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Abstract

A novel approach to investigate the modal density of a rectangular structure

in a wide frequency range is presented. First, the modal density is derived,

in the whole frequency range of interest, on the basis of sound transmis-

sion through the infinite counterpart of the structure; then, it is corrected

by means of the low-frequency modal behavior of the structure, taking into

account actual size and boundary conditions. A statistical analysis reveals

the connection between the modal density of the structure and the transmis-

sion of sound through its thickness. A transfer matrix approach is used to

compute the required acoustic parameters, making it possible to deal with

structures having arbitrary stratifications of different layers. A finite element

method is applied on coarse grids to derive the first few eigenfrequencies re-

quired to correct the modal density. Both the transfer matrix approach and

the coarse grids involved in the finite element analysis grant high efficiency.

Comparison with alternative formulations demonstrates the effectiveness of
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the proposed methodology.
Keywords: Modal Density, Statistical Energy Analysis, Transfer Matrix

Method

1. Introduction

The modal density of a system is a frequency dependent function defined

as the number of modes which lie in a unitary frequency interval. Its knowl-

edge is required in the medium-high frequency range, when the number of

modes make inapplicable the modal analysis. In such frequency range the

response of a structure under mechanical or acoustic excitation can be de-

duced from its modal density. The modal density of various structures has

been identified both theoretically and experimentally. For common struc-

tural components, such as a thin plate, beams, a spherical cap or a circular

cylinder, the modal density was established through analytical expressions

[1, 2, 3, 4]. More complex configurations have also been studied, e.g. an

expression for the modal density of honeycomb panels with orthotropic face

sheets including transverse shear effects was established under specific hy-

pothesis [5]. Parametric studies have also been performed in order to inves-

tigate the influence of various parameters on the modal density of a sandwich

panel [6]. However, the analysis of general structures is often difficult.

The most commonly used procedure for deriving the modal density of a

structure involves solving the dispersion problem for free-wave propagation

in the structure. The mathematics of wave propagation in periodic systems

was first discussed by Brillouin [7] in the field of electrical engineering. Af-

terwards, Orris and Petyt [8, 9] employed the Finite Element (FE) technique
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for wave propagation analysis in periodic structures. Modal density depends

on the group and phase velocity of the wave group considered. Langley [10]

derived the modal density of periodically stiffened beam and plate struc-

tures in terms of phase constants associated with propagating wave motion.

Finnvedan [11] used the wave-guide FE method to calculate the wave prop-

agation characteristics of built-up thin-walled structures; he described the

process of deriving the modal density and group velocity from FE input for

a beam structure. However, the free-wave approach is reliable at high fre-

quency only, since it considers structures with an infinite extent. Moreover,

obtaining the modal density of a structure with several wave groups requires

the intervention of the analyst to identify and discriminate dispersion curves.

Alternatively, a modal analysis of the finite structure with real bound-

ary conditions can provide the modal density by means of the mode count.

However, a modal approach is viable only at low frequency because of the

related computational effort, regardless of the numerical method adopted.

A procedure to evaluate the modal density of a planar, rectangular struc-

ture in a wide frequency range is proposed. The key idea on the basis of

the present work is the separation of the stacking and the boundary effects

on the panel modal density. Such a separation allows to combine the ability

of a dispersion problem to catch high-frequency structure dynamics, and the

flexibility of a modal analysis in describing boundary effects at low frequency.

The original contribution of the present work is twofold: first, an expression

relating the modal density of an arbitrarily stratified, planar structure with

the diffuse transmission and reflection coefficients of its infinite counterpart

is presented, and second, a corrective scheme for the modal density is derived,
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taking into account the real size and boundary conditions of the structure

by means of its low-frequency modal behavior. Involving sound transmission

through the structure thickness instead of the dispersion problem makes it

possible to bypass any difficulty related to dispersion curves. A Transfer

Matrix Method (TMM) is used to evaluate the required acoustic indicators,

allowing to deal efficiently with structures with generic stratifications, pos-

sibly including in-plane periodic layers [12]. The correction accounting for

real size and boundary conditions requires only few eigenfrequencies of the

structure, making it possible to stem the computational cost related to the

modal analysis.

Section 2 presents the separation of the stacking and the boundary effects

on the panel modal density. The stacking contribution is derived in Section

3 by means of a Statistical Energy Analysis (SEA) on sound transmission

through the structure. Section 4 reveals the role of the low eigenfrequencies

in correcting the modal density. A number of applications are then discussed

and compared with alternative formulations.

2. Overview

The scope of the present work is twofold: first, to define the modal density

of a planar structure avoiding the solution of the dispersion problem and

second, to exploit the modal approach at low frequency in order to effectively

take boundary effects into account. The key idea consists in treating stacking

and boundary effects independently. To clarify this we consider the example

of a simply supported, homogeneous, rectangular thin plate with dimensions
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a× b× h. The modal density of the plate can be expressed as [13]

n(ω) =
S

4π

√
m

B
− P

8π
√
ω

4

√
m

B
, (1)

where S = ab is the panel area, P = 2a+ 2b is the panel perimeter, m = ρh

is the mass per unit area, B = Eh3

12(1−ν2)
is the flexural rigidity, E is Young’s

modulus, ν is the Poisson ratio and ρ is the density. The expression for the

modal density, Eq. (1), contains information about the stacking properties

of the panel, through B and m, and the panel dimensions, through S and

P . In order to bring out such a dichotomy, the asymptotic specific modal

density is introduced:

µ∞(ω) = lim
S→∞

n(ω)

S
. (2)

Since boundary effects quickly vanish moving away from panel edges, and so

becoming null in a panel with infinite extent, the asymptotic specific modal

density, µ∞, depends only on the stacking properties of the panel. Such

an interpretation is crucial for the proposed methodology, since it allows an

evaluation of µ∞ considering an infinite extent for the panel. This, in turn,

allows the use of both a free-wave approach, i.e. TMM, and a statistical

approach, i.e. SEA, in the whole frequency range of interest, even at low

frequencies. Invoking the expression of the modal density obtained for the

thin plate, Eq. (1), we obtain

µ∞(ω) =
1

4π
lim
S→∞

(√
m

B
− P

2S
√
ω

4

√
m

B

)
=

1

4π

√
m

B
. (3)

It should be noted that the dependency on the frequency disappears in the

obtained expression of the specific modal density, Eq. (3), because shear de-

formation is neglected in the adopted thin plate model. Dependency on the
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frequency persists in general and is contemplated by the proposed methodol-

ogy. Using the expression for the specific modal density, Eq. (3), the modal

density, Eq. (1), may be expressed as

n(ω) = Sµ∞(ω)− P

4

√
µ∞(ω)

πω
, (4)

where the way in which the panel dimensions act on the specific modal den-

sity, µ∞, is highlighted. Even though the obtained expression for the modal

density, Eq. (4), is valid for a thin plate (shear deformation neglected in

the kinematic model) with simply supported boundary conditions, it can be

seen as a reliable way of separating asymptotic and boundary contributions

to the modal density of a generic panel. In fact, even a simple kinematic

model, e.g. the thin plate model, can accurately catch panel dynamics in the

frequency range in which boundary effects are significant. Nevertheless, a

detailed description of the displacement field through the thickness of the

structure can be included in the asymptotic contribution, µ∞. On the other

hand, a simple way of taking different boundary conditions into account can

be found by looking at Eq. (3) and Eq. (4): it can be seen that, in the case

of thin plates, only the second term of Eq. (4) is frequency dependent. So,

since boundary effects quickly vanish for increasing frequency, only the term

related to the panel perimeter, P , can be affected by boundary conditions

[13]. As a consequence, a more general expression for the modal density of a

rectangular panel is proposed:

n(ω) = Sµ∞(ω)− δ
P

4

√
µ∞(ω)

πω
, (5)

where the correction factor, δ, may be determined by means of a modal

analysis according to the actual boundary conditions. Conclusively, two
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independent contributions can be identified in the final expression for the

modal density, Eq. (5): the first one is the frequency dependent function,

µ∞, which depends only on the stacking properties of the layered structure,

the so-called stacking contribution, the second one is the correction factor, δ,

which depends also on the size of the structure and its boundary conditions,

the so-called boundary contribution.

3. Stacking Contribution

The stacking contribution of the modal density is defined by the asymp-

totic specific modal density, Eq. (2). We propose deducing it by means of

the acoustic properties of the structure, in particular the power transmission

and reflection coefficients. Such a purpose draws legitimacy from the idea

that sound transmission through the structure thickness hides and carries

the very same information as the dispersion problem for the medium. The

passkey for such information is exposed here using a statistical approach,

which is reliable at any frequency since the subsystems involved have infinite

extent, see the limit in Eq. (2).

3.1. Statistical Approach

Sound transmission through the thickness of a planar structure can be

investigated by placing the structure between two rooms. In the context of

SEA, two energy paths can be identified between the rooms. The first one

links the rooms without involving the resonance of the interposed wall, and

depends only on the specific mass of the wall, the so-called non-resonant path.

A second path treats the interposed structure as a subsystem so involving

its modal density, the so-called reverberant path. As a consequence, the
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non-resonant path is neglected in the following since it is not sensitive to

the panel properties we are looking for, i.e. the panel modal density. The

conditions under which such a choice may be effective will be investigated

afterwards (Section 3.2).

Focusing on the reverberant path, the power balance of a panel perturbed

by an incident acoustic power, Πinc, can be expressed as

Πtra(ns, ηs) + Πref(ns, ηs) + Πdis(ns, ηs) = Πinc , (6)

where the transmitted power, Πtra, the reflected power, Πref, and the dissi-

pated power, Πdis, depend on both the modal density of the panel, ns, and

the panel loss factor, ηs. The power incident on a wall of the first room when

a diffuse field persists within the room is [1]

Πinc =
ω2Se1
8π2c2

, (7)

where S is the wall area, c is the speed of sound of the fluid filling the room,

and the modal energy, ei = Ei/ni, is introduced by exploiting the main SEA

hypothesis concerning equal distribution of the system energy, Ei, among

its modes [1]. The expression for the incident power in case of a diffuse

acoustic field, Eq. (7), is a very simple analytical formula and leads to easier

theoretical developments. Furthermore, the diffuse field is fully compatible

with the statistical approach adopted. The power dissipated by the panel

can be expressed as [1]

Πdis = ωEsηs = ωesnsηs . (8)

As a result, the power balance for the panel, Eq. (6), can be written as

τd(ns, ηs) + rd(ns, ηs) +
8π2c2

ωS

(
es
e1

)
nsηs = 1 , (9)
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where τd = Πtra/Πinc is the power transmission factor and rd = Πref/Πinc

is the power reflection factor. By linearizing Eq. (9) with respect to panel

damping, ηs, and invoking the power balance for null structural damping

(τd|ηs=0 + rd|ηs=0 = 1) we obtain

δηs

[
∂τd
∂ηs

+
∂rd
∂ηs

+
8π2c2

ωS

(
es
e1

)(
ns + ηs

∂ns

∂ηs

)]
ηs=0

= 0 . (10)

In case of null damping, the modal energy of the panel is equal to the mean of

the modal energies in the rooms [14]: es|ηs=0 = (e1+e2)/2. Moreover, invok-

ing the SEA hypothesis concerning the weak coupling between subsystems

[15] (ηij ≪ min(ηi, ηj)), we obtain e2/e1 ∼ 0 and consequently es/e1 ∼ 0.5.

Since Eq. (10) has to hold for any arbitrary damping perturbation, δηs, the

desired expression for the asymptotic specific modal density of the panel is

obtained:

µ∞ = − ω

4π2c2

(
∂τd
∂ηs

+
∂rd
∂ηs

)
ηs=0

. (11)

3.2. Weak coupling and non-resonant path

The expression for the asymptotic specific modal density of the panel,

Eq. (11), is derived under the hypothesis of i) negligibility of the non-resonant

path in the power transmission and ii) weak coupling between subsystems

(rooms). The only way to fulfil these hypotheses is to properly choose the

properties of the fluid for which the sound transmission is evaluated. In

particular, the non-resonant path in the sound transmission is related to the

mass-law contribution, which is predominant below the acoustic coincidence.

Moreover, a strong coupling between the two semi-infinite fluids (rooms) is

due to coincidence phenomena. As a result, moving the coincidence region

to low frequencies, well below the frequency range of interest, ensures both a
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negligibility of the non-resonant contribution to the sound transmission and

a weak coupling between the rooms. To this end, the speed of sound, c, must

be small enough to fulfil the above discussed hypotheses at the minimum

frequency at which the specific modal density, µ∞, is desired. Additionally, it

can be observed that for a diffuse field at a given frequency, ω, the modulus

of the projection of the incident wave on the interface, kt =
√
k2
x + k2

y =

ω sin(θ)/c, spans as 0 ≤ kt < ω/c. As a consequence, the speed of sound, c,

must be set as small as possible to ensure the excitation of all the propagating

waves contributing to the modal density of the medium. Moreover, the limit

of the mechanical impedance of a thin plate can be expressed as [16]

lim
c→0

Zp = jω lim
c→0

(
m− Bk4

t

ω2

)
= −jω3B

sin4(θ)

c4
, (12)

where the panel mass and, consequently, the non-resonant contribution dis-

appear. Instead, the choice of the fluid density, ρ, is less critical. In fact, a

low speed of sound of the surrounding fluid yields to Z = ρc ≪ Zp, so grant-

ing a weak coupling between the structure and the fluid and, consequently,

between the rooms, regardless of the chosen density, ρ. The expression for

the asymptotic specific modal density, Eq. (11), can therefore be modified as

µ∞(ω) = − lim
c→0

[
ω

4π2c2

(
∂τd(ω, ρ, c)

∂ηs
+

∂rd(ω, ρ, c)

∂ηs

)
ηs=0

]
∀ρ ∈ R+ , (13)

where the limit ensures fulfilment of the hypotheses involved to derive Eq. (11)

in the frequency range of interest.

3.3. Evaluation of the transmission and reflection coefficients

The diffuse transmission factor, τd, and reflection factor, rd, can be de-

fined by expressing the diffuse acoustic field in the reverberant room as a
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combination of plane waves traveling in all the possible directions [16]. At

a given frequency, ω, each plane wave impinging upon the flat structure is

defined by its amplitude, I, azimuth, α and elevation, π/2−θ. Both a trans-

mitted wave and a reflected wave therefore propagate from the medium and

their amplitudes, T and R, depend on the properties of the barrier. Assum-

ing unitary amplitude for every incident wave, the power transmission and

reflection factors related to the incident diffuse field can be expressed as

τd(ω) =
1

π

∫ 2π

0

∫ π/2

0

|T (ω, θ, α)|2 cos(θ) sin(θ)dθdα , (14)

and

rd(ω) =
1

π

∫ 2π

0

∫ π/2

0

|R(ω, θ, α)|2 cos(θ) sin(θ)dθdα . (15)

A practical and efficient tool for evaluating the transmission and reflec-

tion coefficients, T and R, of planar, stratified media is the TMM. This

approach easily allows for multilayers made from a combination of elastic,

porous and fluid layers. It assumes the multilayer of infinite extent and uses

a representation of plane wave propagation in different media in terms of

transfer matrices. The transfer matrix of a layered medium is obtained from

the transfer matrices of individual layers by imposing continuity conditions

at interfaces. Enforcing the impedance condition of the surrounding fluid, at

both the excitation and the termination side, allows calculation of the trans-

mission coefficient, T , and the reflection coefficient, R. This methodology is

explained in detail in chapter 11 of Ref. [16]. In the frame of linear vibro-

acoustics, the wave approach on the basis of the TMM provides accuracy and

efficiency in defining the sound transmission through planar structures with

infinite extent, flat interfaces and homogeneous layers. However, the last two
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limitations can be overcome by involving a FE model for the periodic unit

cell of each heterogeneous layer [12].

3.4. Retrieving dispersion curves

As stated, the above presented theory draws legitimacy from the idea that

sound transmission through the thickness of a structure hides and carries the

very same information as the dispersion problem for the medium. In order to

realize such an idea, a procedure to retrieve dispersion solutions is presented.

The acquired expression for the asymptotic specific modal density of the

panel, Eq. (13), provides the total modal density of the medium, since the

incident diffuse acoustic field adopted excites every possible free-wave in the

medium. In order to obtain the modal density of a specific wave, only this

one must be involved in the transmission of sound through the medium.

To this end, the diffuse field must be replaced with a number of incident

acoustic waves contained in a wedge narrow enough to excite a single wave.

As a consequence, the expressions of the power transmission and reflection

factors, Eq. (14) and Eq. (15), become

τ(ω, θi, ᾱ) = 4

∫ θi+∆θ/2

θi−∆θ/2
|T (ω, θ, ᾱ)|2 cos(θ) sin(θ)dθ

cos(2θi −∆θ)− cos(2θi +∆θ)
, (16)

and

r(ω, θi, ᾱ) = 4

∫ θi+∆θ/2

θi−∆θ/2
|R(ω, θ, ᾱ)|2 cos(θ) sin(θ)dθ

cos(2θi −∆θ)− cos(2θi +∆θ)
, (17)

where ᾱ is the selected direction of propagation, θi defines the selected in-

cidence and the interval width, ∆θ, must be small enough to ensure the

excitation of a single free-wave in the structure. The modal density function
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can therefore be expressed as

n(ω, ki, ᾱ) = − lim
c→0

[
Sω

4π2c2

(
∂τ(ω, θi, ᾱ)

∂ηs
+

∂r(ω, θi, ᾱ)

∂ηs

)
ηs=0

]
, (18)

where ki = ω sin(θi)/c. The pair (ωj − ki) for which n(ω, ki, ᾱ) > 0 be-

longs to the j-th dispersion curve of the medium for the given direction of

propagation, ᾱ, and n(ωj, ki, ᾱ) is the related modal density. It must be

remarked that only acoustically effective dispersion curves can be recovered,

since acoustically ineffective free-waves of the medium cannot be excited by

an incident acoustic wave. In other words, all the free-waves (or modes) char-

acterized by null out-of-plane displacement at the interfaces are not involved

in the transmission and reflection of sound through the thickness of the struc-

ture and, consequently, they are ignored by the present theory, in terms of

both dispersion curves and total modal density. Such an intrinsic property of

the proposed methodology automatically ensures the proper modal density

for applications involving primarily the coupling of the structure with acous-

tic cavities. However, further analyses may be needed to assess the efficacy

of the discarded waves in terms of structural transmission.

4. Boundary Contribution

The boundary contribution of the modal density is defined by the cor-

rection factor, δ, which appears in Eq. (5). Simply supported boundary con-

ditions at the whole perimeter imply δ = 1. Otherwise, the low-frequency

modal behavior of the structure, accounting for the actual boundary condi-

tions, must be assessed. A modal analysis can provide a number of lowest

eigenfrequencies for a system. The sorted eigenfrequencies allow to assess
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the mode count function, N(ω), by relating the mode number, i, of the i-th

mode to its eigenfrequency, ωi. The expression for the mode count function

is also obtained as the indefinite integral of the general expression for modal

density, Eq. (5), with respect to the frequency, ω:

N(ω) = Sξ(ω)− δ
P

2
√
π

√
ξ(ω) +N0 , (19)

where ξ(ω) = ωµ∞(ω) and N0 is the number of rigid modes. As a con-

sequence, the correction factor, δ, can be evaluated by combining modal

information, through N(ωi) = i, and stacking contribution, through µ∞(ωi).

A least squares approach, relied on a set of eigenfrequencies, leads to

δ =
2
√
π

P
·
∑

i

√
ξi(Sξi +N0 − i)∑

i ξi
. (20)

5. Validation Examples

The derivatives of the transmission and reflection coefficients required

to compute modal densities are evaluated by means of finite differences. A

perturbing damping factor of 10−8 ensures satisfactory precision and avoids

numerical issues. At each frequency, the speed of sound of the fluid, c, is

reduced starting from a guess, until the modal density converges. A fluid

density ρ = 1.225 kgm−3 is used for all applications.

5.1. Modal density of a homogeneous plate

The first application involves a simply supported, rectangular plate made

of aluminum alloy (ρ = 2700 kgm−3, E = 71 GPa, ν = 0.3). The di-

mensions are 1 × 4
√
2 × 0.02 m3 and they were chosen to emphasize both

boundary and thickness effects in the frequency range of interest. Integra-

tion over the heading angle, α, can be omitted in Eq. (14) and Eq. (15),
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since the plate is isotropic. Figure 1 shows the modal densities obtained

through the proposed methodology, with (δ = 1) and without (δ = 0) fi-

nite size correction in Eq. (5), along with the analytical expression for a

thin plate, Eq. (1), and the mode count performed for an FE model of the

plate. A speed of sound c = 100 ms−1 grants the convergence of the modal

density in the whole frequency range explored. The FE grid consists of

200×200×4 linear 8-node hexahedron elements with consistent mass. Some

of the eigenfrequencies obtained are related to mode shapes with null out-of-

plane displacements of their external surfaces. These modes are acoustically

ineffective and must be removed for sake of comparison with the proposed

approach. The modal density is evaluated by fitting the mode numbers as

N(ω) = d4ω
2+ d3ω

3/2+ d2ω+ d1
√
ω. All the modal densities are normalized

with the analytical asymptotic value for a thin plate, n∞ = S/(4π)
√

m/B.

As expected, discrepancies between the thin plate and the other models grow

with frequency, because of the shear and thickness effects. Finite size correc-

tion, Eq. (5), improves the evaluation of modal density in the whole frequency

range explored. Figure 2 shows the dispersion solutions retrieved with the

proposed methodology (TMM), along with those evaluated by imposing pe-

riodic boundary conditions on an FE model of the unit cell of the medium

and solving the related eigenproblem [8, 9]. The FE grid used to model

the unit cell of the medium consists of 8 linear 8-node hexahedron elements

with consistent mass. Looking at the eigenvectors resulting from the peri-

odic approach, the related dispersion solutions can be classified as related

to an acoustically effective or ineffective wave. It can be observed that the

proposed methodology, based on the TMM, allows an accurate retrieval of
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the acoustically effective waves. The acoustically ineffective dispersion curve

shown in Figure 2 justifies the discrepancies between the total and effective

mode count performed for the FE model of the whole plate, as shown in

Figure 1.

5.2. Modal density of a sandwich panel with honeycomb core

The second application involves the comparison with an alternative litera-

ture approach providing the modal density of a sandwich panel with isotropic

core as [5]:

n =
Smω

4πN

(
1 +

mω2 + 2N2/D√
m2ω4 + 4mω2N2/D

)
, (21)

where N = Gh(1 + t/h)2, G is the core shear modulus, h is the thickness of

the core, t is the thickness of the face sheet, D = Et(h+t)2/(2(1−ν2)), E and

ν are the elastic modulus and the Poisson coefficient of the face sheets. The

test case refers to a panel of 1 m2 composed of 0.5 mm-thick isotropic skins

made of aluminum (ρ = 2700 kgm−3, E = 71 GPa, ν = 0.3) and a 8 mm-

thick honeycomb core made of nomex. The equivalent material properties of

the core are obtained by means of a homogenization technique [17]. The core

is then forced to be transversely isotropic for the sake of comparison with

the chosen alternative formulation (ρ = 48 kgm−3, Exx = Eyy = 1 MPa,

Ezz = 131 MPa, Gyz = Gzx = 30 MPa, Gxy = 0.26 MPa, νyz = 0.001, νxy =

0.9, νzx = 0.131). Figure 3 shows the dispersion solutions retrieved with the

proposed methodology (TMM) along with the dispersion solutions evaluated

by means of the periodic approach [8, 9]. A speed of sound c = 80 ms−1

grants the convergence of the dispersion solutions in the whole frequency

range explored. The FE grid consists of 12 linear 8-node hexahedron
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Figure 1: Modal density of a simply supported, homogeneous plate
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Figure 2: Dispersion curves of a homogeneous plate
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elements with consistent mass (2 elements for each skin and 8 elements

for the core). Since the panel is transversely isotropic, dispersion solutions do

not depend on the direction of propagation, α. Both acoustically effective and

ineffective waves are shown. The proposed methodology allows the accurate

retrieval of the acoustically effective waves. Figure 4 shows the modal density

for the sandwich panel according to Eq. (21), along with the total and the

bending modal density obtained with the proposed approach and the modal

density evaluated by fitting the bending dispersion curve, k(ω), with a 5th

order polynomial. This latter is obtained with the periodic approach and the

related modal density is evaluated by means of the Courant’s formula [18]:

n(ω) = Sω
2πcpcg

, where cp = ω/k and cg = ∂ω/∂k are the phase velocity and

the group velocity of the wave. The finite size correction is not applied to

modal density (δ = 0), since Eq. (21) takes into account the real size of the

structure only through the panel area, S. Comparison with the modal density

obtained by fitting the bending dispersion curve proves the effectiveness of

the proposed approach in the whole frequency range explored. Discrepancies

observed at high frequencies between the proposed methodology and the

literature formula, Eq. (21), are probably due to the cinematics adopted in

the latter.
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Figure 4: Modal density of a sandwich panel
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5.3. Boundary correction factor

The correction factor, δ, and the resultant modal density of a rectangular

plate with in-plane dimensions of 4
√
2 × 1 m2 were estimated for different

boundary conditions. A three-node triangular element, combining a discrete

Kirchhoff triangle bending element and a constant strain triangle membrane

element, was used to model the plate. The triangles have 10 mm-long and

10 4
√
2 mm-long catheti. Transverse displacement was locked on the perimeter

of the plate and an angular stiffness, k, was applied to each rotational degree

of freedom of the perimeter, according to edge direction. Such technique

make it possible to span between a simply supported plate, k = 0, and a

clamped one, k = ∞. The same analysis has been performed in the case

of a plate constrained only along the long edges. Figures 5 and 7 show

the correction factors, δn, as functions of the nondimensional stiffness, k/B,

where B is the plate bending stiffness, and n is the number of eigenfrequencies

involved in the least squares solution, Eq. (20), along with the correction

factors relied on the whole frequency range explored (300 modes). Figures 6

and 8 show the related modal densities for three values of bounding stiffness,

k, as functions of the nondimensional frequency, ω/ωSS1, where ωSS1 is the

first eigenfrequency of the simply supported plate. The convergence of the

modal density functions, with respect the number of modes involved in the

least squares solutions, is slower for the plate constrained on two opposite

edges. This is possibly due to the additional beam-like modes [13].
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Figure 6: Modal density of a rectangular plate constrained on all edges
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Figure 8: Modal density of a rectangular plate constrained on long edges
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6. Conclusions

The modal density of a planar structure was investigated in a wide fre-

quency range by merging low and high-frequency information: the high-

frequency dynamics was attributed to the stacking properties of the struc-

ture and extracted by means of a statistical analysis of sound transmission

through the infinite counterpart of the structure, while the low-frequency dy-

namics was corrected accounting for the actual boundary conditions of the

structure according to information acquired by means of a modal analysis.

The proposed approach provides a modal density corrected for the real

size of the structure and purged of acoustically ineffective modes as proven

by the comparison with a mode count performed on the finite element model

of a homogeneous plate. Furthermore, the comparison with an alternative

analytical formulation, suited for the specific case of a three-layer system,

proves the effectiveness of the proposed method in a wider frequency range.

The retrieved dispersion solutions perfectly match those obtained using a

periodic approach applied to the finite element model of a unit cell of the

medium. Moreover, the modal density is immediately available at each dis-

persion solution, so avoiding the need to evaluate the related group velocity.

The procedure for estimating the boundary correction factor was also vali-

dated for different boundary conditions, including elastic restraints.

Ultimately, the efficiency of a transfer matrix approach in modeling any

multi-layered structure accurately was combined with the versatility of a

finite element modal analysis in catching the effect of boundaries on the

modal density.
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