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Abstract: This paper presents a semi-analytical trajectory planning method for quadrotor
UAVs. These trajectories are analytically defined, are constant in speed and sub-optimal
with respect to a weighted quadratic cost function of the translational and angular velocities.
A technique for concatenating the trajectories into multi-segment paths is demonstrated.
These paths are smooth to the first derivative of the translational position and pass through
defined waypoints. A method for detecting potential collisions by discretizing the path
into a coarse mesh before using a numerical optimiser to determine the point of the path
closest to the obstacle is presented. This hybrid method reduces the computation time
when compared to discretizing the trajectory into a fine mesh and calculating the minimum
distance. A tracking controller is defined and used to show that the paths are dynamically
feasible and the typical magnitudes of the controller inputs required to fly them.
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1. Introduction

Unmanned aerial system (UAS) applications often require the vehicle to fly in areas with many
obstacles. With this desire to fly in restricted space, such as urban environments, there is increasing
need for better path and trajectory planning. Typical UAS civilian applications, such as data collection,
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environmental monitoring and security, require autonomous navigation to avoid collisions without
the assistance of a pilot.

There are a variety of different UAS types, including fixed-wing planes, helicopters and multi-rotors.
For agile navigation in small areas with tight space constraints or a dense field of obstacles, quadrotors
are most suitable. Their ability to hover in a stationary position is also beneficial when awaiting
instructions or collecting data using on-board sensors. In contrast, fixed-wing vehicles can efficiently
cover greater distances and have faster maximum speeds. However, they cannot hover (barring
experimental vehicles, such as [1]), which limits their use in certain scenarios. Additionally, their
dynamic constraints restrict their manoeuvrability, and they must maintain a minimum airspeed to
produce sufficient lift. Finally, helicopters offer similar performance and agility to multi-rotors, but their
mechanical complexity is not justified at the scale of standard UAS. This paper will focus on trajectory
generation for multi-rotors (specifically, quadrotors), because they have the least dynamic constraints;
however, future work will investigate applying an extension of the methods to other vehicles.

The differential flatness of quadrotor dynamics can be exploited to allow for easier planning using
the decoupled translational axes [2]. A yaw angle also needs to be defined; in the literature, this is
normally fixed at zero. One technique for trajectory planning is to use an analytical function to describe
the position over time. The shape of the function is altered by varying parameters. After defining an
error function for the final state, a numerical minimization is performed to calculate the parameters that
satisfy the boundary conditions. The derivatives of the state can be found by differentiating the analytical
function. Functions that have already been used for quadrotor trajectory planning include splines [3],
polynomials [4] and Bézier curves [5]. In this paper, we use the maximum principle of optimal control
to define curves using standard functions that are sub-optimal with respect to a weighted quadratic cost
function. The term sub-optimal is used as the analytical curves are the projection of optimal curves on
SE(3) onto R3, and the rotational component of the optimal motion is not used in the motion planning.

A typical method of defining obstacles is to use p-norms [6] and is applicable in both two- and
three-dimensional planning. This method can also be extended to polygonal shapes [7]. However,
for the purpose of demonstrating the obstacle detection algorithm, the obstacles in this paper are defined
as spheres. Obstacle avoidance using Dubins curves and sampling-based planning is considered in [8].
Methods for avoiding other moving vehicles and obstacles are given in [9,10].

This paper extends our conference paper [11] to develop concatenation of trajectories to form
multi-segment paths and the obstacle detection algorithm. The format of this papers is as follows.
The quadrotor dynamics and kinematics are presented in Section 2, with the analytical function defining
the curves given in Section 3.1. The method for repositioning the generated curves is described in
Section 3.2, and forming a single path from curves patched together is demonstrated in Section 5.2.
An obstacle detection algorithm is presented in Section 4 and evaluated in Section 5.3. A tracking
controller is defined (Section 5.1) and used to demonstrate the feasibility of the path in Section 5.2.
Finally, the findings are summarised and future work discussed in Section 6.



Aerospace 2015, 2 157

2. Quadrotor Dynamics and Kinematics

A standard quadrotor has four motors and propellers arranged in a square formation. It has an
inertial translational position, velocity and acceleration x = [x1, x2, x3]T , ẋ = [ẋ1, ẋ2, ẋ3]T and
ẍ = [ẍ1, ẍ2, ẍ3]T , respectively. The angular velocities about the body axes are Ω = [Ω1,Ω2,Ω3]T ,
and the body frame velocities are v = [v1, v2, v3]T . The forces generated by the propellers are
f = [f1, f2, f3, f4]T , and the moments induced in the body-fixed frame are denoted as M =

[M1,M2,M3]T . The total thrust is defined as F =
4∑
i=1

fi. The mass of the quadrotor is denoted by

m and the inertia matrix by J ∈ R3×3. The body-frame thrust vector is e3 = [0, 0, 1]T . In matrix form,
the total thrust and moments are:

F

M1

M2

M3

 =


1 1 1 1

0 −d 0 d

d 0 −d 0

−cτf cτf −cτf cτf



f1

f2

f3

f4

 (1)

where d is the distance between the centre of the quadrotor and cτf is a constant that relates thrust
to induced yaw. In this paper, the quadrotor is treated as a rigid body with a constant gravitational
acceleration ga. To simplify the procedure of the motion planning and controller design, typical
aerodynamic disturbances on the moments and forces, such as drag, ground effect and rotor dynamics,
are neglected. The simulated quadrotor dynamics follow the derivations in [12–14]. The equations of
motion are as described in [15]:

ẋ = Rv (2)

mẍ = mgae3 − FRe3 (3)

Ṙ = RΩ̂ (4)

JΩ̇ + Ω× JΩ = M (5)

with R ∈ SO(3), where:

SO(3)
∆
= {R ∈ R3×3 : RTR = I and det(R) = 1} (6)

3. Trajectory Planning

The first subsection defines the curves and the basis behind them. The second demonstrates the
process to reposition the curves from starting at the origin to a specified translational position and
orientation in the inertial frame.

3.1. Sub-Riemannian Curves for Quadrotor Trajectory Planning

The kinematics, Equations (2) and (4), can be expressed equivalently on the Euclidean group of
motions SE(3):

dg

dt
= g(

3∑
n=1

Bivi +
3∑

n=1

AiΩi) (7)
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where A1, A2, A3, B1, B2 and B3 are the basis elements of the Lie algebra of the Lie group SE(3) [16–19]
with g ∈ SE(3):

g =

(
1 0 0 0

x R

)
(8)

Body velocities for the planned motion were specified as v1 = v2 = Ω3 = 0 to simplify the process of
deriving analytical expressions for the reference curves. It is convenient to choose a single translational
body velocity, so that the translational speed in the inertial frame is equal to the magnitude of that body
velocity. The translational speed will also be constant, since after applying the maximum principle,
it is shown that the translational body velocity is time invariant. Additionally, having a single non-zero
body velocity facilitates the joining of trajectory segments using the method described in Section 3.2.
Future work will consider the inclusion of the other body velocities. With the given restrictions on the
body velocities, Equation (7) can be reduced to:

dg

dt
= g(v3B3 + A1Ω1 + A2Ω2) (9)

We choose to define a set of curves for motion planning that minimizes the cost function:

J =
1

2

∫ T

0

v2
3 + c(Ω2

1 + Ω2
2)dt (10)

subject to the nonholonomic constraint Equation (9) and given boundary conditions g(0) = g0 and
g(T ) = gT , where c is a constant weight and vi and Ωi are measurable and bounded functions.
A curve that satisfies the constraint Equation (9) and minimizes the cost function subject to the boundary
conditions defines a sub-Riemannian curve on SE(3) [19].

Sub-Riemannian curves are useful for trajectory planning, because they are smooth and globally
defined on SE(3), unlike Euler angles or quaternions that use local co-ordinates. They also naturally
satisfy the constraint Equation (6). In this particular case, they can also be analytically defined, which
reduces the motion planning problem to one of parameter optimisation. The full derivation for the curves
is presented in Appendix. The curves are defined using standard functions; knowledge and understanding
of their derivation are not required for their application. They are obtained by a projection of a particular
sub-Riemannian curve gp ∈ SE(3) onto xp ∈ R3, where xp = [xp1, xp2, xp3]T and:

xp1 = c2ν
γ

((1− cos γt) sin β + c1 cos β (sin γt− γt))
xp2 = c2ν

γ
((1− cos γt) cos β − c1 sin β (sin γt− γt))

xp3 =
c22ν

γ
sin γt+ c2

1νt

(11)

where:
s = −

√
λ2

1 + λ2
2

λ3 = λ4λ1
λ2

r = −
√
λ2

3 + λ2
4

β = atan2(−λ2, λ1)

c1 = ν√
r2+ν2

c2 = r√
r2+ν2

γ = s
√
r2+ν2

rc

(12)
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The quadrotor speed ν and weighting c are chosen by the user before the optimisation. A desired final
position xd = [xd1, xd2, xd3]T is also specified by the user. A numerical optimisation using MATLAB’s
fmincon that implements a sequential quadratic programming method with an active-set region was
used to find the optimisation vector Ξ = [λ1, λ2, λ4, T ] that minimizes the error in the final position:

Cxf =
√

(xd(T )− xp(T ))2 (13)

where T is the final time and constrained such that T > 0. The translational velocity ẋp can be defined
analytically by taking the first derivative of Equation (11):

ẋp1 = c2ν(c1 cos β (cos γt− 1) + sin β sin γt)

ẋp2 = c2ν(c1 sin β (1− cos γt) + cos β sin γt)

ẋp3 = ν(c2
1 + c2

2 cos γt)

(14)

Likewise, the second derivative of Equation (11) gives the translational acceleration:

ẍp1 = c2ν(γ cos (tγ) sin (β)− c1γ cos (β) sin (tγ))

ẍp2 = c2ν(γ cos (tγ) cos (β) + c1γ sin (β) sin (tγ))

ẍp3 = −c2
2νγ sin (tγ)

(15)

The magnitude of the acceleration is:

‖a‖ =
√
ẍ2
p1 + ẍ2

p2 + ẍ2
p3 (16)

It can be shown that ‖a‖ is constant by substituting Equation (15) into Equation (16) and simplifying:

‖a‖ = abs (c2νγ) (17)

The magnitude of the velocity is constant and simply ν, as determined by the user before calculating
the optimisation vector.

3.2. Trajectory Repositioning and Reorientation

For the particular curves described in Section 3.1, the initial position and rotation are, respectively:

xp(0) = [0, 0, 0]T

R(0) = I
(18)

where I is the the identity matrix. The curves can be placed anywhere in the inertial frame xi(t) using:

[1 xi(t)]
T = gi(0).[1 xp(t)]

T (19)

where gi(0) is the initial state of the path. It should be noted that gi(t) includes a description of the
rotation (R) of the curve over time. However, this is not used as part of the trajectory tracking, because it
is purely kinematic and does not account for the dynamics (such as gravitational acceleration). Similarly,
for an initial and desired state in the inertial frame, the final state gp(T ) for the particular curves is
given by:

gp(T ) = gi(0)−1.gi(T ) (20)
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Since the final rotation is not used when generating the curves using the numerical optimiser,
the translation position xp(T ) can be retrieved from:

[1 xp(T )]T = gp(T ).[1 0 0 0]T (21)

The paths generated using this procedure of joining trajectories are smooth to the second derivative;
there are no discontinuities in position or velocity. However, they are not smooth in the third derivative,
because the trajectories have different curvatures, so it is not possible to match acceleration.

4. Obstacle Detection

A simple method for checking the validity of a path in the obstacle space is to discretize it into nodes
separated by a small time step. Each node lies on the path and can be checked for collisions. The choice
of time step is a trade-off between computational time and the completeness of the check. This method
can be extended to a hybrid method using a large time step and then performs a numerical minimization
to find the smallest collision distance d along the path. The collision distance for an obstacle is defined
as the Euclidean distance between the edge of the object and the quadrotor:

d(t) = ‖xobs − xi(t)‖ − rob (22)

where xobs ∈ R3 is the centre of the sphere, xi is the planned translation position of the quadrotor
Equation (19) using the curves described in Section 3.1 and rob is the radius of the sphere. For practical
purposes, some additional margin should be given, because the actual size of the quadrotor is not
accounted for by Equation (22).

The paths are composed of trajectories patched together using the method explained in Section 3.2.
To find the location on a path where an object is closest, the optimisation vector for the relevant segment
must be loaded. The concatenated nature of the path is not an issue, because there are no discontinuities
in position when transitioning between trajectories. Time was constrained, such that:

0 ≤ t ≤ T (23)

and the function to minimize is:
dmin = min (d(t)) (24)

where dmin is the minimum collision distance along a path for a specified object. If dmin ≥ 0,
then the quadrotor will not collide with the obstacle, providing that the tracking controller guides the
vehicle along the planned trajectory.

The simple local optimiser (fmincon) used in this paper has the potential to get caught in local
minima. A global optimiser may be more suitable (such as a genetic algorithm [20]), but the trade-off
between computational expense and accuracy needs to be investigated in more detail. However, in this
paper, we demonstrate the implementation of the general analytical method by using the local optimiser
and by providing a suitable initial guess. The hybrid method used in this paper combines discretization
with a large time step and then uses a numerical minimizer to determine the precise location and
magnitude of the collision distance. If any of the points are d(t) < 0, then the algorithm terminates
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and the path is reported as invalid. The process of the hybrid algorithm is represented pictorially in
Figure 1. An evaluation of the collision detection algorithm is performed in Section 5.3 and compared
to discretizing the trajectory with a small time step.

Figure 1. Obstacle detection algorithm.

5. Simulations

In the first of the following subsections, the tracking controller is described that is used to simulate
the path generated in Section 5.2. Finally, Section 5.3 tests the hybrid obstacle detection algorithm and
compares it to discretizing with a coarse time step.

5.1. Tracking Controller

The tracking controller was used in this paper to demonstrate the feasibility of the trajectories and
was first presented in [15]. In addition to the favourable tracking performance, this controller was chosen
because the trajectories are generated on the SE(3) group. The tracking errors for position, velocity and
angular velocity are defined as:

ex = x− xp (25)

ev = ẋ− ẋp (26)

eΩ = Ω−RTRdΩd (27)
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where Ωd = RT
d Ṙd, and the desired rotation is defined as:

Rd = [~b1d ;~b3d ×~b1d ;~b3d ] (28)

and:
~b3d = Rde3 = − −kxex − kvev −mgae3 +mẍp

‖−kxex − kvev −mgae3 +mẍp‖
(29)

where ~b3d is chosen to minimize the attitude tracking error in the term FRe3 from Equation (3) and is
the tracking controller in the translational direction. The attitude error is chosen as:

eR =
1

2
(RT

dR−RTRd)
∨ (30)

where the veemap∨ : so(3) → R3. From a given desired trajectory xi(t) and heading vector ~b1d ,
the control inputs can be determined:

F = −(−kxex − kvev −mgae3 +mẍd) ·Re3

M = −kReR − kΩeΩ + Ω× JΩ
(31)

where the tracking controller gains kx, kv, kR and kΩ must be defined and greater than zero.

5.2. Waypoints

This section gives an example of generating a path through a set of predetermined waypoints and
following it using the tracking controller. The waypoints in this paper were arbitrarily chosen to
demonstrate the trajectory generation algorithm. In practice, waypoints could be used to give the
quadrotor-specific locations to take measurements or generated by a sampling-based planning algorithm,
such as rapidly-exploring random trees.

The physical parameters used to represent a realistic quadrotor were taken from the UAV developed
in [21]: m = 4.2 kg, J = diag[0.0820, 0.0845, 0.1377] kg m2, d = 0.315 m and cτf = 8.004 × 10−3.
For the tracking controller, the gains were those used in [15]: kx = 16 m, kv = 5.6 m, kR = 8.81 and
kΩ = 2.54. The desired heading angle was fixed as ~b1d(t) = [1, 0, 0]. Likewise, the magnitude of the
velocity was set as ν = 1 and the weight c = 200. The initial conditions were set to:

x(0) = [0, 0, 0]

ẋ(0) = [0, 0, 0]

Ω(0) = [0, 0, 0]

R(0) = I

(32)

A 30% control margin [22] was used, so for a mass of 4.2 kg, the maximum thrust that can be provided
by each motor is 13.4 N. This constraint was applied to the simulation.

The path consists of five waypoints specified in Table 1. The 3D path generated by the trajectory
planner is shown in Figure 2 with the start of a segment and endpoint denoted by an asterisk. Figure 3
plots the inertial frame velocity components and the magnitude of the velocity, which is constant and
equal to one. The total path length is 42.8 m and a total flight time of 42.8 s. The optimisation vector
parameters and solution time for each segment are given in Table 2.
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Table 1. Waypoints.

Waypoint x1 x2 x3

1 3 4 5
2 −2 7 3
3 −2 0 6
4 3 −4 6
5 2 0 0

−4
−2

0
2

4
6

−4
−2

0
2

4
6

8

−2

0

2

4

6

8

x1 (m)
x2 (m)

x
3
(m

)

Figure 2. Concatenated trajectory passing the prescribed waypoints.
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Figure 3. Quadrotor velocity during the concantenated trajectory.
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Table 2. Solution details.

Segment λ1 λ2 λ4 T Solution Time (ms)

1 −14.136 14.281 2.773 7.858 526
2 −28.675 −15.967 −9.2926 9.656 183
3 −11.621 −10.550 3.025 8.161 108
4 −15.955 10.789 2.482 6.898 194
5 −23.425 13.467 4.527 10.224 130

The tracking controller’s ability to follow the curve and demonstrate the dynamic feasibility of the
path is shown in Figure 4. The required thrust, F , is plotted against time in Figure 4b. The initial spike
at 0 s is the quadrotor accelerating from rest to 1 m/s, and the additional fluctuations are caused by
changing from one segment to another. This is because the paths are only smooth to the first derivative
(that is, acceleration is not continuous between them). However, Figure 4a shows that the position errors
oscillate around 0 m, but always remain less than 0.04 m, so the acceleration discontinuity between the
segments is handled well by the tracking controller. Similarly, Figure 4c shows that the moments over
time fluctuate, but none of the components have a magnitude larger than 0.5 Nm.

0 10 20 30 40
−0.05
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0.05

0.1

0.15

e
x
(m

)

Time (s)

(a)

0 10 20 30 40
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(b)
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m
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M2

M3

(c)

Figure 4. Tracking controller performance. (a) Position error ex; (b) control thrust (N);
(c) control moment (N m).
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5.3. Obstacle Collision Detection

The path from Section 5.2 was used to test the obstacle detection algorithm on a standard 3.4-GHz
desktop computer. Five spheres were placed in the vicinity of the curve, and the points on the path
closest to each obstacle were calculated using two methods.

The first method discretized the trajectory into 1000 nodes and took 463 ms to find the closest position
on the trajectory for each of the five obstacles. The second hybrid method uses a coarse discretization
and then a numerical minimizer (as described in Section 4) to find the collision distance. The solution
time for the hybrid method was 309 ms and is shown in Figure 5. The circles on the path mark the
points where an obstacle was closest. The percentage difference between the two methods is 40%,
so reduced computing time is possible, especially in cases were there are many obstacles. Additionally,
since MATLAB is an interpreted language, it is slower than compiled code. If the algorithms were
rewritten in a different language, such as C, and compiled, then the computation time would be reduced.
However, since we are interested in comparing the methods, MATLAB was chosen for its ease of use.

Figure 5. Obstacle detection.

6. Conclusions

This paper presents a method for concatenating separate trajectories to form smooth,
analytically-defined paths for a quadrotor along a set of waypoints. Since the functions are defined
using analytical expressions, only a numerical minimizer is needed to calculate the optimisation vector
that controls the shape of the curve. A controller was used to ensure that the generated trajectory is
trackable and dynamically feasible. Additionally, it provided information about the thrust and moments
required to fly a typical quadrotor along the trajectory. An obstacle detection algorithm is presented
that is a hybrid method of discretizing the path into nodes and using a numerical minimizer to find the
minimum collision distance to an obstacle. Compared to just discretizing the path, this method is faster
and able to, more precisely, locate the correct collision distance.



Aerospace 2015, 2 166

Further work will look at using the analytically-defined curves for sample-based planning methods,
allowing for a full path planning method that does not rely on the input of waypoints to navigate an area.
This paper focuses on trajectory planning for quadrotor unmanned aerial systems, but the techniques
used could also be applied to other types of vehicles.

Author Contributions

The paper was was written by Jonathan Jamieson and James Biggs assisted with the proof for the
sub-Riemannian curves given in the Appendix.

Appendix: Analytical Curves Proof

An application of the coordinate-free maximum principle [19,23] that minimizes Equation (10)
subject to Equation (9) yields the Hamiltonian:

H(p, u, g) = v3p3 +M1Ω1 +M2Ω2 −
ρ0

2
(v2

3 + c(Ω2
1 + Ω2

2)) (A1)

where ρ0 = 1 for regular extremals and ρ0 = 0 for abnormal extremals. In this paper, we only consider
the regular extremals; therefore, we set ρ0 = 1. Noting that Equation (A1) is a concave function, then to
satisfy the conditions of the maximum principle, we need ∂H

∂Ωi
= 0 and ∂H

∂vi
= 0. The control functions

are thus:
v∗3 = p3, Ω∗1 =

M1

c
, Ω∗2 =

M2

c
(A2)

Substituting Equation (A2) back into Equation (A1) gives the optimal Hamiltonian:

H∗ =
1

2
(p2

3 +
M2

1

c
+
M2

2

c
) (A3)

The corresponding Hamiltonian vector fields describing the necessary conditions for optimality
are calculated using the Poisson bracket {p̂(·), p̂(·)} = −p̂([·, ·]) where (·) ∈ se(3) [19]. Then, the
Hamiltonian vector fields are given by:

d(·)
dt

= {·, H∗} (A4)

where (·) ∈ se(3)∗. Explicitly:

ṗ1 = −M2p3
c
, ṗ2 = M1p3

c
, ṗ3 = p1M2−M1p2

c
,

Ṁ1 = p2p3 − M2M3

c
, Ṁ2 = −p1p3 + M1M3

c
, Ṁ3 = 0

(A5)

using the conserved quantity:
I2 = p2

1 + p2
2 + p2

3 (A6)

and identifying a particular solution by assuming ṗ3 = 0, we can reduce the conserved quantities to
s2 = M2

1 +M2
2 ∀ t, where s2 = c(2H∗ − p2

3); so we can write:

s2 = M1(0)2 +M2(0)2 (A7)

and defining r2 = I2 − p2
3 from Equation (A6), we can write r2 = p2

1 + p2
2 ∀ t; thus:

r2 = p1(0)2 + p2(0)2 (A8)
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These reduced conserved quantities suggest using polar coordinates to solve the differential
Equation (A5), so we try the ansatz solution:

M1 = −s cos(αt+ β), M2 = s sin(αt+ β)

p1 = −r cos(αt+ β), p2 = r sin(αt+ β)
(A9)

where r and s are defined in Equations (A7) and (A8). Substituting into Equation (A5), we obtain the
following two solutions for α:

α = −sp3(0)

cr
, α =

p3(0)r

s
− M3(0)

c
(A10)

Thus, Equation (A9) is a particular solution if and only if:

M3(0) = p3(0)

(
s2 + cr2

sr

)
(A11)

Therefore, the particular solution in terms of the initial conditions are:

p1 = −r cos θ, p2 = r sin θ, p3 = p3(0),

M1 = −s cos θ, M2 = s sin θ, M3 = p3(0)
(
s2+cr2

sr

) (A12)

where θ = − sp3(0)
cr

t + β and s and r are defined in terms of the initial conditions in Equations (A7)
and (A8) and where β = atan2(−M2(0),M1(0)). For convenience, define a constant K2 = I2, where
I2 = r2 + p2

3 is the Casimir function Equation (A6), then as R ∈ SO(3) is known [19] to satisfy
the equation:

RPR−1 = ρ (A13)

where P = p1E1 +p2E2 +p3E3 and E1, E2 and E3 is a basis for the Lie algebra of SO(3) and ρ ∈ so(3)

is a constant matrix. This fact implies that any orbitRPR−1 = ρ is conjugate to ρ = KE3, and therefore,
it suffices to integrate the particular orbit:

RpPR
−1
p = KE3 (A14)

Then, let φ1, φ2 and φ3 denote the coordinates of a point in SO(3) according to the formula:

Rp = exp(φ1E3) exp(φ2E2) exp(φ3E3) (A15)

Then, substituting Equation (A15) into Equation (A14) yields:

P = K exp(−φ3E3) exp(−φ2E2)E3 exp(φ2E2) exp(φ3E3) (A16)

which gives:

P = K

 0 − cosφ2 sinφ2 sinφ3

cosφ2 0 sinφ2 cosφ3

− sinφ2 sinφ3 − sinφ2 cosφ3 0

 (A17)

recalling that p3 = v3(0), then:
r cos θ = K cosφ3 sinφ2

r sin θ = K sinφ3 sinφ2

p3(0) = K cosφ2

(A18)
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cosφ2 =
p3(0)√

r2 + p3(0)2
, sinφ2 =

r√
r2 + p3(0)2

(A19)

and as tan θ = tanφ3, then φ3 = θ. To calculate φ1, substitute (A15) into (4), and we can obtain the
following relationships:

sinφ2 sinφ3φ̇1 + cosφ3φ̇2 = Ω∗2
− sinφ2 cosφ3φ̇1 + sinφ3φ̇2 = Ω∗1

(A20)

which can be manipulated to give:

φ̇1 =
Ω∗2 sinφ3 − Ω∗1 cosφ3

sinφ2

(A21)

which can be simplified and integrated assuming φ1(0) = 0 to yield:

φ1 = (
s
√
r2 + p3(0)2

rc
)t (A22)

substituting all of the values into Equation (A15) to obtain a particular optimal solution for Rp,
we can then obtain xp analytically by integration of the equation dxp

dt
= Rpv to give Equation (11). These

analytic solutions for xp and Rp can then be used to form a particular solution gp(t) of Equation (8).
For convenience, we pull this solution back to the identity by computing g(t) = gp(0)−1gp(t),
so that the quadrotor starts at the origin; then, xp Equation (11) is obtained via the following projection
[1 x]T = g.[1 0 0 0]T . The following notation has been used in Equation (11)–(17): λ1 = M1(0),
λ2 = M2(0), λ3 = p1(0), λ4 = p2(0) and ν = v3.
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