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Abstract

The power consumption is a key metric to design computing platforms. In particular, the variety and complexity of current applica-
tions fueled an increasing number of run-time power-aware optimization solutions to dynamically trade the computational power for
the power consumption. In this scenario, the online power monitoring methodologies are the core of any power-aware optimization,
since the incorrect assessment of the run-time power consumption prevents any effective actuation. This work proposes PowerTap,
an all-digital power modeling methodology for designing online power monitoring solutions. In contrast with state-of-the-art so-
lutions, PowerTap adds domain-specific constraints to the data-driven power modeling problem. PowerTap identifies the power
model iteratively to balance the accuracy error of the power estimates and the complexity of the final monitoring infrastructure. As
a representative use-case, we employed a complex hardware multi-threaded SIMD processor, also considering different operating
clock frequencies. The RTL implementation of the identified power model targeting an Xilinx Artix 7 XC7A200T FPGA highlights
an accuracy error within 1.79% with an area overhead of 9.95% (LUT) and 3.87% (flip flops) and an average power overhead of

12.17 mW regardless of the operating conditions, i.e., number of software threads and operating frequency.

Keywords: Dynamic Power, Power Modeling, Power Monitoring, run-time power optimization, RTL methods, Low power

1. Introduction

The power consumption represents a major obstacle to any
advancement in computing technologies, limiting the perfor-
mance of both embedded and high performance computing
(HPC) platforms. On one hand, embedded and portable devices
operate within tight power budget constraints to prolong their
battery lifetime. On the other hand, HPC platforms, that aim
to maximize the performance, are becoming hot-spot limited
since the performance increase is restricted by both the maxi-
mum junction temperature and the cost of the required cooling
systems. While the literature contains several ad-hoc solutions
to optimize the power and energy metrics of both the on-chip
interconnect [1, 2] and the cache hierarchy [3, 4], the power
consumed by the compute unit cores, i.e. microprocessors and
accelerators like GPUs, represents a major component of the
power budget in such systems, particularly in embedded and
mobile platforms. As a consequence, the research community
has explored an increasing number of online power monitor-
ing techniques aimed at optimizing the trade-off between power
and performance [5, 6, 7, 8]. Unlike special-purpose hard-
ware, general-purpose units like microprocessors and GPUs
pose significant challenges both because they are inherently less
power efficient and more difficult to characterize by means of
closed power models, due to the strong dependence on the soft-
ware workloads. Furthermore, because general-purpose units
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are meant to provide the largest degree of flexibility to soft-
ware applications, they are usually overprovisioned in terms
of hardware resources and a significant portion of their sub-
components stay idle, depending on the requirements of the
specific application (or application phase) being run [9]. On
the other hand, the well-known dark silicon problem makes it
impossible to concurrently power all the parts of the computing
device due to the impossibility of dissipating the full amount
of generated heat [10]. In this scenario, online power-aware
optimization techniques may play a key role in that they allow
the dynamic tuning of the available computing capacity aimed
at maximizing the energy efficiency under given thermal con-
straints.

However, the effectiveness of such optimization techniques
is critically subject to the employed power monitoring method
as the incorrect assessment of the power state of the system
strongly affects the quality of the actuation with a negative im-
pact on the power efficiency on the platform. At run-time, the
power consumption can be read out as either a direct mea-
surement or an indirect estimate. The direct measurement is
achieved by means of analog sensors providing highly accu-
rate power values at high temporal resolution. However, such
solution suffers from a severe scalability issue that limits the de-
ployment of more than few sensors even in complex designs and
the use of complex mixed analog-digital design methodologies
to implement them. This fact also prevents the identification
of the thermal hot-spots at run-time, thus negatively impacting
the reliability of the computing platform [11]. In contrast, the
indirect estimate is achieved by means of a power model of the
target architecture that is fed with the platform statistics at run-
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Figure 1: A generic three-stage power model identification flow.

time. Such solutions are usually scalable and cheaper due to
the possibility of implementing an all-digital power monitoring
infrastructure that can monitor any part of the target. However,
in general, they provide a less accurate power estimate com-
pared to direct measurement schemes, thus motivating a huge
research effort to bridge such accuracy gap.

All indirect power estimate schemes leverage the relation-
ship between the power consumption and the internal switch-
ing activity of the target architecture to build a power model
that is later used as part of the online power monitoring infras-
tructure. The possibility of using such relationship at different
abstraction levels highlights a trade-off between the accuracy
of the power estimate and the effort required to extract the re-
quired information from the target platform. Power Monitoring
Counter solutions leverage the information obtained from the
performance counters that are used as the proxy for the switch-
ing activity of the target platform [12, 13]. Such solutions pre-
serve good scalability properties and guarantee a good accuracy
of the power estimates and deliver significant flexibility, since
they can be implemented after-shipping. However, the iden-
tified power model is software-implemented, thus the induced
system-wide performance overhead, at run-time, is proportional
to the temporal resolution of the power estimate time series.
Moreover, the performance counter infrastructure represents an
optional subsystem that can be either not implemented or lim-
ited in the number of the counters that can be concurrently read
out. In contrast, the most precise switching information corre-
lating with the power consumption can be extracted by moni-
toring the toggle activity of each signal in the target platform
at Register Transfer Level (RTL) or the corresponding activity
of the driving logic cells. While the high number of signals to
be monitored makes such solution infeasible, the possibility to
remove the drawbacks of Power Monitoring Counter schemes
motivates the proposal of a number of all-digital power mon-
itoring solutions which try to optimally balance the number
of monitored RTL signals and the accuracy of the power es-
timate [11, 14, 15].

Motivational example.

Figure 1 shows a generic three-stage power model identifi-
cation flow using a fully-combinational 32-bit ALU as an ad-
hoc example highlighting possible accuracy issues of existing
techniques. The power model is identified starting from the ar-
chitectural description of the ALU as well as the power trace
and the switching activity map generated from the simulation

of a generic set of benchmarks (see Power Model Identifica-
tion Stage in Figure 1). To show the limitations of current
solutions that exclude or limit the monitoring of data signals,
assume a pathological situation where the benchmarks in the
training set only exercise the least significant 16 bits of the op0
data operand of the ALU, while all the remaining signals in the
target are kept constant. It is clearly impossible to identify an
accurate power model by means of the control signals only as
suggested in [16]. On the other hand, we identified the power
model according to the methodologies proposed in [11, 15] that
allow monitoring a portion of wider signals. In particular, the
identified power model makes use of the two least significant
bytes of the op0 operand to produce a power estimate. This fact
completely matches the provided switching activity informa-
tion from the training set, since the two most significant bytes
of the op0 operand are constant, thus not contributing to the
power consumption. However, the identified power model fails
to accurately predict the power consumption of the target ALU
when a different set of benchmarks which only exercises the
two most significant bytes of the op0 operand is used. However,
such drawback cannot be addressed by exhaustively extracting
the switching activity for the entire space of data input values
even for simple targets, i.e., the considered ALU shows a space
of the data inputs equal to 2% times two. To this extent, Pow-
erTap delivers a fresh approach to the power modeling problem
to avoid measuring the switching activity of each combination
of data input values in the target.

Contributions. This work presents Powerlap, a methodol-
ogy to design an all-digital power monitoring infrastructure
for generic RTL descriptions encompassing both the RTL-level
power modeling and the feasibility issues. The methodol-
ogy is especially targeted at microprocessor design and, to the
best of our knowledge, it is the first proposal targeting com-
plex hardware multi-threaded architectures with Single Instruc-
tion Multiple Data (SIMD) support, representative of current
multi/manycore accelerators as well as GPU devices. The
power modeling approach turned out to be effective for a large
variety of specific validation examples, including computing
blocks, e.g., Arithmetic Logic Unit (ALU) and Floating Point
Unit (FPU), as well as non computing modules, e.g., Load Store
Units (LSUs) and instruction fetch (IF) functions. The three pe-
culiar innovations of PowerTap are described in the following:

o [SA-constrained data-driven RTL power modeling - Pow-
erTap employs few ad-hoc micro-benchmarks to extract
the required RTL-level switching activity used to identify
the power model. Each micro-benchmark is tailored to
the target architecture and systematically uses a selected
subset of the instructions permitted by the Instruction Set
Architecture (ISA) specification to stress a precise part
of the target platform. Compared to the generic bench-
marks used in the power modeling state-of-the-art propos-
als, the micro-benchmarks employed in PowerTap allow
to dramatically reduce the computational time to extract
the switching activity of the target. In addition, Power-
Tap avoids extracting the complete map of the switching
activity due to the operand data input and output signals



due to their huge size. In contrast, we leverage the lin-
ear relationship between the power consumption and the
switching activity of the operand data input and output to
accurately identify the power model.

o Guidelines for RTL signal selection - The proposed
methodology identifies the crucial signals to be monitored
to achieve an accurate power estimate at run-time, with
minimal area and power overheads. As an improvement
to the state of the art, for each identified signal a set of
guidelines are defined to measure its switching activity in
a way that minimizes the accuracy error within the range
of expected values for such signal.

e Complete power monitoring design methodology - Power-
Tap delivers a complete all-digital power monitoring solu-
tion starting from the RTL description of a generic dig-
ital architecture. To demonstrate the scalability of our
solution, the complete methodology has been validated
against a GPU-like SIMD processor endowed with hard-
ware multi-threading support. The results considering a
target Xilinx Artix 7 XC7A200T FPGA chip highlight an
accuracy error within 1.79% with an area overhead of
9.95% (LUT) and 3.87% (flip flops) and an average power
overhead of 12.17 mW regardless of the operating condi-
tions, i.e., number of software threads and operating fre-
quency.

Structure of the manuscript. The rest of the manuscript is orga-
nized in four parts. Section 2 reports the state-of-the-art on the
online power monitoring solutions. Section 3 presents the Pow-
erTap methodology while the use case architecture is detailed
in Section 4. The results are discussed in Section 5 and some
conclusions are drawn in Section 6.

2. Related works

Direct power measurement methods require either exter-
nal [17] or internal [18] analog meters. Despite their high ac-
curacy and temporal resolution, they suffer from two main lim-
itations. First, they only return the total power consumption,
thus making impossible to monitor either thermal hot-spots or
power consumption of a specific subsystem of the target plat-
form. Second, scalability issues prevent deploying more than a
few of them in complex designs.

The use of the Power Monitoring Counters represents a
widely adopted solution to design indirect power monitoring
schemes. [19] proposed a power monitoring solution that lever-
ages the CPU utilization at the software level as the proxy for
the switching activity of the circuit, given a voltage-frequency
pair. In contrast, [20, 13, 7] proposed different online power
monitoring infrastructures that directly leverage the architec-
tural performance counters to identify a power model for the
ARM big. LITTLE platform. Other authors in [21] presented a
full system power monitoring architecture exploiting the archi-
tectural performance counters. A similar approach is proposed
in [22] targeting the Intel Pentium 4 architecture. [23] pre-
sented a performance counter-based power model to support an

energy-constrained thread scheduling algorithm.

On a different but still related perspective, the investigation
in [24] elaborated on the existence of a minimum set of perfor-
mance counters that allow estimates of the power consumption
that stay accurate across different architectures.

Several works proposed Power Monitoring Counters
schemes for GPUs. [25] presents a linear power model for
GPUs leveraging the performance counters exposed through the
CUDA software interface. [26] discussed a neural network to
predict the average power of a GPU kernel from an empirically
derived counter-based performance model of the kernel itself.
Starting from the instruction types and low-level architectural
counters extracted from a GPU microarchitectural simulator,
[27] employed linear regression tree and random forest meth-
ods to predict the energy of GPU kernels. Exploiting a closed-
form performance model developed in [28], the authors in [29]
presented an analytical power model for GPUs. Most of these
previous works rely on computationally intensive approaches to
solve the power modeling problem, such as neural networks or
complex analytical formulations, which are not suitable for on-
line power monitoring implementations. In fact, they highlight
the difficulty of capturing in a closed form the power behaviour
of the GPU system, particularly the compute cores, only relying
on architectural counters.

We note that the above proposals are limited by the avail-
ability of the architectural performance counters that, in gen-
eral, are integrated in complex computing platforms for which
their presence does not critically affect both the area and the
power budgets of the overall platform. In contrast, ultra-low
power embedded systems pose tight area and power budgets
for the self-monitoring infrastructures, thus imposing ad-hoc
hardware-level solutions.

The all-digital power monitoring proposals represent a recent
solution to cope with the constrained area and power budgets
that are typical present in low power designs. Moreover, such
approaches easily allow minimizing the performance overhead
since the power estimate is computed in hardware. The authors
in [16] presents a methodology to build an all-digital power
monitoring infrastructure starting from the control signals of
the target architecture. Differently, [11] proposed a two-step
methodology to design an all-digital power monitoring infras-
tructure without focusing only on the control signals. In par-
ticular, starting from the complete RTL description of the tar-
get platform, all the signals are virtually organized as multiple
single bit signals. Then, a representative set of the single-bit
signals is selected to form the power model using the switching
activity information extracted from the simulation of a set of
benchmarks. A similar approach is discussed in [15], targeting
single bit flip-flops instead of the corresponding driven signals.
Moreover, [15] accounts for voltage and frequency parameters
in the power model identification process to increase the usabil-
ity of the solution. We note that the current all-digital power
monitoring proposals try to minimize the number of observed
signals without considering the potential loss of accuracy of the
identified power model. In that respect, PowerTap presents a
set of guidelines that remain generic to any all-digital power
modeling solution and are used to define the way the switching



activity is accounted for each selected signal. Finally, the use of
generic benchmarks to extract the switching activity represents
a second source of problems of any current all-digital power
monitoring solution. PowerTap proposes a micro-benchmark
approach bounded to the allowed and realistic Instruction Set
Architecture (ISA) software patterns.

3. PowerTap methodology

PowerTap leverages the RTL-level switching activity to ac-
curately estimate the power consumption of the target platform
with two objectives. First, to deliver a low overhead power
monitoring infrastructure for generic RTL descriptions regard-
less of their size and complexity. Second, to ensure a limited
accuracy error for the identified power model.

Figure 2 depicts the four stage flow that implements the Pow-
erTap methodology. The RTL simulation stage synthesizes,
maps and simulates the target design to extract the switching ac-
tivity of the target platform in the form of a Value Change Dump
(VCD) file. To reduce the computational time for the power
model identification, the ISA-constrained data-driven micro-
benchmarks method generates a set of micro-benchmarks to se-
lectively stress parts of the target platform. A detailed descrip-
tion of the proposed ISA-constrained data-driven approach is
discussed in Section 3.1. The VCD information from the Simu-
lation Stage are used to compute the power trace and the switch-
ing activity for each signal in the target platform (see Power
Trace Extraction Stage in Figure 2). Depending on the final
application of the power monitoring infrastructure, the power
trace is generated with different temporal resolutions. The fem-
poral resolution of the power trace is defined as the fixed time
window, usually expressed in terms of the number of simulated
clock cycles, for which the reported switching activity is used
to compute a single power value. While the maximum tempo-
ral resolution is limited by the employed power analysis tool,
the actually employed temporal resolution is subject to the ap-
plication scenario of the power monitoring infrastructure. For
example, a power trace with a 10us temporal resolution on a tar-
get that is clocked at 100MHz (10ns period) is made of a power
sample time series where each sample is computed from the
switching activity within a time window of one thousand clock
cycles. In general, the switching activity of a signal is defined as
the number of changes in the logic state of the signal itself over
a finite amount of time. We extend such definition for multibit
signals to support PowerTap. The Single Toggle Count (STC) of
a multibit signal is defined as the transition of the logic state of
one of more bits of the signal itself. In contrast, the Hamming
Weight Count (HWC) of a multibit signal is the number of bits
that flip their logic state during the multibit signal transition. In
particular, the STC of a multibit signal measures the number of
changes of the signal during a fixed amount of time, regardless
of the number of actually switching bits for each transition. The
HWC measures the number of switching bits for each transition
of the same multibit signal over the same fixed amount of time.
PowerTap constraints the number of considered signals during
the power model identification stage by those that represent,
in the design hierarchy, a primary input or output for a module.

From one hand, this strategy avoids modeling the complex non-
linear relationship between the power consumption and the in-
ternal logic of an hardware module. On the other hand, this fact
positively impacts the computational time for the power model
identification due to a strong reduction in the number of consid-
ered signals. However, additional techniques are discussed in
Section 3.2 and Section 3.3 to achieve an affordable complexity
of the power model identification stage even for complex tar-
get platforms. The Power Model Stage takes the power traces
and switching activity in terms of both STC and HWC for each
considered signal of the design, to identify the power model of
the target platform. Starting from the guidelines to model the
switching activity of the selected signals as either STC or HWC
(see Section 3.2), an in-depth discussion of the power modeling
stage is devoted in Section 3.3. The identified power model is
moved from the mathematical to the RTL description and then
it is added to the RTL description of the target platform to en-
able the self-power-monitoring property (see RTL power model
implementation stage in Figure 2). As shown in Figure 3, the
values from the different counters are then combined together
as a weighted sum within each module and across the hierar-
chy for those modules that the methodology considered signif-
icant for power estimation. Notice that, in order to reduce the
power overhead incurred by the monitoring infrastructure itself,
the counters are not immediately fed to the combinatorial mul-
tiplier/adder network, but buffered in a register that is enabled
only when strictly needed, as required by the desired power res-
olution.

3.1. ISA-constrained data-driven benchmarks

The data-driven modeling (DDM) represents the de-facto
solution to identify the power model of a given generic RTL
description, within the all-digital power monitoring method-
ology [11, 15]. In contrast to physical and mathematical ap-
proaches, the DDM is based on the data analysis to identify the
model without knowing the physical behaviour of the system
at hand. On one hand, this fact greatly simplifies the identifi-
cation of the power model that is not forced to obey to any a-
priori physical behavior for which the corresponding mathemat-
ical formulation can be arbitrarily complex. On the other hand,
the data collection represents a critical design stage to properly
extract valuable switching activity information. In particular,
the selected dataset has to be representative of all the possi-
ble working conditions of the target and also reasonably com-
pact to minimize the computational time to collect the required
information. To extract such switching activity information,
the state-of-the-art solutions employ a large set of benchmarks,
e.g., 150 benchmarks [15] and 60 benchmarks [13], claiming
that they are representative of all the possible working condi-
tions of the target. However, such benchmarks are not primarily
intended for power modeling and without proper constraints we
demonstrated the impossibility of extracting an accurate power
model of the target (see Figure 1). In addition, the computa-
tional time to extract the required switching activity grows with
both the complexity and size of the target architecture as well
as the execution time of the benchmarks in the training set, thus
motivating the use of small ad-hoc training benchmarks.
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PowerTap introduces a novel ISA-constrained data driven
solution to minimize the computational time to complete the
switching activity extraction still ensuring good accuracy of
the corresponding identified power model. Similar to previous
works dealing with counter-based GPU power estimation [8],
we classify the different instructions in the ISA by the cor-
responding architectural functionality they stress in the target
platform. In particular, the method classifies the ISA instruc-
tions in three partitions, i.e., ALU, FPU and LSU. For each
partition, we split the scalar and the SIMD instructions, since
depending on the actual microarchitecture they can differently
exercise the same functional unit. We note that the micro-
benchmarks are designed starting from the architectural view
of the target platform thus being suitable regardless the actual
microarchitecture that implements the ISA. Depending on the
maximum operating frequency of the target and the required
temporal resolution of the power trace, we design each micro-
benchmark to produce at least hundred power samples to avoid
border effects while ensuring a feasible simulation time. A criti-
cal design step requires to avoid exploring the space of all input
data values. In particular, the data operands of each instruc-
tion in the micro-benchmark are fed with random values, since
the actual dependency between the power consumption and the
data signals is addressed in the Power modeling stage. Pow-
erTap also implements a feedback loop from the Power model
identification stage to the ISA-constrained data-driven micro-
benchmarks. This link allows the designer to manually tune the
classes of micro-benchmarks in the case the identification stage
highlights the impossibility to accurately model the power con-
sumption of the target.

3.2. Signal selection guidelines

This section presents the five practical guidelines to select
the signals to build the power model of the target architecture.
For each type of signal, i.e., control or data, it is specified how
to measure the switching activity to maximize the information
and to avoid over-fit behaviours.

Gl Take a data-centric approach for defining the power
model. As highlighted by our motivational example, ex-
cluding or trimming the data signals used as input to the
power model, possibly driven by a certain training set

used during the power model identification stage, can jeop-
ardize the resulting model accuracy. Such benchmark-
induced biases are less critical for performance-oriented
models, while for power they might heavily affect the re-
sulting estimate due to the inherent dependence of the
switching activity on the data bit patterns. As a conse-
quence, guideline G1 assumes that all bits of the selected
data signals are used as inputs to the data model.

G2 Consider both data and control signals. Despite their dif-
ferent contribution both control and data signals have to
be considered in the process that selects which signals are
going to made the power model.

G3 Hamming Weight Count (HWC) to measure the switch-
ing activity of data signals. The relationship between the
power consumption and the switching activity of a data
signal depends on the actual number of bits of the signal
that switches their state, i.e., hamming weight, since, in
general, the higher the hamming weight, the higher the
power consumption.

G4 Single Toggle Count (STC) to measure the switching ac-
tivity of control signals. In general, a change in a con-
trol signal of the design enforces the execution of a differ-
ent hardware operation regardless of the hamming weight
of the control signal itself. Thus, for each control signal,
the guideline imposes to account for a single change, i.e.,
STC, any time the control signal changes at least one bit.

G5 Black-box modeling. The internal state of a generic RTL
description is complex and in general highly non-linear,
thus imposing the use of complex family of models to ac-
curately capture its dynamic. To avoid such modeling ef-
fort, G5 describes two power model identification strate-
gies. First, identify the power model of a generic module
as a function of the input and output signals of the module
itself to reduce to number of processed signals and to allow
a linear model formulation. Second, identify the power
model of a module as the sum of the power estimates of
all of its first level children modules plus the power esti-
mate of its glue logic.

3.3. Power modeling stage
The power model identification stage represents the core of
the PowerTap methodology and tries to address two contrasting
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requirements. First, the quality of the identified power model
strongly affects the accuracy of the power estimates and con-
sequently any power-aware optimization policy. Second, the
complexity of the identified power model dominates the power
and area overheads of the final power monitoring infrastructure.

PowerTap implements a three-stage power model identifica-

tion stage to fulfill the two opposite requirements. First, the
top-down visiting algorithm builds the power model of the tar-
get platform as the composition of a set of power models iden-
tified in a corresponding number of modules in the target hier-
archy (see Algorithm 1). The strategy allows limiting the size
of each identification problem to a single module, thus ensuring
a scalable solution. This is in contrast with the state-of-the-art
solutions, e.g., [11, 15], that try to flatten the target hierarchy to
a huge set of signals to identify a global power model that, thus,
prevents the scalability of the methodology.
Second, the validation algorithm assesses the accuracy of the
identified power model against a set of general purpose bench-
marks. This step evaluates the quality of the collected switch-
ing activity information, since a failure at this stage imposes
to augment the set of micro-benchmarks to collect the miss-
ing switching activity information (see the link from the Power
model identification to the ISA-constrained data-driven micro-
benchmarks in Figure 2). Third, the reduction algorithm scans
and merges any signal that is common to different identified
power models to minimize the power and area overhead of the
final power monitoring infrastructure.

The top-down visiting algorithm processes the module hier-
archy of the target starting from the top module and iterating,
top-down, on the levels of the hierarchy (see Algorithm 1). As
in [11], we employ the RMSE accuracy metric to drive the vis-
iting (see Algorithm 1) and the model identification (see Algo-
rithm 2) algorithms. The RMSE is defined in Equation 1. At
the beginning of the Power modeling stage, Algorithm 1 iden-
tifies the power module for the top module of the hierarchy. If
the RMSE accuracy error of the identified power model does
not satisfy the accuracy threshold (accT hreshold), Algorithm 1
proceeds by visiting the levels of the hierarchy top-down. At
each level of the hierarchy, Algorithm 1 computes the power
model for each module as well as the power model of the glue
logic. The model of the glue logic is obtained by subtracting the
power consumption minus the sum of the power consumption
of the modules in the considered level. For a level of the hier-

Algorithm 1 Top-down hierarchical visiting.

1: function [PM, p] VisiT( )
2: for [ € 1 : maxLevTh do
3: // compute one power model for each module of this level
4: for m € submodules(l) do
5: [PM,, Pim] = ComputePwr(pl,m,H_WC,,m,mLm);
6: end for
7: //compute power model for the glue logic
8: glue*pwr =Pi-1— Zm ﬁ/,m; - .
9: [PM, gies Pigive]l = ComputePwr(glue_pwr, HWC_y ,,, STC)_y )
10: //exit condition
11: if RMSE(Y, mpy + Pigue) < accThreshold then
12: re”‘rn[PMla PMl.glue, Z mﬁl,m + ﬁl,glue];
13: end if
14: //update best power model vector
15: IacurrLev = Zm ﬁ/,m + ﬁIA,glue;
16: PMrurrLev = PM/ + PMLg/ue;
17: [Pth ﬁb] = BestRMS E([Pth ﬁb]v [PMcurrLew ﬁ(‘urrLev]);

18: end for
19: return[PM,, p,];
20: end function

archy, the power model of the glue logic accounts for the the
power consumption that is not observable from the modules of
the considered level. The RMSE accuracy error is evaluated as
the sum of the power estimates from all the modules of the ac-
tual level of the hierarchy plus the power estimate of the glue.
Algorithm 1 terminates either when the RMSE computed for
a specific level of the hierarchy satisfies the accuracy threshold
(accT hreshold) or when the threshold on the maximum number
of levels is reached (MaxLevTh). In the latter case, the vector
of power models that collected the best RMSE is returned even
if the accuracy threshold is not satisfied.

Algorithm 2 represents a utility function within Algorithm 1
and computes the power model for a module given its RTL
description, the power consumption time series (p) and the
switching activity information for each input and output sig-
nals of the module itself. The switching activity information is
provided in the form of either HWC or STC depending if the
corresponding input or output is a data or a control signal, i.e.,
HWC and STC in Algorithm 2, respectively. To compose the
power model, Algorithm 2 considers all the data signal statistics
(HWC) as well as a subset of the control signals. The latter are

s



Algorithm 2 Power model computation.

1: function [PM, p] CompUuTEPWR(p, HWC,STC)

2: selStats = HWC,

3 [PM,RMS E] = Ident(p, selS tats);

4: STCypr =S ortByPowerC orrelation(STC, P);
5: forie STC,; do
6:
7
8
9

[PMyp, RMS E,yp] = Ident(p, [selS tats, ST Cori(i)]);
if RMS E,,, < RMSE then
selStats = [selS tats, STC g, (0)];

: RMSE = RMS E,,;
10: PM = PM,,,;

11: end if
12: end for

13: return [PM, PM(selS tats)];
14: end function

added to the power model following an iterative selection pro-
cess that terminates when the addition of any control signal to
the power model does not improve the RMSE metric (see lines
5-12 in Algorithm 2).

SN(pi - pi)?
N

RMSE = 1)

The validation algorithm simulates a set of representative
benchmarks across different operating conditions to generate,
for each module with an associated power model, the time se-
ries for both the power estimates and the power consumption.
The RMSE accuracy metric defined in Equation 1 is used to as-
sess the quality of the final model. Moreover, the RMSE quan-
tity is also computed between the power consumption and the
power estimate of each identified power model. Such quanti-
ties allow the methodology to identify the power models and
the associated RTL modules for which the collected switch-
ing activity information is not sufficient to provide an accurate
power estimate against the validation set of benchmarks. In
particular, such information is backward propagated to the ISA-
constrained data-driven micro-benchmark block of the Power-
Tap flow to help generate additional micro-benchmarks that se-
lectively stress such modules. Last, the reduction techniques
reduce the complexity of the final power monitoring infrastruc-
ture by merging the signals used in multiple power models. We
note that the minimization of the power and area overheads in-
creases with the width of the merged signals, thus, in general,
the data signals represent the best candidates for the merging
actions.

4. The nu+ architecture

The proposed methodology has been validated against nu+, a
hardware multi-threaded SIMD (vector) processor inspired by
the GPU architectural paradigm to allow the execution of both
general-purpose [30, 31] and GPU-like [32, 33] applications.
The heart of the platform is a RISC in-order core, oriented to
highly data-parallel kernels with a lightweight control infras-
tructure, shown in Figure 4. Most of its resources are dedi-
cated to computation-intensive operations on massive datasets,

blending together a hardware multi-threading support with a
SIMD paradigm. The nu+ implementation used in this work
is equipped with 4 hardware threads, with a SIMD capability
able to compute 16 concurrent operations each cycle, and 64
general purpose registers. Both Data and Instruction caches are
4-way set-associative with 128 sets each and a data width of
512 bits.

Each hardware thread has private internal resources such as
PC, register file, and status/control registers along with a pri-
vate memory stack, although all threads share the same com-
pute units and L1 cache. Specific thread information, such as
current PC value, thread status, is handled by the Thread Se-
lection unit in the first stage, which implements an interleaved
multi-threading scheduling in a fine-grain way with a low ar-
chitectural impact. The Thread Selection unit issues an active
thread to the next stage based on its information. At this stage,
an internal round robin arbiter forwards to the Instruction Fetch
the selected thread ID and its current PC value in a fair mode af-
ter every cycle. The Thread Selection updates the issued thread
PC value according to the feedback signal from the Instruction
Fetch, and in case of instruction cache miss the issued thread
is stalled becoming no more eligible for scheduling. Its PC
value is not increased and a memory request for the requested
instruction line is issued to the main memory subsystem, which
can require up to m cycles depending on the main memory la-
tency. When the data is gathered back from the main memory,
the Thread Selection is notified and the previous stalled thread
is reactivated. In case of instruction hit, the Instruction Fetch
retrieves the requested instruction from the cache, which flows
along with the scheduled thread ID to the Decode unit in the
next cycle.

The control system relies on a lightweight scoreboarding
mechanism for both data and structural hazard detection. The
Thread Scheduler is the heart of such logic. It updates the
scoreboarding system stalling threads whenever hazards or data
cache misses occur. This stage checks potential data hazards
for the incoming thread and updates the scoreboard consis-
tently with the issued instruction. At the same time, it checks
if the current thread instruction raises a structural hazard on
the Writeback stage. In the execution datapath different opera-
tors have different latencies (such as dividers and multipliers),
therefore they can collide in the writeback operation. At each
clock cycle, the Thread Scheduler issues a schedulable thread
to the execution datapath and, whenever hazards occur, it no-
tifies back involved threads IDs to the Thread Selector which
stalls them until those conditions are no more true.

Execution datapaths and register files are designed to exploit
data-level parallelism in line with the SIMD paradigm. The
Register File Manager fetches data from registers and com-
poses operands. Each thread has both private scalar and vec-
torial register files. The latter can store up to 16 scalar data,
with a total width of 512 bits in order to satisfy the execution
pipeline data throughput. Both register files are organized in
compact SRAMs with two read and a write ports each, allow-
ing two read and a write operations during each cycle. The total
number of registers allocated is proportional to the number of
threads supported. In the current implementation each regis-
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Figure 4: Simplified overview of the target SIMD architecture. This figure highlights both data and thread level parallelism. On the top side of the figure, numbers

in brackets highlight the number of cycle for each stage.

ter file has 256 registers, i.e. 64 for each thread. The control
logic in this stage retrieves the right register subset based on the
requesting thread ID, which feeds the high part of both read ad-
dress ports. In the next cycle, operands are composed based on
the instruction decoded information and issued to the execution
pipelines along with thread and decoded information required
by the computation units.

The architecture implements an instruction set containing in-
structions that operate on arrays of data. Computational units
are organized in hardware vector lanes, with each scalar op-
erator being instantiated 16 times. The Integer Execution unit
and the Floating Point Unit have a similar organization, they
both receive operands composed by the Register File Manager
organized in vectors, then they internally decompose each vec-
tor and feeds all the ALUs and FPUs with scalar operands. In
the Integer Execution unit, all the allocated ALUs perform the
same operation in one clock cycle. On the other hand, floating
point operators have different latencies, up to 32 clock cycles
due the divider in this implementation. Such a data parallelism
allows each thread to perform SIMD operations on 16 indepen-
dent data simultaneously. The Integer Execution unit also con-
tains the Branch Control module which handles jumps and roll-
backs, flushing the control information for the involved thread
in the pipeline when they occur and notifying the Instruction
Fetch to update the thread PC. On the other hand, the compu-
tational outputs from both the integer ALUs and floating-point
units are gathered and reorganized in a vectorial form, then for-
warded to the LSU module along with threads information.

The LSU module is organized in a 4-way set-associative
write-back L1 cache strictly coupled with a light cache con-
troller which implements a simple valid/invalid coherence
mechanism. Such cache controller handles misses and memory
transactions and it also provides both request serialization and
merging mechanisms in order to correctly manage concurrent
requests from different threads. The cache line width matches
the internal hardware lanes capability, thus a read memory re-
quest loads 16 scalar data from main memory and stores them
into a vector register at once, minimizing requests and exploit-
ing the internal parallelism of the SIMD accelerator. On the
other hand, the LSU is organized in three stages. The first stage
receives the effective address calculated by the previous stage

and, in case of data misses, it notifies the Thread Scheduler unit
stalling the thread until the data is retrieved back from the main
memory. The other two stages manage respectively coherence
information and data.

Finally, the writeback receives both integer execution unit
and LSU outputs and forwards one of them to the register file
write port based on the instruction performed. The right register
subset is selected based on the current thread ID. Concurrently,
the Thread Scheduler sniffs transactions from the writeback
module and updates the scoreboarding system accordingly.

The target architecture comes with a toolchain based on the
LLVM project and includes a custom version of the Clang front-
end and a native nu+ back-end. The Clang front-end allows
users to compile C/C++ source code in a fast way and with a
low memory usage. On the other hand, the toolchain is deeply
customized for exploiting the core internal data parallelism and
reaching the maximum throughput. The compiler has a com-
plete vision of the SIMD nature of the datapath. It supports
custom vector types, thus standard arithmetic and bit-wise op-
erators are available for both scalar and vector operations. Fur-
thermore, the custom version of Clang supports ad-hoc built-in
functions that are required to fully exploit target specific fea-
tures, such as thread synchronization and special SIMD opera-
tions.

Control and special purpose registers are visible to the host
controller. The architecture provides a dedicated interface
which allows the manager to retrieve such registers in real-
time during the execution without interfering with the kernel
flow. The baseline implementation is equipped with general
performance counters, such as cache data misses occurred. In
this work, the interface has been extended in order to read the
counter registers required by the proposed methodology achiev-
ing the capability to read in real-time the current power estima-
tion consumed by the architecture.

5. Experimental results

This section discusses the results of the PowerTap method-
ology applied to the nu+ architecture encompassing a two-fold
objective: first, demonstrating the accuracy of the power es-
timates extracted from the implemented power monitoring in-
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Figure 5: Power estimates over time for the mathematical and RTL implementation of the identified power model. The single thread version of the benchmarks in
the validation set are executed on a nu+ instance that operates at SOMHz and the computed RMSE s4; and RMSEg7,, are 0.85 and 0.50, respectively. Results are
obtained by concatenating the executing of the benchmarks (1)-(14) (see Table 1 for the mapping between benchmark name and numeric identifier).

Table 1: Subset of the WCET benchmarks used as validation set. For each
benchmark we provide a SIMD and scalar implementation and, for the former,
a three parallel version of the benchmark using 1, 2, and 4 threads of execution.
The numeric identifiers associated to each version of the benchmarks are used
in Figure 5 — 7 to show the sequence of executed benchmarks.

Scalar SIMD
1 1 2 4

conv_layer v (1) v (10) v (15 Vv(20)
fdct v (2)

fft v (3) vy o vae  v(@21
fibcall v (4)

fir v (5) v(12)y va1n v(@22)

gauss vV (6) v(13) v(18) Vv(23)
ludcmp v (7)
minver v (8)

mmvet_float v (9) V(4 v(19) v(24)

frastructure; second, experimentally validating the robustness
of our solution when used against different flavors of the same
nu+ architecture.

Use case scenarios. PowerTap has been validated consider-
ing three architectural parameters of the nu+ target platform: i)
scalar and vector, i.e., Single Instruction Multiple Data (SIMD),
benchmarks, ii) multi-threaded benchmarks and iii) different
operating frequencies, i.e., 20MHz, 50MHz, and 62.5MHz. We
note that the power model has been identified considering a
single operating frequency and the single-threaded version for
all the employed micro-benchmarks while has been validated
across different case study scenarios to assess the flexibility of
the proposed methodology. We employed Xilinx Vivado 2017.4
toolchain to synthesize, map, and simulate the nu+ platform
considering the Nexys4 Video development board endowed with
an Artix-7 XC7A200T as target FPGA. The operating frequency
constraints for the synthesis has been set to 100MHz without
imposing area and power constraints.

Benchmarks. The validation set is made of 9 benchmarks from
the WCET suite [30]. Each benchmark provides different im-
plementations to stress different parts of the target architecture
(see Table 1). In particular, we provide the scalar version for
each workload and the SIMD implementation for five of them.
In addition for each SIMD benchmark the parallel versions us-

ing one, two, and four threads have been developed. Table 1
associate a numeric identifier to each benchmark. The numeric
identifiers are used in the presented results to show the sequence
of executed benchmarks within each of the analyzed use-cases.
Starting from the guidelines discussed in Section 3.1, a set of
6 micro-benchmarks is used to collect the switching activity
information for the power model identification. Starting from
the nu+ Instruction Set Architecture (ISA) we implemented
a micro-benchmark for each identified instruction type, i.e.,
ALU, FPU, and LSU. Moreover, for each micro-benchmark
both the scalar and the SIMD implementations are provided.
We note that the switching activity is collected considering the
single-threaded implementation of each micro-benchmark and
the SOMHz operating frequency is used.

Evaluated metrics and power monitoring infrastructure imple-
mentation. PowerTap has been validated considering the accu-
racy as the quality metric as well as the power and area over-
heads. As for the power model identification, the accuracy
metric is defined as the RMSE (see definition in Equation 1)
computed on the benchmarks of the validation set. We employ
the Xilinx Report Power modeling tool within the Xilinx Vivado
2017.4 suite to compute the power consumption starting from
the VCD information. Unfortunately, Xilinx Report Power al-
lows estimating only the average power consumption on the en-
tire simulated time window. To this extent, we implemented a
wrapper that splits the VCD in time slices to allow collecting a
time series of power values. In particular, we set the temporal
resolution of the power trace to 2us, i.e., 100 clock cycles at
the operating frequency equal to SOMHz. We note that the tem-
poral resolution is kept constant at 2us regardless the operating
frequency of the design. The collected results are discussed
in terms of the accuracy of the identified power model with re-
spect to the power consumption extracted from the Xilinx Power
Report tool when the benchmarks in the validation set are exe-
cuted. The results are reported considering both the mathemat-
ical formulation (Math) and the RTL implementation (RTL) of
the identified power model to highlight the negligible accuracy
loss of the implemented power monitoring infrastructure. We
employed the strategy proposed in [14], that makes use of fixed
point arithmetic, to implement the RTL power monitoring in-
frastructure starting from the mathematical formulation of the
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(a) Two-threaded benchmarks (RMSE pz4:,= 0.66 RMSEgr, = 0.81). Results are obtained by concatenating the executing of the benchmarks (15)-(19) (see Table 1).
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(b) Four-threaded benchmarks (RMSEy4,= 1.22 RMSEg7..= 1.79). Results are obtained by concatenating the executing of the benchmarks (20)-(24) (see Table 1).

Figure 6: Power estimates over time for the mathematical and RTL implementation of the identified power model. The two and four thread versions of the
benchmarks in the validation set are executed on a nu+ instance that operates at SOMHz.

power model. Each switching activity counter (see Figure 3)
is implemented as an RTL register with a number of bits that
allows counting the maximum switching activity of the moni-
tored signal for the entire duration of the 2us time frame with
no overflow. The maximum switching activity is intended as
the flip of each bit of a multibit signal for each clock cycle.
The area overhead is computed as the percentage increase of
the occupation of the target due to the power monitoring infras-
tructure. Such overhead is reported in terms of LUT and reg-
isters. We also reported the average power consumption due to
the power monitoring infrastructure considering the nu+ plat-
form and the Xilinx Artix 7 XC7A200T FPGA chip. We note
that PowerTap delivers an all-digital power monitoring solution
that introduces no performance overheads, since the power es-
timate is computed by means of dedicated hardware resources
that stay separated from the computational resources of the tar-
get platform.

5.1. PowerTap accuracy results

Figure 5 reports the results considering a nu+ instance op-
erating at 50 MHz while executing the single thread version of
each benchmark in the validation set. We note that the scalar
and the SIMD versions of each benchmark have been executed.
To enhance the readability of the results, the time-based power
trace for each benchmark has been concatenated to provide a
single trace. The y-axis report the total power consumption
of the nu+ in mW. The RMSE accuracy error is limited to
0.85 (Math) and 0.50 (RTL).

Figure 6 reports the power estimates for both Math and RTL
as well as the real power consumption of nu+ while executing
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the subset of the benchmarks in the validation set that employ
two (Figure 6a) and four (Figure 6b) hardware threads. We
note that the maximum RMSE accuracy error is limited to 1.22
(Math) and 1.79 (RTL) for the multi-threaded version of the
benchmarks even if such configuration differs from the identifi-
cation scenario where single-threaded micro-benchmarks have
been used. Moreover, Figure 7 reports the power estimates,
both the Math and the RTL, and the real power consumption
of nu+ while executing the single thread version of the bench-
marks in the validation set on a nu+ instance operating at
20MHz (Figure 7a) and 62.5MHz(Figure 7b). Similar to the
multi-threaded scenario, we report the maximum RMSE accu-
racy error that is limited to 1.17 (Math) and 1.19 (RTL). The
flexibility of the identified power model in providing accurate
power estimates for a broad range of use-case scenarios con-
firms the quality of the identified power model itself and the ef-
fectiveness of the methodology to design the micro-benchmarks
that have been used to collect the switching activity informa-
tion.

5.2. PowerTap power and area overheads

We evaluated the area and power overheads due to the final
RTL implementation of the power monitoring infrastructure of
the nu+ platform targeting the Xilinx Artix 7 XC7A200T FPGA.
Table 2 reports the area and the power overheads due to a sin-
gle power counter that is monitoring a signal of the target. In
particular, we considered different sizes for the monitored sig-
nal to show the scalability property of the power counters. The
reported power values are extracted considering the maximum
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Figure 7: Power estimates over time for the mathematical and RTL implementation of the identified power model. The single thread version of the benchmarks in

the validation are executed on a nu+ instance that operates at different frequencies.

Table 2: Power and area overheads of a PowerTap counter that monitors an
architectural signal. Different sizes of the signal are considered. Both HWC
and STC switching activity counters are considered. The power consumption is
calculated assuming the maximum switching activity of the monitored signal.

Monitored signal | Counter Area Power with max
width (bits) type LUTs Flip flops | switch activity (mW)
B HWC 98 68 4.7
STC 28 53 2.3
64 HWC 146 103 9.3
STC 39 85 4.1
128 HWC 239 170 17.7
STC 60 149 7.7

switching activity, that is defined as the toggle of the logic state
of each bit of the monitored signal at each clock cycle. More-
over, we set a temporal resolution of 2us and an operating fre-
quency of 50 MHz, thus collecting the switching activity across
100 clock cycles to compute the power value. We note that the
number of used flip flops of the HWC power counter increases
with the size of the monitored signal and the number of cycles
in the time window. In contrast, the number of used flip flops
for an STC power counter is function of the number of clock
cycles in the time window, since for each clock cycle at most a
unit increment is added to the counter regardless of the number
of toggled bits in the monitored signal.

As expected, the power consumption is greatly affected by
the counter type, i.e., HWC or STC, since the same switching
activity in the monitored signal induces a switching activity that
is higher for the HWC counter.

The final results are obtained from the implementation of the
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power monitoring infrastructure within the nu+ platform target-
ing the Xilinx Artix 7 XC7A200T FPGA. The area overhead is
limited to 9.95% LUT and 3.87% flip flops. Moreover, the aver-
age power overhead due to the power monitoring infrastructure
is 12.17 mW.

6. Conclusions

This work presented PowerTap, a novel power modeling
methodology to design an all-digital online power monitoring
infrastructure for complex GPU-like processor architectures. In
contrast with the state of the art, PowerTap exploits the ISA of
the target to extract few power-aware micro-benchmarks each
able to selectively stress a part of the target. Such approach
minimizes the computation time to extract the switching activ-
ity to identify the power model. Moreover, the novel top-down
visiting approach iteratively identifies the power model for the
target trading the accuracy for the area and power overheads.

We assessed PowerTap against a hardware multi-threaded
SIMD processor considering a validation set made of 9 bench-
marks for which the scalar and SIMD implementations as well
as their software parallelization using one, two and four threads
generated 24 software scenarios. Moreover, we assess the va-
lidity of PowerTap considering three operating frequencies for
the target platform. The results confirm an RMSEgz, accuracy
error limited to 1.79. We note that such accuracy errors are
collected by using for all the architectural and benchmark con-
figurations the same power model that has been identified once
starting from the switching activity information extracted from



the execution of single-thread benchmarks and a single operat-
ing frequency. This fact qualifies the experimental robustness
of our solution that can deliver a flexible RTL power monitoring
infrastructure remaining accurate against highly different oper-
ating conditions that are not-observed during the power model
identification to minimize the computational time. Consider-
ing the implementation of the power monitoring solution for
the nu+ SIMD platform on a Xilinx Artix 7 XC7A200T FPGA
the area overhead is limited to 9.95% LUT and 3.87% flip
flops. Moreover, the average power overhead is within 12.17
mW, thus making our solution applicable for self-adaptive low-
power target platforms.
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