
Convolutional Neural Network for pixel-wise
skyline detection

Darian Frajberg, Piero Fraternali, Rocio Nahime Torres

Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Italy
{first.last}@polimi.it

Abstract. Outdoor augmented reality applications are an emerging class
of software systems that demand the fast identification of natural objects,
such as plant species or mountain peaks, in low power mobile devices.
Convolutional Neural Networks (CNN) have exhibited superior perfor-
mance in a variety of computer vision tasks, but their training is a labor
intensive task and their execution requires non negligible memory and
CPU resources. This paper presents the results of training a CNN for
the fast extraction of mountain skylines, which exhibits a good balance
between accuracy (94,45% in best conditions and 86,87% in worst con-
ditions) and runtime execution overhead (273 ms on a Nexus 6 mobile
phone), and thus has been exploited for implementing a real-world aug-
mented reality applications for mountain peak recognition running on
low to mid-end mobile phones.

1 Introduction

Convolutional Neural Networks (CNNs) are a powerful tool for addressing hard
object recognition tasks, and have achieved significant improvements outper-
forming previous computer vision techniques in many benchmarks. In particular,
detection problems such as biomedical images analysis [3] and edges extraction
[9] require to be solved with high precision at pixel level. An emerging field
of application of CNNs is the implementation of Augmented Reality (AR) sys-
tems, in which the users are offered an interface that enriches the view of real
objects with computer-generated information [5]. AR applications are normally
implemented on portable, low power devices, such as smart glasses or even mo-
bile phones. Examples are found in tourism (e.g., PeakLens1), astronomy (e.g,
Star Chart2), games (e.g., PokemonGo3), etc. The main challenge of develop-
ing a computer vision component for an AR application for low power devices
is the need of providing high recognition accuracy, real-time performance, with
acceptable memory and battery consumption. These competing objectives re-
quire adequate training of the CNN, minimization of the model, and reduction
of the overall application fingerprint. This paper presents the training and eval-
uation of a CNN for a pixel-wise mountain skyline detection task and reports

1 http://www.peaklens.com
2 http://www.sites.google.com/site/starchartuserguide
3 http://www.pokemongo.com



the result of its usage in the development of PeakLens [4], an AR mobile app
for mountain peaks identification. PeakLens relies on the alignment between a
virtual panorama visible from the current user’s location, computed from the
GPS coordinates, from the compass orientation, and from a Digital Elevation
Model (DEM) of the Earth, and the mountain skyline extracted from the camera
view. Such alignment must be done precisely and in real time and thus requires
very high accuracy of the extracted skyline and fast execution. For training and
evaluating the skyline detection CNN, we executed a crowd-sourcing task and
manually annotated 8.940 mountain images, fetched from Flickr and from over
2.000 publicly available touristic web-cams. Images in the data set are complex,
diverse, and contain a variety of obstacles occluding the skyline horizon.

The focus of this paper is the description of the CNN model and of its
training, and the evaluation of the resulting pixel-level classifier for mountain
images taken in uncontrolled conditions. The training data set consists of positive
and negative patches automatically sampled from the annotated mountain photo
collection. For evaluation, we noted that the CNN accuracy obtained at patch
level does not represent well the quality of the output for an entire image; thus,
we defined metric functions that assess the quality of the mountain skylines
extracted with the CNN at the whole image level, and computed it with the
help of the manually annotated ground truth skylines. The contributions of the
paper are the following:

– We recall the mountain skyline extraction problem, as defined in the relevant
literature (e.g., [2]).

– We illustrate a mountain skyline extraction pipeline that exploits a CNN
for evaluating the probability of pixels to belong to the skyline, and a post-
processing step for extracting the actual skyline from pixel probabilities.

– We define whole image metrics for evaluating the quality of an extracted
skyline with respect to the gold standard created with annotations.

– We evaluate the designed pipeline quantitatively, in terms of precision and
execution overhead (time and memory). Precision is evaluated on two classes
of images: without occlusions and with occlusions.

– We discuss the use of the realized component in a real world mobile app
(www.peaklens.com), with very demanding accuracy, speed and memory
constraints.

The paper is organized as follows: Section 2 briefly surveys the related work
on pixel-wise feature and objected detection and on the specific problem of
mountain skyline detection; Section 3 explains the proposed CNN models and
the method to train and evaluate it; Section 4 presents the result of evaluating
the accuracy and performance of the trained skyline extraction component and
also discusses a real-world case study where the component is embedded in a
mobile app for mountain peak detection; finally, Section 5 concludes and gives
an outlook on the future work.



2 Related Work

Skyline extraction is a sub-problem of image-to-terrain alignment; early works,
such as [1] and [2], tackled the problem by computing the alignment between the
digital elevation model (DEM) and skylines extracted (offline at the server-side)
from mountain images.
Heuristic methods. To extract skylines, [2] proposed an automatic approach
exploiting an edge-based heuristics, whereas [1] applied sky segmentation tech-
niques based on dynamic programming, which required manual support for chal-
lenging pictures. The authors of [1] also released a dataset that contains 203
images with ground truth information (including segmentation masks). Feature-
based heuristic methods (e.g., based on edge detection) work well on images
taken in good conditions, but do not address adequately bad weather and sky-
line occlusions. In these cases, a cloud, a high voltage cable, or a roof impact
negatively the heuristic edge filter, e.g., a cloud edge would be treated as skyline
and the mountain slope below would be considered as noise.
CNN methods. Skyline extraction problems can also be addressed with CNNs,
which have exhibited superior performance in a variety of computer vision tasks,
such as object recognition and semantic segmentation. In [8] the authors used
the dataset of [1] to extract the skyline with a deconvolutional neural network
for image segmentation; their approach treats an input image as a foreground-
background segmentation problem and does not single out obstacles. Pixel-level
CNN methods have been experimented successfully e.g., in biomedical images
analysis. In [3] the authors proposed a novel binary pixel-based CNN for the de-
tection of mitosis in breast cancer histology images. The network is trained with
patches extracted from the images, classified as mitosis or non-mitosis based on
the probability of the center pixel of being close to the centroid of a mitosis.
Pixel-wise CNNs are also used for edges extraction problems. In [9] the authors
take image patches as input and predict whether their central pixels belong to
an edge.
Our skyline detection approach is inspired to [3] and [9] and also works at pixel-
level. To treat images taken in uncontrolled conditions and cope with obstacles
of different nature (people, bell towers, cables, etc), we consider an image as a
map of patches and analyze the local context around each center pixel to predict
whether it belongs to the skyline. Differently from [3] and [9] we specialize the
CNN to mountain skyline detection; differently from [8], we train the network
on a large data set of images (8.940) taken in uncontrolled conditions including
samples with many different types of obstacles, and we evaluate the obtained
precision quantitatively (94,45% in best conditions and 86,87% in worst condi-
tions). Differently from all the mentioned works, we target the fast execution of
the CNN on low power devices and report the performance of skyline extraction
(273 ms per image on a Nexus 6 mobile phone).



3 Skyline extraction with CNN

We defined the CNN architecture presented in Table 1, which is an adaptation of
the well known LeNet model [7]. The main difference is that we do not consider
28x28 gray-scaled inputs, but 29x29 RGB inputs. The output of our architecture
considers 2 classes, which represent whether the center pixel of the input image
is part of the skyline (1) or not (0). In the sequel, we will consider the probability
of a pixel to be part of the skyline.

Layer Type Input Filter Stride Pad Output

Layer 1 Conv 29 x 29 x 3 6 x 6 x 3 x 20 1 0 24 x 24 x 20

Layer 2 Pool (max) 24 x 24 x 20 2 x 2 2 0 12 x 12 x 20

Layer 3 Conv 12 x 12 x 20 5 x 5 x 20 x 50 1 0 8 x 8 x 50

Layer 4 Pool (max) 8 x 8 x 50 2 x 2 2 0 4 x 4 x 50

Layer 5 Conv 4 x 4 x 50 4 x 4 x 50 x 500 1 0 1 x 1 x 500

Layer 6 Relu 1 x 1 x 500 Max(0,x) 1 0 1 x 1 x 500

Layer 7 Conv 1 x 1 x 500 1 x 1 x 500 x 2 1 0 1 x 1 x 2

Layer 8 Softmaxloss 1 x 1 x 2 - 1 0 1 x 1 x 2
Table 1. CNN architecture

To create the input dataset, we conducted an internal crowd-sourcing task
and manually annotated the skyline of 8.940 mountain images fetched from Flickr
and from over 2.000 publicly available touristic web-cams. Images in the data
set are complex, diverse and contain a variety of obstacles occluding the skyline
horizon4. The dataset images were split 65% for training, 25% for validation and
10% for test. The preparation of the training data set consisted in the extraction
of positive and negative patches from the mountain photo collection. For such
purpose, we applied for each image a soft Canny filter and computed the edge
map to enhance the selection of candidate patches, labeling them as positive or
negative based on their center pixel. When an edge point and an annotation
point match, that pixel is considered to be positive; while if an edge point has
no match, it is considered negative. Since non-skyline points are much more
numerous than skyline points, we generated an unbalanced dataset by randomly
extracting 100 positive and 200 negative patches from each image. The CNN
model is trained using the Caffe framework [6] on a machine with an NVIDIA
GeForce GTX 1080. It took 61 minutes to complete and the total number of
learned parameters of the resulting model was 428.732. At execution time, the
fully convolutional network is fed with whole images and returns a spatial map
for each image, in which each pixel is assigned a probability of being positive.

Post-processing A post-processing step was executed over the skylines ex-
tracted with the CNN so as to select at most the N pixels per column (PPC)
with the highest probability score. Such step consisted in the application of a

4 A large sample is visible at https://goo.gl/g4lygB



small erosion and the removal of all the pixels in rows with positive probability
scores lower than a predefined threshold (THR). In addition, we tested also the
outcome of post-processing the CNN output with the multiplication between its
content and a canny edge map extracted from the original image.

4 Evaluation

This section describes the evaluation performed to measure the accuracy of the
skyline identification, the runtime performance, and a concrete usage experience.
Accuracy. The maximum accuracy achieved by the CNN model over the test
dataset at patch level was 95,05%, obtained with a threshold value for posi-
tive probability of 0,4644. However, accuracy measured at patch level does not
represent intuitively the quality of the output for an entire image. Therefore, we
defined metric functions that assess image level quality by comparing the skyline
extracted with the CNN with the one manually annotated in the ground truth.
Then we evaluated such functions on the test dataset images. Let, CNN(i, j)
be a function that returns 1 if the image pixel at coordinates (i,j) belongs to the
skyline extracted by the CNN (0 otherwise) and let GT (i, j) be a function that
returns 1 if the pixel (i,j) belongs to the ground truth skyline (0 otherwise). The
following image-level metric functions have been used:

ASA =

cols∑
j=1

IGT∧CNN (j)/

cols∑
j=1

IGT (j) (1)

ANSA =

cols∑
j=1

IGT∧CNN (i, j)/(cols−
cols∑
j=1

IGT (j)) (2)

AA =
1

cols

cols∑
j=1

Iagree(j) (3)

where:
IGT (j) := 1 if ∃i| GT (i, j) = 1; 0 otherwise
IGT∧CNN (j) := 1 if ∃i| GT (i, j) = 1 ∧ CNN(i, j) = 1; 0 otherwise
IGT∧CNN (j) := 1 if ∀i| GT (i, j) = 0 ∧ CNN(i, j) = 0; 0 otherwise
Iagree(j) := 1 if IGT∧CNN (j) = 1 ∨ IGT∧CNN (j) = 1; 0 otherwise

ASA (Average Skyline Accuracy) measures the fraction of image columns
that contain ground truth skyline pixels and in which at least one of the positive
(i.e., above threshold) pixels extracted by the CNN matches one of the ground
truth pixels; ANSA (Average No Skyline Accuracy) measures the fraction
of columns that do not contain any ground truth skyline pixel (due to obstacles)
and for which also the CNN output does not contain positive pixels; this metric
evaluates the presence of false positives in images with an interrupted ground
truth skyline; AA (Average Accuracy) measures the fraction of columns in
which the ground truth and the CNN skyline agree, considering agreement when
none contain pixels or otherwise at least one of the CNN pixels matches one of
the ground truth pixels.



Figure 1 shows a mountain image with the ground truth annotation (left)
and the value of the quality metrics calculated on the output produced by a CNN
with post-processing that selects 1 PPC. On the right, pixels in green represent
correctly predicted skyline pixels, while pixels in red represent incorrect ones.

Fig. 1. Evaluation of image with interrupted skyline. Average Skyline Accuracy: 98%.
Average No Skyline Accuracy: 73%. Average Accuracy: 94%.

To evaluate the quality loss due to occlusions that produce non continuous
skylines, we performed two evaluation rounds. First, we assessed the 462 images
of the test dataset (51,68%) with no interruptions. As shown in Table 2 Average
Accuracy is 94,45% with 1 PPC (row 1) and 97,04% with 3 PPC (row 6). The
threshold was set to 0 to maximize the chances of selecting at least one CNN pixel
per column. The loss of accuracy is only due to pixels that the CNN positions
at a different row w.r.t. the ground truth. In the second round, we considered
the entire test dataset of 894 images, in which 8% of all the columns correspond
to interrupted skyline. Results are reported in Table 3: the maximum Average
Accuracy decreases to 86,87% for 1 PPC (row 7) and 89,36% for 3 PPC (row 12):
occlusions that interrupt the skyline impact the accuracy by introducing false
positives and false negatives. A threshold of 0,3921 proved the most suitable
value to maximize the AA metric. Different post-processing methods were also
evaluated, as shown in the other rows of Table 2 and 3: overall the use of the CNN
without post-processing achieved the highest result with 1 PPC (Table 2, row
1: 94,45%; and 3 row 7: 86,87%), such values improve when the multiplication
between the CNN output and Canny is used, achieving the best results with 3
PPC (Table 2, row 6: 97,04% and Table 3, row 12 89,36%); the multiplication
between the extracted skyline and the edge map obtained with a Gaussian Blur
followed by a Canny filter was always outperformed.
Runtime Performance. The execution of the CNN model in desktop PCs has
negligible execution time per image. To evaluate the suitability for an AR appli-
cation on low power mobile devices, where not only a high recognition accuracy
is needed, but also a real-time performance, we assessed the execution time per
image in smart-phones of different categories. To this end, we selected an input
image of dimensions 321 x 241 pixels. While most smart-phones support taking
pictures of larger size, after different experimental trials we observed that this



V PPC THR Multiplication ASA ANSA AA

1 1 0 No 94,45% - 94,45%

2 1 0 (Blur + Canny) 92,69% - 92,69%

3 1 0 Canny 93,73% - 93,73%

4 3 0 No 95,92% - 95,92%

5 3 0 (Blur + Canny) 96,72% - 96,72%

6 3 0 Canny 97,04% - 97,04%
Table 2. Evaluation on test dataset with only continuous skyline images

V PPC THR Multiplication ASA ANSA AA

7 1 0,3921 No 92,45% 20,14% 86,87%

8 1 0,3921 (Blur + Canny) 90,11% 28,77 85,31%

9 1 0,3921 Canny 91,55% 23,19% 86,21%

10 3 0,3921 No 94,25% 18,83% 88,41%

11 3 0,3921 (Blur + Canny) 93,97% 28,65% 88,83%

12 3 0,3921 Canny 95,07% 22,54% 89,36%
Table 3. Evaluation on complete test dataset

dimension has the best balance of accuracy, memory consumption (9.36MB on
average), and execution time, on a broad spectrum of devices. The evaluation
was performed by repeating skyline extraction on a test image 1.000 times in
each device, taking as result the average execution time. As shown in Table 4,

Device Time(ms)

MacBook Pro - 2,9GHz Intel Core i5 (2 cores) - 16GB 73

Nexus 6 - 2.65GHz Qualcomm Snapdragon 805 (4 cores) - 3GB 273

One Plus A0001 - 2.46 GHz Qualcomm Snapdragon 801 (4 cores) - 3GB 296

Nexus 5X - 1.82GHz Qualcomm Snapdragon 808 (2 cores) - 2GB 437

Moto G4 PLUS - 1.52GHz Qualcomm Snapdragon 617 (8 cores) - 2GB 472

Asus Z00D - 1.6 GHz Intel Atom z2560 (2 cores) - 2GB 1128

Galaxy Nexus - 1.2GHz TI OMAP 4460 (2 cores) - 693 MB 1775
Table 4. Time required to execute the skyline extraction

the execution time in low power mobile devices is much higher than in a PC,
where skyline extraction can be performed at a frequency of 13 images per sec-
ond: the best smart-phone of the test could process around 3 images per second,
whereas computation took something less than 2 seconds in the devices with
lowest hardware. Processing images at the rates shown in Table 4 is compatible
with the usability requirements of a real time AR application. Image processing
is done in background with respect to the user interface; if the camera view
movements are not too sudden, as one expects in a mountain peak recognition
use case, the skyline extraction and the subsequent DEM alignment step could



be done at a frequency lower that the 15 frame per second normally considered
viable for video play; the price to pay is some jitter in the camera view, when
the skyline extraction and DEM alignment execute and require an update of the
peak positions in the camera view. However, this limitation on low power mobile
phones did not seem to impact users too much, as discussed next.
Usage experience. The skyline extraction CNN described in the paper is em-
bedded in the PeakLens AR mobile app, which provides real time mountain peak
identification by processing camera frames at the maximum allowed speed and
overlaying onto them the icons of the visible mountain peaks. Peaks are fetched
by an annotated DEM, queried on-line, when Internet connectivity is available,
or off-line on board of the mobile phone, where it is stored in a compressed for-
mat. The initial peak positioning is done using only the DEM and the GPS and
compass sensors: the virtual panorama in view is estimated and peaks are pro-
jected onto the camera frame based on where they are in the virtual panorama.
Obviously, such method is extremely prone to the frequently occurring errors in
the DEM, GPS and compass. Here is where the skyline extraction component is
exploited, by updating the peak positions based on the registration of the cam-
era view skyline extracted by the CNN and the skyline of the virtual panorama.
Thanks to such registration, PeakLens is able to automatically correct substan-
tial errors in the DEM, GPS position and compass, in real time.

5 Conclusions and future work

In this paper we have discussed a CNN model for mountain extraction skyline,
trained with a large set of annotated images taken in uncontrolled conditions,
and capable of supporting an AR mountain peak recognition app also on low-
end mobile phones. Future work will concentrate on the optimization of the
CNN model, to make its execution faster on phones with less on 1GB RAM and
support usage even without the compass, which requires the very fast alignment
of the camera view with a 360 degree virtual panorama.

References

1. Baatz, G., Saurer, O., Köser, K., Pollefeys, M.: Large scale visual geo-localization of
images in mountainous terrain. Computer Vision–ECCV 2012 pp. 517–530 (2012)

2. Baboud, L., Čad́ık, M., Eisemann, E., Seidel, H.P.: Automatic photo-to-terrain
alignment for the annotation of mountain pictures. In: Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on. pp. 41–48. IEEE (2011)

3. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection
in breast cancer histology images with deep neural networks. In: International Con-
ference on Medical Image Computing and Computer-assisted Intervention. pp. 411–
418. Springer (2013)

4. Fedorov, R., Frajberg, D., Fraternali, P.: A framework for outdoor mobile aug-
mented reality and its application to mountain peak detection. In: International
Conference on Augmented Reality, Virtual Reality and Computer Graphics. pp.
281–301. Springer (2016)



5. Jain, P., Manweiler, J., Roy Choudhury, R.: Overlay: Practical mobile augmented
reality. In: Proceedings of the 13th Annual International Conference on Mobile Sys-
tems, Applications, and Services. pp. 331–344. ACM (2015)

6. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
In: Proceedings of the 22nd ACM international conference on Multimedia. pp. 675–
678. ACM (2014)

7. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
computation 1(4), 541–551 (1989)

8. Porzi, L., Rota Bulò, S., Ricci, E.: A deeply-supervised deconvolutional network for
horizon line detection. In: Proceedings of the 2016 ACM on Multimedia Conference.
pp. 137–141. ACM (2016)

9. Wang, R.: Edge detection using convolutional neural network. In: International Sym-
posium on Neural Networks. pp. 12–20. Springer (2016)


