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Abstract

This paper proposes a compositional modeling framework for the optimal en-

ergy management of a district network. The focus is on cooling of buildings,

which can possibly share resources to the purpose of reducing maintenance costs

and using devices at their maximal efficiency. Components of the network are

described in terms of energy fluxes and combined via energy balance equations.

Disturbances are accounted for as well, through their contribution in terms of

energy. Different district configurations can be built, and the dimension and

complexity of the resulting model will depend both on the number and type

of components and on the adopted disturbance description. Control inputs are

available to efficiently operate and coordinate the district components, thus en-

abling energy management strategies to minimize the electrical energy costs or

track some consumption profile agreed with the main grid operator.
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1. Introduction

Building energy management, and temperature regulation in particular, has

recently attracted the attention of various researchers (see, e.g., [1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 11, 12, 13]). Indeed, energy consumption in buildings represents

approximately 40% of the worldwide energy demand, and more than half of5

this amount is spent for Heating, Ventilation and Air Conditioning (HVAC)

systems [14, 15, 16]. Energy management can be performed at the level of a

single building, e.g., using energy storages to shift in time the thermal energy

request so as to minimize the cost of electricity. As buildings started sharing

equipments at the benefit of shared operating costs, increased flexibility, and10

overall performance improvement, energy management needs to be performed

at the district network level, which calls for appropriate modeling and high-level

control strategies. Constructing models of interconnected systems is generally

demanding, and here we propose a modular framework that simplifies this task

and is also suitable for the application of different control design approaches.15

The proposed modeling approach is oriented to energy management and

compositional in that components are described in terms of thermal/electrical

energy fluxes and interact by exchanging energy, which makes it easier to com-

pose a district network configuration via energy balance equations. Our mod-

eling framework is built with a control-oriented perspective. It includes dis-20

turbances like, e.g., solar radiation, outside temperature, occupancy, and wind

power production, as well as control inputs like, e.g., buildings temperature set-

points, charge/discharge commands for energy storages, activation/deactivation

of devices, that can be appropriately set so as to optimize performance at the

district level.25

Complexity and size of the model associated with a district configuration de-

pend on number of components and type of description adopted per component.

The model can be either deterministic or stochastic depending on the distur-

bance characterization as a deterministic or stochastic process, respectively. It

can range from a low dimensional deterministic system with continuous input30
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and state that is convex in the control input, to a large dimensional Stochastic

Hybrid System (SHS) [17] with discrete and continuous input and state.

Given a certain configuration, one can then formulate energy management

problems like: i) the minimization of the cost of the electrical energy requested to

the main grid, or ii) the tracking of some given electrical energy exchange profile35

that was agreed with the main grid operator according to a demand-response

strategy. In the latter case, the district network can be viewed as a user that

actively participates to the electrical energy demand/generation balance of the

overall grid, and, hence, to its stabilization.

Other contributions in the literature address energy management problems40

but with a different approach. In [18], the focus is on simulation so that the

model dependence on the control input is not a concern. In [19], the aim is

the design of an energy management strategy via a simulation-based approach.

The modeling effort is limited in this case, and the idea is to take an accurate

model in the literature and run simulations to the purpose of policy design,45

with no concern of making explicit the dependence on the input and formally

proving optimality. The approach in [20] is the closest to our approach, in that

it addresses energy management problems for a microgrid that is built based on

models of single components, combined via energy balance equations. Models

are however simplified, in particular that of the building. Also, occupancy is50

not accounted for explicitly. A specific strategy for energy management is con-

sidered, whereas our framework is more comprehensive since it allows for the

design of different strategies (certainty equivalence based, robust, stochastic)

for the minimization of suitably defined (nominal, min-max, average) cost in

presence of (nominal, robust, probabilistic) constraints on comfort and actua-55

tion. Depending on the network communication and computation capabilities

and on privacy issues, like in the case of buildings not willing to disclose their

consumption profile, a centralized, decentralized, or distributed optimization

scheme can be conceived and implemented. Overall, our work is more general

and it actually subsumes the approach in [20].60

It is worth noticing that other modeling frameworks have been developed
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in the literature [6, 21, 22]. However, the obtained models are typically more

complex since they are based on partial differential equations, and require nu-

merical optimization tools for solving the resulting nonlinear optimization prob-

lems [22, 23, 24, 25].65

This paper is based on our earlier work in [26, 27], which is extended in sev-

eral directions. We provide a more detailed description of the district compo-

nents, including a validation with respect to other commercial simulation tools

of the building thermal model according to a norm defined by the American

Society for Heating Refrigerating and Air-conditioning Engineers (ASHRAE).70

We show how to compose a network configuration and formulate an energy

management problem as an optimization program. We show a simulation study

of some results achieved in the case where nominal disturbances are present

and computations are performed by a central unit. The example was chosen

to be simple but realistic enough to highlight the capabilities of the proposed75

framework. Many more examples could be presented with reference to different

set-ups in terms of either district network configuration or energy management

problem formulation (see the extended version [28] of our paper). Distributed

energy management strategies could be adopted for easing computations and

preserving privacy of information, as suggested in [29]. The stochastic nature of80

disturbances could be accounted for via a randomized approach as in [30], which

however refers to a single building configuration. Stochastic periodic control so-

lutions, [31], could be implemented as well. Finally, we suggest a multirate

approach (the district network model has a higher sampling rate than the con-

troller) as a viable solution for allowing real-time computation of the control85

input, while retaining model accuracy.

The reminder of the paper is structured as follows. Section 2 presents the

models of the district network components, and Section 3 shows how they can

be connected to set up a network, while defining objective and constraints of the

optimal energy management problem. Section 4 describes a numerical exam-90

ple. Section 5 shows how to deal with computational complexity, discussing a

multirate approach, while Section 6 concludes the paper. Finally, Appendix A
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describes the procedure adopted for validating the model of the building.

2. District network components

We consider a district network connected to the main grid that will pro-95

vide the electrical energy needed to compensate for possible imbalance between

demand and generation within the district. We model the evolution of the net-

work over a finite time horizon [ti, tf ], which is divided into M time slots of

duration ∆. The contribution in terms of energy requested/provided by the dif-

ferent components per time slot along the discretized control horizon is provided.100

Components can consume (e.g., buildings), provide (e.g., renewable power gen-

erators), store (e.g. thermal storages and batteries), or convert energy (e.g., the

chiller plants), and are combined via energy balance equations so as to build the

overall model of the district. Each component may be affected by some inputs

which can be either disturbances or control inputs. In the case when control105

inputs are available, a suitable strategy can be conceived to set them so as to

efficiently manage the system along the time horizon [ti, tf ].

In the rest of this section, we provide a model for the following components:

building, chiller, storage, combined heat and power unit, and wind turbine. Mod-

els are either derived from first principles or taken from the literature. In the110

latter case, appropriate references are provided. Tables 1–4 summarize the main

characteristics of the first 4 components. The last component provides an input

to the network in terms of wind energy. Similarly to the wind energy contribu-

tion, one could consider the solar energy contribution provided by photovoltaic

panel installations. Models partly derived from first principle and partly taken115

from the literature could be used to this purpose. This is not treated here, but

the interested reader can refer to, e.g., [32]. Further components could also be

added to the district network. The key idea when introducing our compositional

framework is that if a component can be modeled in terms of energy, possibly

depending on some control input and/or disturbance signal, then, it can be eas-120

ily included in the network. When the dependence of the energy on the control
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input is convex, piecewise linear, or linear with additional binary variables, the

problem of designing an energy management strategy can be reduced to a mixed

integer linear or a convex optimization program for which efficient solvers exist.

2.1. Building125

We consider a building as composed of nz thermal zones, where each zone is

characterized by its own (average) temperature Tz,j , j = 1, . . . , nz. The zones

temperatures can be collected in a vector Tz = [Tz,1 · · ·Tz,nz
]⊤ and we next

determine the amount of cooling energyEc needed for making them track a given

profile. We say that the building is controllable if a control layer is present to this130

purpose. Suitable constraints will be imposed on the assigned profile to make

the resulting tracking problem feasible while guaranteeing comfort conditions

at the same time.

The cooling energy Ec,j requested by zone j can be derived based on the

thermal energy balance within the zone, accounting for both thermal effects re-

lated to its structure and thermal phenomena related to occupancy, equipment,

lights, etc, and solar radiation through windows. More precisely, we have

Ec,j = Ew,j + Ez,j + Ep,j + Eint,j, (1)

where Ew,j is the amount of energy exchanged between zone j and its adjacent

walls, Ez,j is the contribution of the thermal inertia of zone j, and Ep,j and135

Eint,j is the heat produced by people and other heat sources within zone j,

respectively.

The thermal model of the building is derived from first principles, following

[33, 34].

2.1.1. Walls contribution140

For modeling the walls contribution we use a one-dimensional finite volumes

model. Each wall is divided into vertical layers (‘slices’) that may differ in

width and material composition. The area of each slice coincides with the wall

area and each slice is assumed to have uniform density and temperature. The
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one-dimensional discretization is sensible since the heat flow is perpendicular145

to the crossed surface. Each internal slice exchanges heat only with nearby

slices through conduction, whilst boundary slices are exposed towards either a

zone or the outside of the building and exchange heat also via convection and

thermal radiation. External surfaces are assumed to be gray and opaque, with

equal absorbance and emissivity and with zero transmittance. Absorbance and150

emissivity are wavelength-dependent quantities, and here we shall consider two

different values for shortwave and longwave radiation. We further assume no

heat exchange via conduction or convection among adjacent walls.

The heat transfer balance equation for the i-th slice of the w-th wall is given

by:

Ṫw,i =
1

Cw,i

[

(ki−1w,i + hi−1w,i )Tw,i−1 + (ki+1
w,i + hi+1

w,i )Tw,i+1

− (ki−1w,i + hi−1w,i + ki+1
w,i + hi+1

w,i )Tw,i +Qg,w,i +Rw,i

]

, (2)

where Tw,i denotes the temperature of the wall slice, Cw,i being its thermal

capacity per unit area, and kjw,i and h
j
w,i, with j = i±1, representing respectively

the conductive and convective heat transfer coefficients between the ith and the

jth slice of the same wall w. Qg,w,i is the thermal power generation inside slice

i and Rw,i represents radiative heat exchanges and is defined as

Rw,i =



































0 1 < i < m

αS
wQ

S + αL
wQ

L − εw,iQr(Tw,i) slice i facing outside
∑

w′=1,...,nw

j∈{1,M}

F(w,i)→(w′,j) (εw′,jQr(Tw′,j)− εw,iQr(Tw,i)) slice i facing inside

where QS and QL denote the incoming shortwave and longwave radiation power

per unit area, respectively, and αS
w and αL

w are the corresponding absorbance155

rates for wall w. Qr(Tw,i) is the emitted radiation as a function of the slice

temperature, εw,i < 1 being the emissivity and F(w,i)→(w′,j) the view factor

that takes into account the fraction of radiation leaving slice i of wall w and

reaching slice j of wall w′. Finally, nw denotes the total number of walls.
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Equation (2) holds for every slice in every wall w. If the wall is composed of

m slices, we havem equations like (2) with i = 1, 2, . . . ,m. When the superscript

in the right-hand side of equation (2) takes value 0 orm+1, reference is made to

either a zone of the building (internal surface of the wall) or the outside of the

building (external surface of the wall or ground). Note that k0w,1 = km+1
w,m = 0

as there is no thermal conduction on walls boundary surfaces, hi−1w,i = 0 for

i > 1, hi+1
w,i = 0 for i < m, and εw,i = 0 for 1 < i < m, since there is no thermal

convection nor radiation between adjacent slices. As for the slice in contact with

the ground, we assume that the energy exchange occurs via thermal conduction

only (no convection nor radiation), where the ground is considered as a thermal

reservoir, and, as such, it maintains a constant temperature. Since we assume

that each wall is a gray body, the power Qr(Tw,i) radiated from each slice is

governed by Qr(Tw,i) = σT 4
w,i, where σ is the Stefan-Boltzmann constant. This

expression is approximately linear around the slice mean operating temperature

Tw,i so that it can be replaced by

Qr(Tw,i) = 4σT
3

w,iTw,i − 3σT
4

w,i. (3)

Then, the evolution of the temperatures Tw = [Tw,1 · · ·Tw,m]⊤ of the m slices

composing wall w can be described in matrix form by

Ṫw = AwTw +BwTz +Wwd, (4)

where we recall that Tz is the vector containing the temperatures of the nz160

zones. Vector d = [Tout Tgnd Q
S QL 1]⊤ is the disturbance input and collects

the outdoor temperature Tout, the ground temperature Tgnd, and the incoming

shortwave QS and longwave QL radiations. The constant 1 in d is introduced

to account for the constant term in (3). Finally, Aw, Bw and Ww are suitably

defined matrices that are easily derived based on the scalar equation (2), whose165

coefficients depend on the wall characteristics.

Equation (4) refers to a single wall. If there are nw walls in the building,

then, we can collect all walls temperatures in vector T = [T⊤

1
· · ·T⊤

nw

]⊤, and
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write the following equation for the evolution in time of T :

Ṫ = AT +BTz +Wd, (5)

whereA is a block-diagonal matrix withAw as w-th block,B = [B⊤

1
· · · B⊤

nw

]⊤170

and W = [W⊤

1
· · · W⊤

nw

]⊤.

If we consider zone j and one of its adjacent wall w, then the thermal power

transferred from wall w to zone j is given by

Qw→j = Swh
b′

w,b(Tw,b − Tz,j), (6)

where Sw is the wall surface and the pair (b, b′) can be either (1, 0) or (m,m+1)

according to the notation introduced for (2). The total amount of thermal

power transferred from the building walls to zone j can be expressed as Qb,j =
∑

w∈Wj
Qw→j, where Wj is the set of walls w adjacent to zone j. Defining175

Q = [Qb,1 · · ·Qb,nz
]⊤, we obtain

Q = CT +DTz, (7)

where C and D are suitably defined matrices derived based on equation (6).

From (5) and (7), we finally get











Ṫ = AT +BTz +Wd

Q = CT +DTz

(8)

Remark 1. The obtained model, though linear, can be quite large. However,

its order can be greatly reduced by applying the model reduction algorithm based180

on Hankel Single Value Decomposition (HSVD), as suggested in [33]. �

The zone temperature profile to track Tz is taken as a linear function of time

within each time slot of length ∆, defined by the values u(k) = T z(k∆) at the

time steps k = 0, 1, . . . ,M . By approximating the input d as a piecewise linear

function of time as well, with values ω(k) = d(k∆) at k = 0, 1, . . . ,M , an exact185

discrete time version of the linear model (8) can be derived (see Appendix B in
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the extended version [28] of this paper). The evolution of y(k) = Q(k∆) over

the finite time horizon can then be computed as

y = [y⊤(0) · · · y⊤(M)]⊤ = FT (0) +Gu+Hω (9)

where we set u = [u⊤(0) · · ·u⊤(M)]⊤ and ω = [ω⊤(0) · · ·ω⊤(M)]⊤, and F , G

and H are suitably defined matrices.190

The thermal energy Ew(k) = [Ew,1(k) · · ·Ew,nz
(k)]⊤ transferred from the

walls to all zones can be computed by integrating Q(t) on each time slot, which

leads to the following approximate expression:

Ew(k) =
∆

2
(y(k − 1) + y(k)), k = 1, . . . ,M. (10)

Finally, from (9) and (10) we can derive the enlarged energy vector Ew =

[E⊤w (1) · · ·E⊤w (M)]⊤:195

Ew = F̃T (0) + G̃u+ H̃ω, (11)

where F̃ , G̃, and H̃ are obtained from matrices F , G, and H in (9) via (10).

2.1.2. Zones energy contribution

In order to decrease the temperature of zone j in the time frame from (k−1)∆

to k∆, we need to draw energy from the zone itself. This energy contribution

can be expressed as200

Ez,j(k) = −Cz,j(Tz,j(k∆)− Tz,j((k − 1)∆)), (12)

where Cz,j is the heat capacity of the j-th zone. If we account for all nz zones,

and all M time frames within the finite horizon [ti, tf ], equation (12) can be

written in the following matrix form

Ez = Zu, (13)

where we set Ez = [E⊤z (1) · · ·E⊤z (M)]⊤ with Ez(k) = [Ez,1(k) · · ·Ez,nz
(k)]⊤,

and Z is a suitably defined matrix.205
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2.1.3. People energy contribution

Occupancy implies heat production, which in crowded places can be actually

significant [5]. According to an empirical model in [35], the heat rate Qp,j

produced by the np,j occupants of a zone j at temperature Tz,j is given by

Qp,j = np,j(p2T
2
z,j + p1Tz,j + p0), (14)

where p2 = −0.22W/K2, p1 = 125.12W/K and p0 = −1.7685 · 104W. Expres-

sion (14) is almost linear in a sensible operating temperature range and can thus

be accurately approximated by linearization around some comfort temperature

T z,j :

Qp,j = np,j

(

(2p2T z,j + p1)(Tz,j − T z,j) + p2T
2

z,j + p1T z,j + p0

)

= np,j

(

p̃1Tz,j + p̃0

)

. (15)

Recall now that the zone temperature profile Tz,j to track is assumed to be

linear in time. If we approximate the occupancy np,j as a linear function of

time within each time slot as well, as suggested in [7], then equation (15) can

be analytically integrated from (k− 1)∆ to k∆ to obtain the energy transferred

to zone j in the k-th time slot:

Ep,j(k) = q2,k(np,j)Tz,j(k∆) + q1,k(np,j)Tz,j((k − 1)∆) + q0,k(np,j)

where we set210

q2,k(np,j) =
p̃1∆

6
(2np,j (k∆) + np,j ((k − 1)∆))

q1,k(np,j) =
p̃1∆

6
(np,j (k∆) + 2np,j ((k − 1)∆))

q0,k(np,j) =
p̃0∆

2
(np,j (k∆) + np,j ((k − 1)∆))

(16)

The total amount of energy transferred to all zones in each time slot can

be packed in a vector Ep(k) = [Ep,1(k) · · ·Ep,nz
(k)]⊤ and then, defining Ep =

[E⊤p (1) · · ·E⊤p (M)]⊤ and np = [np,1(0)np,1(∆) · · ·np,1(M∆) · · ·np,nz
(0)np,nz

(∆)

· · ·np,nz
(M∆)], one can write that

Ep = N(np)u+ e(np), (17)
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where N(np) and e(np) depend on the coefficients (16).215

Note that occupancy profiles can be either obtained from data or derived

from a stochastic model, like, e.g., the one in [36] which is based on Poisson

arrival/departure processes [37].

Further energy contributions of the building occupants, in terms for instance

of blinds movement and set-point override, are not modeled here, but can be eas-220

ily added as external disturbances. Recent works on human-building interaction

discuss the impact of human intervention on energy management strategies. The

interested reader is referred to [38], where a possible strategy to limit human

intervention is proposed, and to [39], where a model predictive control solu-

tion is suggested for timely adjusting the control action to unpredicted human225

disturbances.

2.1.4. Other internal energy contributions

There are many other types of heat sources that may affect the internal

energy of a building, e.g., lighting, daylight radiation through windows, electrical

equipment, etc. The overall heat flow rate produced within zone j can be230

expressed as the sum of three contributions, namely

Qint,j = αjQ
S + λj + κjIR+(np,j), (18)

where αj is a coefficient that takes into account the mean absorbance coefficient

of zone j, the transmittance coefficients of the windows and their areas, sun

view and shading factors, and radiation incidence angle. IR+(·) denote the

indicator function on the positive real values. The thermal energy contribution

to zone j due to internal lighting and electrical equipment is composed of two

contribution: a constant term λj , and an additional therm κj that represents

the change in internal lighting and electrical equipment when people are present.

Note that Qint,j does not depend on QL because windows are usually shielded
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against longwave radiation. The energy Eint,j(k) during the kth slot is given by:

Eint,j(k) =
∆

2

[

QS(k∆) +QS((k − 1)∆)
]

+∆λj

+
∆

2
κj [IR+ (np,j (k∆)) + IR+ (np,j ((k − 1)∆))]

and is obtained by (18), where the first (linear) and second (constant) terms have

been analytically integrated, whereas the third term has been treated separately,

due to the presence of the indicator function. In the cases when occupancy drops

to zero or becomes nonzero in a time slot, the energy contribution is set to a235

half of the contribution in the case when occupancy is nonzero at the beginning

and at the end of the time slot. We can collect the thermal energy of the

zones in a single vector Eint(k) = [Eint,1(k) · · ·Eint,nz
(k)]⊤, and then define

Eint = [E⊤int(1) · · ·E
⊤
int(M)]⊤, which is finally given by:

Eint =Mω + L(np). (19)

2.1.5. Overall building cooling energy request240

Now we can finally compute the cooling energy demand of all zones in the

building for tracking the piecewise linear zone temperature profiles Tz specified

via the input u at the discrete time instants k = 0, 1, . . . ,M within the time

horizon [ti, tf ]. Specifically, from (1) it follows that Ec = [E⊤c (1) · · ·E⊤c (M)]⊤

with E⊤c (k) = [Ec,1(k) · · ·Ec,nz
(k)]⊤ is the sum of four contributions:

Ec = Ew +Ez +Ep +Eint,

where Ew is given in (11), Ez in (13), Ep in (17), and Eint in (19). This leads

to the following expression for the cooling energy demand:

Ec = F̃T (0) + (G̃+ Z +N(np))u + (H̃ +M)ω + e(np) + L(np)

= AcT (0) +Bc(np)u+Wcω + b(np)

where Ac, and Wc are constant matrices, whereas Bc(np) and b(np) depend

on the occupancy. Note that the input u defining the zone temperature profiles

enters affinely the system dynamics if the occupancy np were fixed.
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2.1.6. Building block: interfaces and related constraints

The thermal model of the building can be considered as a block with the245

following input/output interfaces: the control input vector u specifying the

piecewise linear zone temperature profiles Tz at the discrete time instants k =

0, 1, . . . ,M , and disturbance input vectors np and ω representing the occupancy

and the collection of outdoor temperature Tout and incoming shortwave QS and

longwave QL radiations, respectively; and the output vector Ec of the cooling250

energy demand requested by the zones in the building to track Tz.

Notice that the cooling energy demand cannot be negative since the chiller

can provide cooling energy only. Furthermore, a profile where the zone tempera-

ture is required to decrease with a steep slope cannot be tracked due to actuation

limits. This can be formulated as a constraint on the maximum amount of en-

ergy Emax
c,j that can be requested by a zone j per time slot (from which the upper

bounding vector Emax

c of the same size of Ec can be derived), and, possibly, a

maximum amount Emax
c,b that can be requested by the building during the whole

time horizon. This maps into the following actuation constraints:

0 ≤ Ec ≤ Emax

c , 1⊤Ec ≤ Emax
c,b , (20)

where 1 denotes a column vector with all elements equal to 1 so that 1⊤Ec is

the total cooling energy requested by the building. Note that when a vector is

compared with a scalar like in (20), it means that each component of the vector

is compared with that same scalar.255

Table 1 summarizes the relevant quantities related to the building model.

The type attribute is introduced to denote possible different models that can

be used, which eventually has some impact on the energy management problem

formulation. Type A is the controllable building model where the zone temper-

ature profiles can be optimized via the control input u, whereas Type B is the260

uncontrollable building model where the zone temperature profiles cannot be

chosen but are already specified via some given u vector. In a network configu-

ration, it is possible to include both controllable and uncontrollable buildings.

Comfort and cooling energy bounds can then be enforced only in the case of
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Model type

A B
M

o
d
e
l

Ec = AcT (0) +Bc(np)u+Wcω + b(np) Linear in the control input X –

Ec = AcT (0) +Bc(np)u+Wcω + b(np) Uncontrollable – X

V
a
r
ia
b
le
s

u ∈ R
nzM Control input X –

ω ∈ R
4M Disturbance input X X

np ∈ R
nzM Disturbance input X X

Ec ∈ R
nz Output X X

C
o
n
s
t
r
.

0 ≤ Ec ≤ Emax

c
Actuation

X –

1⊤Ec ≤ Emax
c,b X –

Table 1: Summary of main characteristics of the building thermal model.

Type A model, which contributes to the network description with equations265

and inequalities that are linear in the control input. As for Type B, they are

assumed to be satisfied for u, or not relevant.

2.2. Chiller plant

A chiller plant is a device that reduces the temperature of a liquid, typically

water, via vapor compression or absorption cycle. In our framework we consider270

compression chillers, which convert the electric power provided by the electrical

grid into cooling power, which is then conveyed to either some cooling load or

some thermal storage via the chilled water circuit.

Chillers can be modeled through the equation

Ech,ℓ =
a1ToTcw∆+ a2(To − Tcw)∆ + a4ToEch,c

Tcw − a3

∆Ech,c

−Ech,c, E
min
ch,c ≤ Ech,c ≤ Emax

ch,c ,

(21)

where Ech,ℓ is the electrical energy absorbed by the chiller in order to provide

the cooling energy Ech,c in a time slot of duration ∆, and Emin
ch,c and E

max
ch,c are the

corresponding minimum and maximum cooling energy production. Note that

Ech,ℓ depends also on the outdoor temperature To and the temperature of the

cooling water Tcw. The latter being typically regulated by a low level controller

so as to maintain it almost constant at some prescribed optimal operational

value. The chiller description (21) is derived from the original Ng-Gordon model
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Figure 1: COP curves for chillers of different size (solid lines), with their respective approxi-

mations: biquadratic (dashed line) and PWA (dotted line) with 10 equally spaced knots.

[40] which is based on entropy and energy balance equations and accounts also

for heat losses and pump contribution to the electric energy consumption (i.e.,

Ech,ℓ > 0 even if Ech,c = 0). For typical values of the coefficients a1, a2, a3,

a4, and To = 22◦C, Tcw = 10◦C, and ∆ = 10 minutes, (21) is convex in Ech,c.

Depending on the actual values of a1, a2, a3, a4, we can have different efficiency

curves as given by the Coefficient Of Performance (COP), which is the ratio

between the produced cooling energy and the corresponding electrical energy

consumption:

COP =
Ech,c

Ech,ℓ

.

Figure 1 shows an example of curves of the COP for three chiller units of different275

size, with their respective approximations presented in the following sections.

We next introduce simpler Ech,c–Ech,ℓ relations, which approximate (21)

while preserving convexity in the control input Ech,c.

2.2.1. Chiller model approximations

A convex biquadratic approximation280

Ech,ℓ = c1(To)E
4
ch,c + c2(To)E

2
ch,c + c3(To), E

min
ch,c ≤ Ech,c ≤ Emax

ch,c , (22)
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Figure 2: Simpler convex approximations of the electrical energy consumption as a function

of the cooling energy request for the medium-size chiller unit.

of the nonlinear Ng-Gordon model (21) can be derived by using weighted least

square to best fit the most relevant points, i.e, those that correspond to zero

energy request and to the maximum COP values.

Another possible convex approximation of (21) is via a PieceWise Affine

(PWA) function given by the following convex envelope of a finite number of285

affine terms

Ech,ℓ = max{mc(To)Ech,c + qc(To)}, E
min
ch,c ≤ Ech,c ≤ Emax

ch,c , (23)

where the coefficients of the affine terms are collected in the two vectors mc(To)

and qc(To), and the max operator is applied among the vector components.

Note that, if Ech,ℓ in expression (23) is to be minimized, then (23) can be easily

translated as a set of linear constraints with an epigraphic reformulation.290

The quality of the biquadratic and PWA approximations is compared in

Figure 2.

2.2.2. On-off switching

As shown in Figure 2, the chiller absorbs some amount of electrical energy

even when no cooling energy is produced. In order to have the possibility of

switching the chiller on and off, one can introduce the binary variable δch(k),

17



k = 1, . . . ,M , that represents the on (δch(k) = 1) and off (δch(k) = 0) logical

status of the chiller within time slot k, k = 1, . . . ,M . The cooling energy request

Ech,c(k) and on-off command δch(k) are related via the logical conditions

δch(k) = 1 ⇔ Emin
ch,c ≤ Ech,c(k) ≤ Emax

ch,c , (24)

δch(k) = 0 ⇔ Ech,c(k) = 0, (25)

where Emin
ch,c and Emax

ch,c are the minimum and maximum values for Ech,c for the

chiller to operate. Using the Conjunctive Normal Form in [41], (24) and (25)295

can be expressed as a mixed integer linear condition:

Emin
ch,cδch(k) ≤ Ech,c(k) ≤ Emax

ch,c δch(k).

Depending on the adopted approximation, we can rewrite the model of the

chiller including the on-off condition as

Ech,ℓ(k) =











(

c1(To(k))Ech,c(k)
4 + c2(To(k))Ech,c(k)

2 + c3(To(k))
)

δch(k)

max{mc(To(k))Ech,c(k) + qc(To(k))}δch(k)

with Emin
ch,c ≤ Ech,c(k) ≤ Emax

ch,c . The PWA formulation is particularly convenient

since the product between an affine functionMx+Q and a discrete variable δ can

be reduced to a mixed integer linear condition [41], by introducing the auxiliary

variable z = δ(Mx + Q) subject to 0 ≤ z ≤ min{Mx + Q + (1 − δ)M, δM},300

where M is an upper bound on Mx+Q.

2.2.3. Chiller block: interfaces and related constraints

The chiller block can be described with a static map between the cooling

energy Ech,c = [Ech,c(1) · · ·Ech,c(M)]
⊤
that it produces and the corresponding

absorbed electrical energy Ech,ℓ = [Ech,ℓ(1) · · ·Ech,ℓ(M)]
⊤
.305

The cooling energy that the chiller can provide is subject to the limitation

Emin
ch,c ≤ Ech,c ≤ Emax

ch,c , which can also be accounted for as a constraint on the

absorbed electrical energy Emin
ch,ℓ ≤ Ech,ℓ ≤ Emax

ch,ℓ .

When the on-off command δch = [δch(1) · · · δch(M)]⊤ is introduced as an

18



Model type

A B C D
M

o
d
e
l

Ech,ℓ = c1E
4
ch,c + c2E

2
ch,c + c3 Biquadratic X – – –

Ech,ℓ = max{mcEch,c + qc} PWA – X – –

Ech,ℓ = (c1E
4
ch,c + c2E

2
ch,c + c3) ∗ δch Biquadratic with on-off – – X –

Ech,ℓ = max{mcEch,c + qc} ∗ δch PWA with on-off – – – X

V
a
r
ia
b
le
s Ech,c ∈ R

M Control input X X X X

δch ∈ {0, 1}M Control input – – X X

Ech,ℓ ∈ R
M Output X X X X

C
o
n
s
t
r
.

Emin
ch,c ≤ Ech,c ≤ Emax

ch,c Cooling energy bounds X X – –

Emin
ch,cδch ≤ Ech,c ≤ Emax

ch,c δch Logical on-off condition – – X X

Table 2: Summary of the main characteristics of the chiller model.

additional control input, the following further constraint enters the chiller model:

Emin
ch,cδch ≤ Ech,c ≤ Emax

ch,c δch.

Table 2 summarizes the relevant quantities of the chiller model, with Type

A, B, C, and D representing possible modeling variants. The max operator is310

applied among the vector components, and the symbol ∗ is the element-wise

multiplication.

2.3. Storage

Thermal Energy Storages (TESs) represent the most effective way, or even

sometimes the only way, to take advantage of renewable energy sources. This315

is indeed the case for thermal solar energy and geothermal energy systems. In

a smart grid context, they can be used as energy buffers for unbinding energy

production from energy consumption. More specifically, in a district cooling

scenario, a TES for cooling energy can shift the request of cooling energy pro-

duction to off-peak hours of electrical energy consumption, thus making chillers320

to operate in high-efficiency conditions, and smoothing peaks of electrical en-

ergy request with benefits both for power production and distribution network

systems, see e.g. [42, 43, 44, 7].

There are many different technical solutions to store thermal energy, the

most widely used are fluid tanks and Phase Changing Materials (PCMs) stor-
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ages. We next focus on fluid tanks modeling, and add a note on how the model

can be extended to PCMs storages in Remark 3. From an energy management

perspective we will use a black box model, derived via system identification

techniques, that uses the energy exchange (added or removed) as input and the

thermal energy stored as output. The simplest model is a first order dynamical

system

S(k) = aS(k − 1)− s(k), (26)

where the state S(k) is the amount of energy stored and s(k) is the cooling

energy exchanged (s(k) > 0 if the storage is discharged, and s(k) < 0 if it is325

charged) during the k-th time slot, while a ∈ (0, 1) models energy losses.

By unrolling the thermal storage dynamics in (26) we can express the cooling

energy stored along the look-ahead discretized time horizon [ti, tf ] in a compact

form as

S = Ξ0S(0) + Ξ1s, (27)

where we set S = [S(1) · · ·S(M)]⊤, s = [s(1) · · · s(M)]⊤, and Ξ0 and Ξ1 are330

suitably defined matrices.

A more sophisticated model can be obtained by introducing dissipation

effects through the efficiency coefficients βC ∈ [0, 1] and βD ∈ [0, 1] for the

charge/discharge dynamics as follows:

S(k) = aS(k − 1)−
(

(1− βC)δC + (1 + βD)δD

)

s(k), (28)

where δC(k) ∈ {0, 1} and δD(k) ∈ {0, 1} indicate the mode in which the storage

is operated: δC(k) = 1 and δD(k) = 0, the storage is charged (s(k) < 0),

δC(k) = 0 and δD(k) = 1 the storage is discharged (s(k) > 0), and δC(k) =

δD(k) = 0 the storage is not used. Notice that δC(k) and δD(k) are mutually

exclusive, which can be coded via the constraint

δD(k) + δC(k) ≤ 1. (29)

It is possible to set minimum and maximum thresholds for the energy exchange
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rate in both the charging and discharging phases by constraining s(k) as follows:

δD(k)smin
D + δC(k)s

max
C ≤ s(k) ≤ δD(k)smax

D + δC(k)s
min
C (30)

with smax
C < smin

C ≤ 0 and 0 ≤ smin
D < smax

D . Note that if δC(k) = δD(k) = 0

(storage not in use), inequalities (30) degenerate to the condition s(k) = 0.

Model (28) is bilinear in the control inputs since δC(k) and δD(k) are mul-

tiplied by s(k). However, we can reduce it to the linear model

S(k + 1) = aS(k)− (1− βC)sC(k)− (1 + βD)sD(k) (31)

by replacing s(k) with the new control variables sC(k) = δC(k)s(k) and sD(k) =

δD(k)s(k). Accordingly, constraint (30) becomes

δC(k)s
max
C ≤ sC(k) ≤ δC(k)s

min
C (32)

δD(k)smin
D ≤ sD(k) ≤ δD(k)smax

D . (33)

The energy exchange s(k) can then be recovered from sC(k) and sD(k) as s(k) =

sC(k) + sD(k).335

Model (28) subject to constraints (29) and (30) is equivalent to model (31)

subject to constraints (29), (32) and (33). This latter model has the advantage

of being linear so that it can be expressed in compact form along the look-ahead

discretized time horizon [ti, tf ] as follows:

S = Ξ0S(0) + ΞCsC + ΞDsD

s = sD + sC ,

where sC = [sC(1) · · · sC(M)]⊤, sD = [sD(1) · · · sD(M)]⊤, and ΞC and ΞD

are suitably defined matrices. Note that those elements of vectors sC and

sD that correspond to a zero charge and discharge command in vectors δC =

[δC(1) · · · δC(M)]⊤ and δD = [δD(1) · · · δD(M)]⊤ are set to zero (see (32) and

(33)). Given that the charge and discharge commands are mutually exclusive,340

we have that δC + δD ≤ 1.

Remark 2 (passive thermal storage). The described thermal storage sys-

tem is active in that it can be directly operated by charge/discharge commands.
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Passive thermal storages are instead physical elements, like the walls of a build-

ing, that can accumulate and release thermal energy but are not directly charged345

or discharged. Even though in principle it is more difficult to take advantage of

passive thermal storages, since there is no direct way to control them, in Sec-

tion 4 we show how an optimal energy management strategy can exploit them.

Remark 3 (electric batteries and PCMs thermal storages). Note that

batteries for electrical energy storage can in principle be modeled in the same350

way [45]. However, charging/discharging efficiencies may depend on the battery

State Of Charge (SOC) and energy losses can be related to the exchanged en-

ergy (exchange efficiency), so that a more complex model has to be specifically

introduced. Also, additional constraints as for example the minimum and maxi-

mum charging time should be added to obtain a feasible operation of the battery.355

PCMs thermal storages can be modeled as electric batteries with the fraction

of liquid in the storage playing the role of the SOC in determining the model

coefficients.

2.3.1. Storage block: interfaces and related constraints

The proposed model for the thermal storage has as control input the energy

exchange s, eventually decomposed into the charge and discharge inputs sC

and sD activated by the mutually exclusive commands δC and δD. The stored

energy S is the output of the model in both cases. Since the storage capacity

is limited and the stored energy is a positive quantity, the following constraints

apply

Smin ≤ S ≤ Smax.

In addition, the amount of energy that can be exchanged per time unit is limited,

and it cannot exceed certain thresholds, i.e., the bounds

smin ≤ s ≤ smax

apply to the energy exchange s, or bounds (32) and (33) apply to the charge360

and discharge inputs sC and sD.
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Model type

A B
M

o
d
e
l S = Ξ0S(0) + Ξ1s Linear X –

S = Ξ0S(0) + ΞDsD + ΞCsC Linear with dissipation effects – X

V
a
r
i
a
b
l
e
s

s ∈ R
M Control input X –

sD ∈ R
M
≥0 Control input – X

sC ∈ R
M
≤0 Control input – X

δD ∈ {0, 1}M Control input – X

δC ∈ {0, 1}M Control input – X

S ∈ R
M Output X X

C
o
n
s
t
r
a
i
n
t
s

smin ≤ s ≤ smax Energy exchange rate bounds X –

δDsD
min ≤ sD ≤ δDsD

max Energy exchange rate bounds (discharge) – X

δCsC
min ≤ sC ≤ δCsC

max Energy exchange rate bounds (charge) – X

δC + δD ≤ 1 Logical constraint – X

Smin ≤ S ≤ Smax Stored energy bounds X X

Table 3: Summary of the main characteristics of the thermal storage model.

Table 3 summarizes the relevant quantities related to the storage model.

The type attribute denotes possible different models for the storage.

2.4. Combined Heat and Power unit: Microturbine

A Combined Heat and Power (CHP) unit is a device that jointly produces365

electricity and heat power while consuming primary energy (fossil fuels or hy-

drogen), with the purpose of reducing the amount of energy wasted in the

environment. In most cases one of these two products is a byproduct. For

example, modern power plants recover waste heat and deliver it for district

heating purposes. CHPs with large capacity are becoming widely used and370

highly performing. At the same time a number of micro-CHP solutions are be-

ing developed, the most promising ones being microturbines and fuel cells that

convert gas or hydrogen into heat and electricity. Combined Cooling, Heat and

Power (CCHP) devices are also available that convert part of the produced heat

into cooling energy using absorption chillers.375

We consider a microturbine modeled through two static characteristics de-
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Figure 3: Characteristic curves of the C30 microturbine.

scribing the electrical power production Pmt,ℓ and the heat production Pmt,h,

both as a function of the fuel volumetric flow rate. Figure 3 represents the

characteristics of the C30 microturbine produced by Capstone company [46].

We can see that both curves are almost linear. The electrical energy Emt,ℓ(k)

and the heat Emt,h(k) produced by this microturbine during the k-th time slot

can then be expressed as affine functions of the fuel volumetric flow rate umt(k),

that is supposed to be constant in each time slot of duration ∆, i.e.,

Emt,ℓ(k) = Pmt,ℓ(k)∆ = mℓumt(k) + qℓ,

Emt,h(k) = Pmt,h(k)∆ = mhumt(k) + qh,

where mℓ, qℓ, mh, and qh are positive coefficients.

If we include the possibility of switching on or off the microturbine, we need

to introduce the binary variable δmt(k), k = 1, . . . ,M , and modify the model

as follows:

Emt,ℓ(k) = δmt(k) (mℓumt(k) + qℓ) ,

Emt,h(k) = δmt(k) (mhumt(k) + qh) .

Note that we do not model the microturbine transient from on to off, as

instead suggested in [47]. Yet, the static model that we adopt is accurate given
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that a sensible choice of ∆ when addressing energy management is typically

larger than the time scale of the microturbine dynamics (of the order of few380

minutes).

2.4.1. CHP block: interfaces and related constraints

The CHP block represents a microturbine and is characterized by two control

inputs that can be set in each time slot: the fuel volumetric flow rate umt and

the on-off status of the microturbine δmt. It provides as outputs the electricity385

Emt,ℓ and the heat Emt,h produced per time slot.

Since the microturbine specifications require a minimum fuel volumetric flow

rate umin
mt for the unit to be operative, we need to include the following logical

conditions:

δmt(k) = 1 ⇔ umin
mt ≤ umt(k) ≤ umax

mt ,

δmt(k) = 0 ⇔ umt(k) = 0,

which can be rewritten as:

δmt(k)u
min
mt ≤ umt(k) ≤ δmt(k)u

max
mt , (34)

where umin
mt and umax

mt are the minimum and maximum flow rate for the microtur-

bine to operate. The product between the affine function and a discrete variable

δ is a nonlinear mixed integer expression that can be reduced to a mixed integer

linear condition [41].390

Constraints related to the CHP include the fuel inlet bounds of umt =

[umt(1) · · ·umt(M)]⊤:

umin
mt ≤ umt ≤ umax

mt

that map into maximum heat and electrical energy that can be produced by the

microturbine:

0 ≤ Emt,h ≤ Emax
mt,h,

0 ≤ Emt,ℓ ≤ Emax
mt,ℓ
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Model type

A B

M
o
d
e
l

Emt,ℓ = mℓumt + qℓ
Linear X –

Emt,h = mhumt + qh

Emt,ℓ = (mℓumt + qℓ) ∗ δmt
Linear with on-off – X

Emt,h = (mhumt + qh) ∗ δmt

V
a
r
ia
b
le
s

umt ∈ R
M Control input X X

δmt ∈ {0, 1}M Control input – X

Emt,ℓ ∈ R
M Output X X

Emt,h ∈ R
M Output X X

C
o
n
s
t
r
.

umin
mt ≤ umt ≤ umax

mt Fuel inlet bounds X –

δmtu
min
mt ≤ umt ≤ δmtu

max
mt Logical on-off – X

Table 4: Summary of the main characteristics of the CHP model.

with Emt,h = [Emt,h(1) · · ·Emt,h(M)]⊤, and Emt,ℓ = [Emt,ℓ(1) · · ·Emt,ℓ(M)]⊤.

A further constraint is given by the logical on-off bounds (34) which can be

expressed over the finite horizon by introducing δmt = [δmt(1) · · · δmt(M)]⊤.

Table 4 summarizes the main characteristics of the CHP model. Type A

and B are the possible variants of the CHP model.395

2.5. Wind turbine

A wind turbine is used to convert the wind kinetic energy into electrical

energy. Four different operational modes are typically defined for a controlled

wind turbine (see Figure 4): Mode 1, when the wind speed value is within the

range from zero up to a given cut-in wind speed vin and there is no power

produced by the wind turbine, which is turned off; Mode 2, below the rated

power Pn, thus called below-rated, where the power captured from the wind is

maximized; Mode 3, above the rated wind speed, thus called above-rated, where

the wind turbine is saturated to the rated power Pn, and as the wind speed

increases above the nominal turbine speed vn, the blade pitch angle is adjusted

so that local angles of attack acting on local airfoil sections become smaller,

and hence the loads become relatively smaller and the power keeps constant;

Mode 4, when the wind speed is above the cut-out wind speed vout, and the
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Figure 4: Characteristic curve of the power production by a wind turbine.

wind turbine is shut down, due to load and fatigue issues. A turbine that is

optimally sized for the site where it is installed is operating most of the time at

the transition point between Mode 2 and Mode 3, also called at-rated [48]. The

power generated by the wind turbine Pwt can then be computed as follows:

Pwt =























0, vwind ≤ vin or vwind ≥ vout

Pm(vwind), vin ≤ vwind ≤ vn

Pn, vn ≤ vwind ≤ vout

(35)

where Pm(vwind) is the maximum power that can be extracted from the wind

kinetic energy when the wind speed is vwind, while Pn is the rated power.

Notice that the wind speed vwind is acting as a disturbance on the turbine.

Therefore, the power produced by the wind turbine as output given the distur-400

bance input vwind is a disturbance as well. To the purpose of the energy manage-

ment of the district network, we consider the static model in Figure 4 (solid line)

for the power produced by the wind turbine as a function of the wind speed.

As for the wind speed prediction, both physical and statistical models, e.g.,

based on Markov chain, have been considered in the literature [49, 50, 51, 52].405

Combining (35) with wind speed prediction models one can determine the en-

ergy contribution of the wind turbine by computing the average power produced

within a time slot, and then multiplying it by the time slot duration ∆. Note
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that the static modeling of the wind turbine is appropriate if the time slot du-

ration ∆ is sufficiently large compared to the involved inertia. In our set-up410

of a district network, small scale wind turbines for roof installation could be

included, compatibly with ∆ of the order of minutes.

3. District network compositional modeling and optimal energy man-

agement

In this section, we show how the components previously introduced can be415

interconnected in order to define a certain district network configuration. We

consider a network of buildings located in a neighborhood and do not model the

distribution network. Since the input/output interfaces of each component have

been described in terms of thermal or electrical energy received or produced,

energy balance equations and energy conversion functions can be adopted to420

combine the network components. For instance, the sum of the cooling energy

requests of the buildings in the network should be equal to the sum of the cooling

energy provided by chillers and taken from/stored in the thermal storages; each

chiller receives as input a cooling energy request and provides as output the

corresponding electrical energy consumption; the sum of the electrical energy425

consumption should be equal to the electrical energy produced by the local

power generators, i.e. the CHP units and the wind turbine, taken from/stored

in the batteries, and provided by the main grid. Depending on the number of

components and the adopted model for each component, the overall model of

the district network has a different size and complexity, the most general one430

being hybrid due to the presence of both continuous and discrete variables, and

stochastic due to the disturbances (e.g., occupancy, outside temperature, solar

radiation, wind velocity) acting on the system, [17].

Figure 5 shows a possible district network configuration and the energy fluxes

among its components and the main grid. The district network may be com-435

posed of multiple buildings that share common resources such as cooling and

heat storages, chillers, CHP units, batteries and renewable energy generators.
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Figure 5: District network configuration. The line style encodes the kind of energy: black

solid, red dotted, and blue dashed for electrical, heating, and cooling energy, respectively.

Different arrowheads are used for energy fluxes that can be controlled (solid triangle) or not

(white triangle).

The three nodes appearing in the figure do not correspond to any physical com-

ponent but are introduced to point out that fluxes associated with the same

kind of energy (electrical, heat, and cooling energy) add up to zero. Some440

energy contributions can be controlled, some others cannot (e.g., renewable en-

ergy production). This is pointed out using different arrowheads in Figure 5.

As for buildings, some of them are controlled in that their energy request can

be modulated to some extent, otherwise the building is uncontrollable.

We assume that the district network is connected to the main grid, which445

supplies the electrical energy needed to maintain the balance between electrical

energy demand and generation within the district network.

The district network is “smart” if it is possible to appropriately set the

controllable variables so as to optimize its behavior. A typical goal is to minimize

the overall cost while guaranteeing the satisfaction of the energy needs of the450

users in the district. Costs are mainly due to the electrical energy requested to
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the main grid and additional costs related to device operation such as startup

and fuel costs. The overall cost is then given by:

J = Cℓ + Cch + Cmt + Cf , (36)

where the first term is the electrical energy cost Cℓ =
∑M

k=1 Cℓ(k); Cch =
∑M

k=1 Cch(k) is the cost for the chillers startup; Cmt =
∑M

k=1 Cmt(k) and Cf =455

∑M

k=1 Cf (k) are the costs for the CHPs startup and fuel consumption.

It is worth noticing that startup costs also serve the purpose of favoring

solutions that avoid continuous and unrealistic switching of devices. Note also

that additional logical conditions are needed to account for them. For example,

a chiller startup cost can be modeled as Cch(k) = C E

chmax{δch(k)−δch(k−1), 0},460

where C E

ch is the actual startup cost which is accounted for at k only if the chiller

was off at k− 1 and is switched on at k. Similarly, for the CHP, its startup cost

at k is given by Cmt(k) = C E
mt max{δmt(k)− δmt(k − 1), 0}. The fuel costs of a

CHP are proportional to the amount of fuel consumption during the k-th time

slot, i.e., ψfδmt(k)umt(k)∆, where ψf is the unitary fuel cost.465

As for the electrical energy cost, the cost per time slot Cℓ(k) is typically

given by a PWA function of the electrical energy exchange Eℓ(k) with the main

grid, i.e.,

Cℓ(k) = max{c1,ℓ(k)Eℓ(k) + c0,ℓ(k)}, (37)

where the coefficients of the affine terms are collected in vectors c1,ℓ(k) and

c0,ℓ(k), and the max operator is applied along the vector components. This

expression allows us to adopt different values for revenues (Eℓ(k) < 0) and

actual costs (Eℓ(k) > 0), and to account for penalties when the electrical energy

consumption/production Eℓ(k) exceeds certain thresholds. Note that, if Cℓ is470

to be minimized, an epigraphic reformulation can be adopted to rewrite (37) in

terms of a set of linear inequalities.

To describe Eℓ for an arbitrary configuration, we adopt in this section the

following short-hand notations. Components correspond to energy contribu-

tions and are defined through letters (building B, chiller C, storage S, CHP475

30



microturbine M) with a superscript that denotes the model type (symbols are

given in Tables 1–4) and the kind of energy (electrical ℓ, cooling c, and heating

h) provided as output. This is important, e.g., to distinguish between a cold

thermal storage (Sc) and an electric battery (Sℓ), and also in the case when a

component allows for multiple kinds of energy as output. For instance, MB,h
480

stands for the heating energy produced by a CHP described by a linear on-off

model. The subscript possibly denotes the energy request received as input, as

in the case of a chiller that has to provide the net cooling energy requested by

buildings after deduction (addition) of that provided (requested) by the thermal

storage units.485

We can for example derive the expression of Eℓ for the configuration in

Figure 5:

Eℓ = CA,ℓ

←{BB,c+BA,c+Sc}
+MB,ℓ + Sℓ. (38)

If we then plug (38) into equation (37) and (36), we get the expression for

the cost function J to be minimized.

Note that J may be uncertain if there are disturbance inputs acting on490

the system. In such a case, one can either neglect uncertainty and refer to

some nominal profile for the disturbance inputs or account for uncertainty and

formulate a worst case or an average cost criterion based on J . Furthermore,

when we compose a district network model plugging together all the elements,

we also get a number of constraints associated with them. Constraints express495

both technical limits (e.g., maximum cooling energy that a chiller can provide)

and performance requirements (e.g., comfort temperature range). Additional

constraints can be added if needed (e.g., the maximum amount of electrical

energy that the main grid can provide). Yet, constraints might be uncertain

due to the presence of disturbances, and, hence they might be enforced only for500

the nominal profile, thus neglecting uncertainty, or as robust or probabilistic

constraints.

Different approaches can then be adopted to address the energy manage-

ment of the district network, depending also on the choice of the cost criterion
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(nominal/worst-case/average) and the constraints (nominal/robust/probabilistic).505

Uncertainty on the parameters values could also be explicitly accounted for in

the design. For instance, one could assume that parameters take equally likely

values in some range and impose that performance is optimized over almost all

instances except for a small set.

Furthermore, different architectures (centralized, decentralized or distributed)510

can be conceived and implemented for the resulting optimization problem so-

lution, depending on the actual communication and computation capabilities

available in the network, and on possible privacy of information issues like in

the case of a building that is not willing to share its own consumption profile,

while still aiming at cooperating for reducing the overall district cost.515

The formulation of the optimal energy management problem involves defin-

ing the following quantities:

1. Global parameters, i.e., sampling time ∆, and number of M of time slots

of the look-ahead time-horizon.

2. Optimization variables, i.e., the decision variables to be set by the opti-520

mization problem. Notice that energy balances must always hold, and this

may decrease the actual degrees of freedom of the system. For example, in

the case of a controllable building with a chiller plant, the cooling energy

request to the chiller cannot be set freely, since it has to match the cooling

energy needed for the building to track the temperature set-points that525

becomes effectively the only decision variable.

3. Cost function, i.e., the quantity that has to be minimized, e.g., the elec-

tric energy costs or the deviation of the energy consumption from some

nominal profile agreed with the main grid operator.

4. Constraints, i.e., the feasibility conditions that limit the solution space530

of the optimization problem. Notice that constraints can be classified in

three categories:

(a) Single component constraints, which are enforced at the level of each

component separately and are related due to its dynamics and capa-
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Figure 6: Configuration with a building connected to a chiller.

bilities. For example, the energy accumulated in a storage is jointly535

dictated by the storage capacity and dynamics of the storage system.

(b) Interconnection constraints, which relate variables of different compo-

nents and originate from their cooperative interaction in the district.

For example, the temperature set-points in a controllable building

cannot result in a cooling energy request that is larger than the en-540

ergy that the chiller can produce and the energy that can be taken

from the storage.

(c) Control constraints, which are derived from actuation limits or en-

forced to achieve some desired property of the energy management

strategy. These are, for instance, the comfort constraints imposed545

on the temperature in a building or the constraints enforced at the

end of the control time-horizon on the energy in the storage to avoid

its depletion and allow for repetitive use of the control strategy in a

periodic fashion.

4. A numerical example550

In this section, we consider the simple district network configuration in Fig-

ure 6, which consists of a controlled building and a chiller unit.

The example refers to a centralized architecture, with known profiles for the

disturbances. We consider a one-day time horizon since this is a commonly used

time horizon for building energy management, especially temperature control.555
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The controlled building is a medium-sized three story office building with

dimensions: 20m long, 20m wide, and 10m tall. Each facade of the building is

half glazed and the roof is flat. The biquadratic approximation (22) is used for

the chiller model with c1 = 5.21 · 10−5, c2 = 2.16 · 10−2, and c3 = 2.82.

Disturbances are treated as deterministic signals. Figure 7 shows the profiles560

adopted for the occupancy and internal energy contributions, solar radiation and

outside temperature.

We consider a single-zone set-up for the building, where the three floors

are treated as a unique thermal zone, with the same temperature set-points.

The ground floor is assumed to be thermally isolated from the ground, and we565

neglect energy exchanges through thermal radiation among internal walls.

The purpose of this example is twofold:

1. Show the role of the building structure as a passive thermal storage, that

can accumulate and release thermal energy;

2. Compare the energy management strategies obtained with two different570

control objectives.

The problem is formulated as follows:

1. Global parameters, the sampling time is set to ∆ = 10 minutes, and the

time horizon is set to 1 day, i.e., M = 144.

2. Optimization variables, the only optimization variables are the tempera-575

ture set-points of the single zone Tz as defined via the control input u over
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Figure 7: Disturbances acting on the building: occupancy and internal energy contributions,

solar radiation and outside temperature (from left to right).
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the considered finite horizon.

3. Cost function, we here consider two different cost functions:

(a) cooling energy provided by the chiller:

J1 =

M
∑

k=0

Ech,c(k). (39)

(b) electricity consumption:

J2 =
M
∑

k=0

Ech,ℓ(k), (40)

where the electricity consumption is related to the cooling energy via the

chiller static characteristic introduced in Section 2.2).580

4. Constraints, the following constraints are included in the optimization

problem:

(a) Single component constraints: heating is not permitted and the en-

ergy produced by the chiller is subject to physical limitations, i.e.,

Ec ≥ 0

Emin
ch,c ≤ Ech,c ≤ Emax

ch,c ,

with Emin
ch,c = 0 and Emax

ch,c = 30MJ.

(b) Interconnection constraints: the chiller satisfies the cooling load de-

mand, i.e.,

Ech,c(k) = Ec(k), k = 1, . . . ,M.

(c) Control constraints: zone temperature must lie within some comfort

range (non-gray areas in Figure 8), and a periodic solution is enforced

by setting the same value for the zone temperature set-points at the

beginning and end of the time horizon:

umin ≤ u ≤ umax

u(M) = u(0) = Tz(0)

T (0) = T (M)
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Figure 8: Temperature profiles obtained as solutions of the two optimization problems.

to cope with the myopic attitude of the finite horizon strategy, which

would drive the zone temperature to the limit of its admissible range585

at the end of the time horizon in order to save money, without caring

of the next day.

We consider an ideal setting where both Tz(0) and T (0) can be set so as

to obtain a periodic solution.

The resulting optimization problem is a convex constrained program that590

can be solved, for example, with CVX2 using SDPT3 as solver.

Figure 8 shows the resulting optimal temperature profiles Tz for the two

cases. Both solutions stay within the prescribed comfort temperature bounds.

Notice that the discrepancy between the two curves is at most of about 1.6◦C.

Despite such a small distance, from Figure 9 one can notice a clear difference in595

the required cooling energy for the two cases. In the case of minimization of the

electricity consumption (J2), a “precooling” phase occurs from time 18:00 to

time 8:00 of the next day (if we think about the solution applied over multiple

days), which leads to a larger cooling energy request.

Intuitively, the second policy stores some cooling energy in the building600

structure, ahead of time, thus smoothing the cooling energy request in the

central part of the day, when occupancy is larger, to get the chiller operating

2http://cvxr.com/
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Figure 9: Cooling energy request (a) and absorbed electric energy (b) for the cost functions

J1 (cooling request) and J2 (electric energy consumption).

with higher efficiency. The “building thermal mass” is exploited as a passive

thermal storage to add further flexibility to the system [53, 54, 13, 26].

On the other hand, the first policy exploits the fact that at night the tem-605

perature is lower, comfort constraints are trivially satisfied (they are set to be

larger because there are no occupants in the office building), and the chiller does

not need to provide any cooling energy to the load. Figure 9 shows the electric

energy consumption in the two cases, highlighting that the chiller is working

at its minimum for most of the time in the cooling energy minimization policy610

(J1). The integral of the curves in Figure 9 is the electricity consumption and is

larger for the cooling energy minimization policy. Indeed, Figure 10 shows that

the second policy makes the chiller operate close to its maximum COP value,

thus saving electrical energy.

In summary, depending on the cost function adopted in the energy manage-615

ment strategy design, one can have significantly different behaviors of the same

district network configuration, with a different performance, even with a limited

difference in the temperature set-points.
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Figure 10: Values taken by the chiller COP in the two cases when the cooling energy request

(J1) and the electric energy consumption (J2) are adopted as cost functions.

5. Multirate control

Increasing the number buildings and/or thermal zones per building neces-620

sarily leads to a greater computational effort for solving the energy management

control problem since the number of optimization variables increases. This may

become an issue when a receding horizon strategy is adopted and optimization

is performed on line at every control instant. Indeed, real-time constraints can

hamper the applicability of the approach.625

A possible way to avoid this issue is to use larger values of the sampling time

∆ for the discretization of the model, which has the twofold purpose of reducing

the number of optimization variables for the same time horizon and increasing

the time available to perform the computations and apply the solution.

Unfortunately, using a larger sampling time degrades the model accuracy,630

thus eventually deteriorating the control performance. This issue can be tackled

by taking a multirate control approach, where model and controller operate with

different sampling periods. Specifically, if we let ∆ be the sampling period of

the model and introduce the rate MR ∈ N, then, in multirate control, the

control action is only set every MR time slots of length ∆, or, equivalently,635

∆u = MR∆ is the sampling period for the controller. This choice allows for

38



an accurate representation of the model dynamics, while still decreasing the

number of optimization variables, and, as a consequence, the computational

complexity, by a factor MR.

Clearly, the reduction of the number of optimization variables has some im-640

pact on the achievable performance in terms of cost and also reactiveness to

possible disturbances with fast dynamics. The choice of the rateMR must com-

promise between computational effort reduction and performance degradation,

compatibly with the available resources.

5.1. Example645

Let us focus on the example presented in Section 4, with cost function given

by the electrical energy

J =

M
∑

k=0

Eℓ(k).

We sample the model with ∆ = 10 minutes, and we study the effects of

employing different rates MR for applying the control input, namely MR =

1, 6, 12, 24, 36, 48, corresponding to ∆u = 1
6 , 1, 2, 4, 6, 8 hours, thus progressively

reducing the number of optimization variables.

Figure 11 shows the optimal temperature profiles for the different rates.650

Notice that the curves associated with ∆u = 10 minutes (MR = 1) and with

∆u = 1 hour (MR = 6) are practically indistinguishable, but, in the latter case,

we reduced the number of optimization variables by a factor 6. The reduction

of the optimization variables causes an increase of the overall cost, as shown in

Figure 12, however, this increment is negligible up to ∆u = 2 hours, while the655

computation effort is almost constant for values of ∆u larger than or equal to 1

hour, if evaluated in terms of total CPU time3.

In Figure 13 we can also analyze the chiller performance. The higher the

rate MR, the lower is the flexibility of the control input to finely adjust the

3The total CPU time presented in Figure 12 is computed as the average total CPU time

over 100 experiments for each considered ∆u, for the sole solver.
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temperature set-points and compensate for disturbance variability. This is why660

the chillers are not constantly operating at a high efficiency levels when MR is

larger. This results in a less performing chiller, so one should look for a trade-off

among computational effort and efficiency.

Finally, we can conclude that adopting a multirate control solution is prob-

lem specific, depending on the available computational power, and on the com-665

plexity of the optimization problem to be solved.

6. Conclusion

In this paper we presented a modeling framework for the optimal operation

of a district network, with reference in particular to the cooling of multiple

buildings that are sharing resources like chillers or storages. Various compo-670

nents have been introduced and modeled in terms of energy fluxes so as to ease
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their composition via energy balance equations. A control-oriented perspective

is adopted in that control and disturbance inputs are explicitly accounted for

in terms of their energy contribution. We also described how to formulate an

optimal energy management problem as a constrained optimization program675

where control inputs are the optimization variables and need to be set so as to

minimize some energy-related function (e.g., electric energy cost, deviation from

some nominal profile of electric energy consumption), while satisfying comfort

and actuation constraints. Finally, a multirate approach was proposed to re-

duce the number of optimization variables while preserving the model accuracy.680

This has potential for real-time applicability of the method when implemented

according to the receding horizon strategy of model predictive control. This will

allow to compensate for unpredictable human-building interactions as discussed

in [39].

Some numerical examples were also presented to show the versatility of the685

proposed framework. Currently, we are addressing optimal energy management

of a district network in presence of stochastic disturbances, the key challenge

being how to account for them when embedded in a distributed setting with

limited communications capabilities. The approach in [55] could be useful to

this purpose.690
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Appendix A. Model validation

Reliability of the model is crucial when adopting model-based control design

strategies. At the same time, if a model is accurate but very complex, then,

design might become impractical.

As for what concerns the network district modeling for energy management695

purposes, the most difficult component to model is the building, since various

factors need to be accounted for, including size and structure of the building,

walls composition, presence of electrical devices, occupancy, and environmental

conditions, like outdoor temperature and solar radiation. Also, model complex-

ity grows as the size of the system increases.700

Models and modeling frameworks for buildings have been proposed in the lit-

erature [6, 21, 56, 57, 4]. Most of them include a detailed characterization of the

fluid dynamics phenomena, e.g., the evolution of the temperature and humid-

ity of the thermal zones, and they typically require specialized Computational

Fluid Dynamics (CFD) tools for simulation. Even though these approaches pro-705

vide very accurate simulation results, they are difficult to use for control design

purposes, due to their complexity. In this paper we adopted a control-oriented

perspective and presented a simple model of the building where thermal zone

temperatures act as control inputs and enters linearly the system dynamics.

Validation of a model of the building dynamics against experimental data710

is quite challenging, also because setting up a measurement facility for a build-

ing can be complex and expensive. In order to validate the presented model,

we hence resort to the methodology introduced by the American Society for

Heating Refrigerating and Air-conditioning Engineers (ASHRAE), and, more

specifically, the validation method defined in the ANSI-ASHRAE 140 standard.715

The standard specifies test cases and procedures for evaluating the technical

capabilities and range of applicability of computer programs that compute the

thermal performance of buildings and their HVAC systems. The current set of

tests included in the standard consists of (i) comparative tests that focus on

building thermal envelope and fabric loads, and mechanical equipment perfor-720
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Figure A.14: Room geometry with isometric South windows.

mance, and (ii) analytical verification tests that focus on mechanical equipment

performance. Different building energy simulation programs, with different lev-

els of modeling complexity, can be tested. For all tests included in the specifi-

cations, results provided by other certified simulation tools are presented, and

they represent the baseline for validating new modeling and simulation software.725

A detailed description of the simulation tools included in the specification can

be found in [58].

We here provide the results of some of the main tests defined in the ANSI-

ASHRAE 140 standard, and compare them with the baseline provided in the

standard. Let us first introduce the test case and then describe the validation730

procedure.

We consider a building located at an altitude of 1609m above the sea level,

and weather data series resuming the weather conditions for a whole year are

available and provided by the standard. The data set contains: external dry bulb

temperature, wind speed, wind direction, and direct and diffuse solar radiation.735

The building has a 48m2 floor area, a single story with rectangular-prism

geometry, and two south-facing windows, 6m2 each in area (see Figure A.14).

Two set-ups are considered, which differ in materials composition and walls

thickness: lightweight (case 600 in the standard) and heavyweight (case 900 in740

the standard). The standard specifies the composition in terms of thickness,

density, thermal conductivity and specific heat capacity of all layers of each
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Table A.5: Walls composition for the lightweight building case.

Element k [W/(m K)] Thickness [m] Density [kg/m3] cp [J/(kg K)]

Exterior wall (inside to outside)

Plasterboard 0.16 0.012 950 840

Fiberglass quilt 0.04 0.066 12 840

Wood slicing 0.14 0.009 530 900

Floor (bottom to up)

Timbering floor 0.14 0.025 650 1200

Insulation 0.04 1.003 0 0

Roof (inside to outside)

Plasterboard 0.16 0.1 950 840

Fiberglass quilt 0.04 0.1118 12 840

Roofdeck 0.14 0.019 530 900

wall, for both the lightweight and heavyweight cases. These values are listed in

Tables A.5 and A.6, respectively. According to the specification, density and

specific heat of the underfloor insulation have been set to the machine precision,745

i.e., 10−15. Also, the contribution of the internal loads and people, within the

thermal zone is constant over the year and equal to Qint +Qp = 200W.

The standard also provides the values for the internal and external solar

absorption and infrared emission coefficients αS
i = αL

i = 0.6 and εi = 0.9,

i = 1, . . . ,m, and for the interior and exterior combined radiative and convective750

heat transfer coefficients, from which the radiative and convective coefficients

can be recovered. Finally, the standard contains also the windows properties,

the values of incidence angle-dependent optical properties, and the interior solar

distribution. The reader is referred to the ANSI-ASHRAE 140 standard for a

complete list of building properties.755

We focus on two procedures for validation described in the standard. The

first one is denoted as Free Float (FF) in that the heating and cooling equip-

ment is switched off and the zone temperature evolves freely subject to inter-

nal/external disturbances. The purpose of this test is to validate the physical
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Table A.6: Walls composition for the heavyweight building case.

Element k [W/(m K)] Thickness [m] Density [kg/m3] cp [J/(kg K)]

Exterior wall (inside to outside)

Concrete block 0.51 0.1 1400 1000

Foam insulation 0.04 0.0615 10 1400

Wood slicing 0.14 0.009 530 900

Floor (bottom to up)

Concrete slab 1.13 0.08 1400 1000

Insulation 0.04 1.007 0 0

Roof (inside to outside)

Plasterboard 0.16 0.1 950 840

Fiberglass quilt 0.04 0.1118 12 840

Roofdeck 0.14 0.019 530 900

model without the effect of any control action, and such validation is performed760

comparing some statistics (maximum, minimum, and annual average) of the

zone temperature Tz over a year against other simulation tools. The second

procedure prescribes to simulate the building together with the heating/cooling

system by applying a simple control strategy: the controller has to maintain

the air temperature inside the building between 20◦C and 27◦C. Specifically,765

the control strategy is:

• Heat = ON if temperature < 20◦C; otherwise, Heat = OFF.

• Cool = ON if temperature > 27◦C; otherwise, Cool = OFF.

The ANSI-ASHRAE 140 standard specifies that the air conditioning system

produces only pure heating load and sensible cooling load outputs. That is, all770

equipment is 100% efficient with no duct losses and no capacity limitations. In

this controlled case, the validation is performed comparing the hourly-integrated

peak of the cooling and heating power provided to the building. The thermostat

was implemented as two saturated PI controllers with antiwindup, where the

control variable is the amount of cooling and heating power to be injected in775

the system, equivalently to the implementation adopted in [6].
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In the following we will denote as 600FF and 900FF the case when the

free float validation procedure is applied to the lightweight and heavyweight

buildings, and as 600 and 900 the case when the control is applied.

Validation results780

We next present the numerical results obtained in the 600FF and 900FF and

600 and 900 test cases. For running the validation process, it is necessary to

rewrite the model with the heat flow rate Q as control input, and the temper-

ature of the zone Tz as the output of the system. To this aim, we consider a

simulation model composed of a state vector including the temperature of the

different slices of the walls as described in (5), and the temperature of the zone

Tz. The evolution of Tz is governed by the continuous-time version of (13),

made explicit with respect to Ṫz:

Ṫz = −C−1z Qz = −C−1z (Q−Qw −Qp −Qint),

with Qw, Qp, and Qint being the heat flow rates towards the zone of the walls,

the occupancy, and of other internal equipment producing heat. Considering

the expressions (7), (15), and (18), one can write the expression of Qz as a

function of the states T and Tz, of the input Q and of the disturbances. This

continuous time model is implemented in Modelica4, in order to carry out the785

validation process.

Table A.7 reports the obtained results in terms of maximum, minimum, and

mean annual temperature. Our model (last column of the table) is compared

with the other ones provided in the standard under the free float validation

procedure.790

In the 600FF test case, the results obtained with the model considered herein

are comparable with the ones obtained with the other building simulation mod-

els. As for 900FF, only the minimum temperature is comparable with the

other results, while the maximum temperature is slightly higher than the values

4https://modelica.org/

46

https://modelica.org/


Table A.7: Comparative analysis results for the free float experiments.

Case ESP BLAST DOE2 SRES SERIRES S3PAS TRNSYS TASE Our model

Maximum temperature [◦C]

600FF 64.9 65.1 69.5 68.8 – 64.9 65.3 65.3 65.96

900FF 41.8 43.4 42.7 44.8 – 43.0 42.5 43.2 47.09

Minimum temperature [◦C]

600FF −15.8 −17.1 −18.8 −18.0 – −17.8 −17.8 −18.5 −21.48

900FF −1.6 −3.2 −4.3 −4.5 – −4.0 −6.4 −5.6 −3.17

Mean annual temperature [◦C]

600FF 25.1 25.4 24.6 25.5 25.9 25.2 24.5 24.2 25.62

900FF 25.5 25.9 24.7 25.5 25.7 25.2 24.5 24.5 21.81

Table A.8: Hourly integrated peak of the heating and cooling power provided to the building

for test cases 600 and 900.

Case ESP BLAST DOE2 SRES SERIRES S3PAS TRNSYS TASE Our model

Heating [kW]

600 3.437 3.940 4.045 4.258 – 4.037 3.931 4.354 4.521

900 2.850 3.453 3.557 3.760 – 3.608 3.517 3.797 4.077

Cooling [kW]

600 6.194 5.965 6.656 6.627 – 6.286 6.488 6.812 6.983

900 2.888 3.155 3.458 3.871 – 3.334 3.567 3.457 3.922

obtained with the other models, and the mean annual temperature is lower.795

Overall the obtained statistics produce reasonable results in the free float case,

even though the model adopted for the presented framework is much simpler

than the other simulation models.

Table A.8 summarizes the validation results when the presented control

strategy is in place. The hourly peak of cooling and heating power are compa-800

rable with those of the other tools in both the test cases.

In summary, the validation results show that the proposed model provide an

accuracy which is comparable to state-of-the-art simulation tools, while being

much simpler and thus more suitable for control design purposes.
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