ALS subjects with early decline in inspiratory muscle function 
and those who not. In addition, despite the limitations of our 
cohort and especially the lack of longitudinal data, we suggest 
that τ, MRPD, and 1/2RT parameters may be able to predict ALS 
patients at risk of ventilatory failure before the beginning of the 
fall in peak pressure of sniff test.
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