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ability bias concept from cognitive psychology
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Abstract

Multipurpose water systems are usually operated on a tradeoft of conflicting operating ob-
jectives. Under steady-state climatic and socio-economic conditions, such tradeoft is sup-
posed to represent a fair and/or efficient preference. Extreme variability in external forc-
ing might affect water operators’ risk aversion and force a change in her/his preference.
Properly accounting for these shifts is key to any rigorous retrospective assessment of the
operator’s behaviors, and to build descriptive models for projecting the future system evo-
lution. In this study, we explore how the selection of different preferences is linked to
variations in the external forcing. We argue that preference selection evolves according

to recent, extreme variations in system performance: underperforming in one of the ob-
jectives pushes the preference toward the harmed objective. To test this assumption, we
developed a rational procedure to simulate the operator’s preference selection. We map
this selection onto a multilateral negotiation, where multiple virtual agents independently
optimize different objectives. The agents periodically negotiate a compromise policy for
the operation of the system. Agents’ attitudes in each negotiation step are determined by
the recent system performance measured by the specific objective they maximize. We then
propose a numerical model of preference dynamics that implements a concept from cogni-
tive psychology, the availability bias. We test our modeling framework on a synthetic lake
operated for flood control and water supply. Results show that our model successfully cap-
tures the operator’s preference selection and dynamic evolution driven by extreme wet and

dry situations.

1 Introduction

Recent estimates suggest that existing dams control around 46% of the world largest
rivers, i.e., rivers having an average flows above 1000 m3/s [Lehner et al., 2011]. This fig-
ure is expected to grow rapidly following the renewed interest in dams as a primary mean
to secure water and energy in fast developing African and Asian countries [World Bank,
2009; Zarfl et al., 2014]. Massive infrastructure expansion will further enlarge the num-
ber of river systems whose dynamics is not only determined by their natural streamflow
regime according to naturally varying rainfall, climate, and hydrologic conditions [Bot-
ter et al., 2010], but is mediated by human decisions driven by one or multiple operating
purposes [Caldas et al., 2015]. Understanding and representing such human component is

therefore crucial for characterizing the observed complex dynamics of these systems [e.g.,
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Van Emmerik et al., 2014; Elshafei et al., 2015], for retrospectively assessing the behavior
of the water operators and the associated system performance [e.g., Hejazi and Cai, 2011],
and for constructing more reliable and credible projections of the future evolutions [e.g.,

Wagener et al., 2010].

This evidence has been the inspiring principle for the development of a number of
modeling frameworks explicitly representing both the natural and the human components,
along with their reciprocal interactions, feedbacks, and coevolution in time [e.g., Siva-
palan and Bloschl, 2015]. These frameworks include Coupled Human-Natural Systems
[Liu et al., 2007], Coupled Environmental-Human Systems [Horan et al., 2011], Socio-
Hydrology [Sivapalan et al., 2012], and Socio-Environmental Systems [Filatova et al.,
2016]. Within these approaches, human behaviors are generally represented according
to two distinct perspectives [Smith, 1991]: descriptive models, which describe the inter-
nal decision mechanisms, and normative models, which focus on motivation-based ac-
tions that maximize idealized objective functions. Specifically, descriptive models imple-
ment behavioral rules describing human actions in response to changing forcing (e.g.,
hydro-meteorological). Rules are inferred either from observational data [e.g., Hejazi
et al., 2008] or general theories [e.g., Giacomoni and Berglund, 2015; Sanderson et al.,
2017]. The resulting models often include a large number of assumptions and parameters,
which limit the possibility of generalizing these behaviors to study future decisions under
altered boundary conditions. Besides, a rigorous validation of behavioral rules against ob-
servational data not used in the model calibration is often impossible or missing, and thus
detrimental to the reliability of the models’ outputs [Ligtenberg et al., 2010]. Normative
models, instead, assume that rational agents maximize a certain utility function [Becker,
1978; Kagel and Roth, 1995] and human decisions are the argument of an optimization
problem. This hypothesis has been often contradicted by observations of individual behav-
iors [Simon, 1957, 1982; Kahneman et al., 1991], but it can be considered acceptable in
case of institutional decisions or average behaviors of groups of individuals (e.g., group
of farmers) having a clear, single operating target [Giuliani et al., 2016a]. Assuming this
objective captures the real interest driving the observed behaviors and such objective is
time-invariant, then future behaviors can be correctly reproduced by solving the same opti-
mization problem under different boundary conditions. For example, hydropower operators
make decisions by maximizing the resulting revenue for the energy company or by min-

imizing the deficit with respect to an energy demand. Energy price and demand and the
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hydrology will change in the future, while the overall objectives of the companies will
very likely remain the same, i.e., the hydropower operators will continue maximizing the

revenue or satisfying the demand [e.g., Turner et al., 2017].

Most water systems, however, are operated to meet multiple competing purposes,
and this makes it impossible to determine a single optimal solution to the formulated
optimization problem and, correspondingly, to extract a single behavior of human opera-
tors. Rather, in a multi-objective context the single optimal solution is replaced by a set of
Pareto optimal solutions, where each alternative represents a different tradeoff between the
considered objectives. Here, the operator’s behavior is not univocally defined but strongly
depends on the relative importance assigned to the different operating objectives, namely
his/her set of preferences. This tradeoff generally represents the outcome of a negotiation
process with the involved stakeholders [e.g., Swartz, 2006] and is expected to ensure a fair
water allocation among the competing demands under long-term average hydroclimatic
and socio-economic forcing. The identification of the operator’s preferences in terms of
tradeoff among competing objectives represents the first challenge for accurately modelling

observed human behaviors in multipurpose water systems.

Then, assuming we can identify such tradeoff from observed behaviors, the iden-
tified preferences are not static behavioral attributes [Guiso et al., 2013]. Rather, they
may evolve in time when exposed to changing external forcing (e.g., extreme drought or
flood events), which can make the system temporarily underperforming in one or more
operating objectives. By reacting to this imbalance, the preferences shift towards a new
equilibrium in order to reduce the frequency of unsatisfactory system states, bringing the
short-term performance closer to the one expected on the long-term [Simpson et al., 2016].
For example, an extreme flood event may raise concerns about flood risk [e.g., Haasnoot
and Middelkoop, 2012; Di Baldassarre et al., 2013; Viglione et al., 2014] and suggests to
increase dike heights or to enlarge the flood pool for augmenting the reservoir buffering
capacity. On the contrary, prolonged and intense drought events may amplify human sen-
sibility towards water scarcity [e.g., Aghakouchak et al., 2014], promoting an increase in
the efficiency of the water supply system by modernization of the infrastructure and by
more effective hedging strategy. Reproducing the dynamics of human preferences driven
by the changing external forcing is the second main challenge for building projections of

coupled natural and human processes’ co-evolution.



110 This paper contributes a new data-driven modeling approach to describe observed

11 tradeoft (preference) evolution in time as a dynamic process combining the selection of

12 different optimal tradeoftfs among the operating objectives with the variation of external
113 forcing (e.g., extreme flood or drought events) altering the expected system performance.
114 Our approach fits together with emerging works in socio-hydrology exploring the mutual
115 shaping of hydrological extremes and societies [e.g., Di Baldassarre et al., 2015; Kuil

116 et al., 2016; Di Baldassarre et al., 2017]. Specifically, we first map the system operator
17 selection of a tradeoff onto a multilateral negotiation process, formalized according to a

118 newly developed protocol called Set-based Egocentric Concession (SEC) protocol. The

119 tradeoff evolution is then modeled by means of SEC negotiations periodically repeated in
120 time implementing the concept of availability bias [Tversky and Kahneman, 1973], where
121 the outcomes of the future negotiation (i.e., the selection of the new tradeoff) are influ-

122 enced by the recent system performance in each operating objective.

123 In the computer science literature, negotiation frameworks are traditionally designed
124 to model autonomous agents that competitively bargain to identify the solution of a coop-
125 erative problem [e.g., Rubinstein, 1982], with several applications also developed in en-

126 vironmental problems [e.g., Frisvold and Caswell, 2000; Thoyer et al., 2001; Sauer et al.,
127 2003; Madani, 2011, 2013]. In this work, the modeled agents represent the different ob-
128 jectives that the water operator is called to balance in the management of the system [Franssen,

129 2005; Kasprzyk et al., 2016]. The negotiation starts with each agent proposing its favorite

130 solution maximizing the specific objective it represents. The mediator checks if the nego-
131 tiation reached an agreement (i.e., if a shared solution exists among the proposals). Oth-
132 erwise, each agent updates its own proposal by including new solutions that are less sat-
133 isfactory for the proposing agent than the ones previously proposed. The negotiation con-
134 tinues until a solution performing acceptably on all the objective is found. The agreement
135 is therefore a good representation of the tradeoff selected by the operator. The agents’ at-
136 titudes during the negotiation determine a specific balance between the different objec-

137 tives in the final agreement. Rigid agents only accept solutions with limited degradation
138 of performance with respect to their individual optimum, while more cooperative agents
139 are willing to accept larger reductions in their individual satisfaction. The observed trade-

140 off can be therefore identified by properly calibrating the attitude of each agent in the
141 simulated negotiations. This looks similar to the identification of a vector of preference

142 weights used to balance different objectives in a traditional multi-objective decision mak-
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ing approach [Cohon and Marks, 1975]. Yet, the proposed SEC protocol fits a decentral-
ized approach addressing each objective in a distinct way, allowing attitudes to be private
features of the agents, as opposed to weights that are public and also interrelated because
they sum to one. SEC negotiations are then repeated in time on a regular basis, with the
attitudes of the agents reflecting the operator’s preferences that are conditioned on the re-
cent system performance. This link between recent system performance, which depends on
the experienced hydro-meteorological conditions, and agents’ attitudes allows simulating

the evolution of the selected tradeoff as driven by extreme wet and dry situations.

The approach is demonstrated on a synthetic case study, where a lake is operated
to balance shoreline floods and irrigation deficit downstream. The system is exposed to
highly variable inflow patterns, which alternate periods of high, normal, and low flow
conditions that strongly impact on the two competing objectives. The calibration of the
agents’ attitudes for simulating their negotiations according to the proposed SEC proto-
col allows identifying the tradeoff adopted in the lake operations. The time evolution of
the operator’s tradeoff after extreme wet or dry periods is then reproduced by periodically
repeating the SEC negotiations and updating the agents’ attitudes on the basis of the re-
cently experienced system performance. For example, if the flooding agent has experi-
enced large damages produced by an extreme flood event, its attitude during the negoti-
ation becomes more rigid to obtain an agreement that corresponds to a tradeoff more in
favor of flood protection. Conversely, if the agent has experienced very low (or no) flood

damages, its attitude will be more cooperative.

The rest of the paper is organized as follows: the next section introduces our model-
ing framework and the numerical case study; section 3 presents the numerical results; final

remarks, along with directions for further research, are presented in the last section.

2 Material and methods

The proposed approach for modeling the dynamic evolution of water operators’ pref-
erences is composed of two components: a first step aiming at the identification of the
selected tradeoff among a vector of N competing objectives J = |J', ..., JV| (to be maxi-
mized) under average hydroclimatic conditions by means of the Set-based Egocentric Con-
cession negotiation (Figure 1a), and a second step reproducing the dynamic evolution of

this tradeoff when exposed to changing external forcing (e.g., extreme wet or dry periods).

—6—
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(a) Tradeoff identification

SEC NEGOTIATION

1) Initial Proposal
Each agent makes a proposal corresponding to its individual
optimal solution

Py = arg max J*

2) Iterate the following steps until an agreement
PA97(q) is found

2.1) Check agreement (i.e., the same solution is in the proposals of
all the agents). If YES, return P77 (a)

2.2) Each agent makes a new proposal containing the previous
ones and all the candidate solutions providing a performance
above an acceptability threshold

L= JUP) - (7 x o)

Search the best value of a that maximizes the PAI(a)
accuracy of the negotiation agreement P49"(a)
in reproducing the target (historical) tradeoff

A

(b) Tradeoff evolution modelling

For each time period y

SEC NEGOTIATION

Update the attitudes of the agents as a 2

R? function of the recent system performance «
and the regrets experienced by each agent Y >

with respect to its individual optimal

solution:

o = oy + (1= )Ry

expected
performance

actual
performance

Search the best value of i that maximizes the
o accuracy of the negotiation agreements

in reproducing the target (historical) operations
with time varying preferences

PR (ay, 1)

A

Figure 1. Schematization of the tradeoff identification (panel a) and tradeoft evolution modeling (panel b).

This tradeoff evolution modelling relies on repeated SEC negotiations where the agents’
attitudes are updated according to the recent system performance (Figure 1b). In the next
two sections we provide a detailed description of these two components, while section 2.3
illustrates the synthetic case study used for testing our modeling framework. It is worth
mentioning that the proposed method applies to systems where preference dynamics im-
pact on operational decisions or on a sequence of infrastructural decisions (e.g., the expan-
sion of a water supply system), while it does not fit with static planning decisions made

once (e.g dam design).
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2.1 Tradeoff identification

For the problem of tradeoft identification (Figure 1a), we developed the Set-based
Egocentric Concession protocol. Similarly to other negotiations protocols [e.g., Rosen-
schein and Zlotkin, 1994; Faratin et al., 2002; Saha and Sen, 2007; Lopez-Carmona et al.,
2011], SEC is based on a negotiation mechanism where, at each step 7, each agent i si-
multaneously makes a proposal P, defined as a set of candidate solutions attaining an ac-
ceptable performance in the objective J' represented by agent i. Specifically, agents never
remove any previously proposed candidate solution, while adding one or more solutions
to their proposal set. The proposals are collected by a mediator, which verifies if the ne-
gotiation has reached an agreement. The presence of the mediator allows reducing the
number of messages exchanged by the agents and improving agents’ privacy. The negoti-
ation then proceeds toward an agreement thanks to the egocentric nature of the protocol
as each agent is not allowed to make proposals less preferred by other agents than what
has been already proposed. This feature ensures that the protocol is monotonic [Endriss,
2006], where each new proposal must contain a concession to another agent. Given the
conflicting nature of the agents’ interests, a decrease in the utility of one agent is equiva-
lent to an increase in the utility of another one. The negotiation continues with the agents
making new proposals, corresponding to concessions made to the other agents, until the
mediator notifies them that an agreement P*8” has been reached. This occurs when the
i-th agent proposal P. contains (at least) a specific candidate solution that is also included

in all other agents’ proposals P;".

At the beginning of the negotiation 7 = 1, the i-th agent makes a proposal that cor-
responds to the optimal solution Pik’i with respect to his/her single objective J¢. Since the
objectives are conflicting, Pf’i will correspond to a solution characterized by a poor per-
formance according to the point of view of the other agents. Then, at each negotiation
step, the agents use a constant concession strategy [Bddicd and Bddicd, 2012] to select

the next set of candidate solutions P:

o1 which contains their previous candidate solutions

along with all the solutions that provide a performance above an acceptability threshold
defined as J¢ = J/(P}"") — 6i. This threshold is lowered at each negotiation step 7 with a
constant rate @', i.e., 6. = 7 X a!. Therefore, the proposal set of each agent grows with the
number of negotiation steps, including more and more alternatives which are less favor-
able with respect to the single agent objective. The value of @' characterizes the attitude

of the i-th agent: small values of o' characterize an agent which is rigid in conceding,

8-
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and the resulting operating policy will be polarized toward its objective; conversely, large
values of @’ correspond to a more cooperative attitude, with the agent willing to accept
agreements which might be far from its individual optimum. The identification of the
tradeoff can be hence performed via calibration of the agents’ attitudes by setting proper
values of the concession rates @ in order to drive the final agreement of the SEC negotia-

tion as close as possible to the target tradeoff.

Additional details about the algorithm used by each agent during the SEC negoti-
ation, along with a discussion of some properties of the protocol (e.g., termination con-
dition, privacy, Pareto optimality, possibility of discovering solutions in concave regions
of the Pareto front [Endriss, 2006; Amigoni et al., 2016]) are reported in the Supporting

Information.

2.2 Tradeoff evolution modelling

The SEC negotiations described in the previous section allow identifying a static
tradeoff. Here, we expand the protocol to capture the temporal dynamics of tradeoft evo-
lution as a consequence of changing external forcing (Figure 1b). The key idea is to nu-
merically model the agents’ attitudes, i.e., the concession rates a’, as a function of the
recent system performance which, in turn, varies when exposed to changing external forc-
ing. Similarly to the approach proposed in Di Baldassarre et al. [2017], we implement an
autoregressive dynamic model implementing the availability bias expressed in Tversky and

Kahneman [1973], which is formulated as follows

@y = pdl_ + (1= R,

where a; is the attitude (concession rate) of agent i during the negotiation at the begin-
ning of the time period y; u is a behavioral parameter reflecting the agent’s memory;
R;_l is the regret of agent i, defined as the difference between the utility of agent i over
the time period [y — 1, y) under the agreement reached during the last negotiation and

the maximum possible utility of agent i. The first addendum quantifies the inertia of the
agent’s attitude, with the new value a; that depends on the one adopted in the previous
negotiation a/;_l. The second addendum, instead, represents the level of satisfaction of the
agent about the outcome of the previous negotiation. The effect of this outcome is halved

after log 0.5/ log u periods.
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A distinct feature of our modeling approach is the calibration of the behavioral pa-
rameter p with respect to the observed decisions of the water operator. This calibration
is crucial for capturing the observed evolution of the agents’ attitudes: if u = 0, there is
no memory and the new concession rate only depends on the most recent system perfor-
mance; conversely, u = 1 yields a constant concession rate which is no longer dependent
on the system performance. Intermediate values of u produces a dynamic evolution of
the agents’ attitudes: agent i becomes more rigid (i.e., lower values of a;) after having
experienced high values of regret, while its attitude remains almost constant in case the
outcome of the previous negotiation is satisfactory (i.e., the recent performance is close to

the maximum utility agent i could have obtained independently).

2.3 Test case study

We demonstrate the proposed framework on a numerical case study inspired by the
Lake Como system in northern Italy [Pianosi et al., 2013; Giuliani et al., 2016b]. The
daily dynamics of the system is described by the mass-balance equation of the lake stor-
age (x;), which is regulated to provide a reliable irrigation supply to downstream farmers
and to control floods along the lake shores. These two competing interests are modeled

using the following two objective functions (both to be maximized):

« Flooding (J!): the average daily lake level exceedance with respect to the flooding
threshold (multiplied by -1 to ensure the correct direction of optimization).
« TIrrigation (J?): the daily water deficit with respect to the irrigation demand (multi-

plied by -1 to ensure the correct direction of optimization).

The daily operation of the lake is formalized as a Standard Operating Policy [Draper
and Lund, 2004], defined as a parameterized piecewise linear function mapping the lake
storage into release decision u; = my(x;), where § € O is the vector of the policy pa-
rameters. The value of the parameters, and thus the shape of the policy, is determined by
the tradeoff between the agents’ objectives: the best solution in terms of J! is to maintain
very low storage values by releasing the maximum volume of water in each time step to
minimize the flood risk; conversely, the best solution in terms of J? is to release the wa-

ter demand and store any excess of water to face future dry periods. The full set of Pareto

~10-
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Figure 2. Pareto optimal operating policies’ performance in terms of Flooding (x-axis) and Irrigation
(y-axis) objectives. Black circles represent solutions sampled in the construction of the synthetic historical

operations with time-varying operator’s preferences, whereas white circles are solutions which were not used.
ying

optimal operating policies can be obtained by solving the following problem
0" =arg max J 2)

where J = [J', J?]. Determining 6* is equivalent to finding the corresponding parame-

terized operating policies my(x;) [Giuliani et al., 2016¢]. Sampling a sequence of tradeoff
solutions from the Pareto optimal set (see Figure 2) allowed the construction of a synthetic
historical operations of the system with time-varying preferences according to the vari-

ability of the inflow scenario. In the next section, we will demonstrate the potential of our
modeling approach (Figure 1) for identifying the tradeoff of this synthetic historical opera-

tions, obtained by a single sampled policy over a time period with steady-state inflow, and

for reproducing the dynamic evolutions of the tradeoff over the whole sequence of sam-

pled policies. The full formulation of Problem (2) is reported in the Supporting Informa-

tion, while the source code and data are available on Github (https://github.com/Lordmzn/evolving-

tradeoffs).
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Climate state  F(:) m|m3/s] s[m3/s] b

Dry 0.15  log(15) 0.3 0.9
Normal 0.75  log(40) 0.65 0.7
Wet 0.1 log(75) 0.75 0.5

Table 1. Parameters used in the inflow scenario generation: F(-) is the probability of occurrence of the
climate state; m and s are the mean and standard deviation defining the log-normal distribution; b is the

autocorrelation coeflicient; the autocovariance is equal to 0.75 in each scenario.

During the negotiation, each agent solves a single-objective variant of Problem (2)
optimizing the operating policy with respect to its individual objective. In addition, each
agent has to explore its fitness landscape (i.e., a multidimensional landscape defined by the
possible solutions of the optimization problem mapped into the corresponding objective
function value [Maier et al., 2014]) in order to implement the constant concession strategy
of the SEC protocol (see section 2.1). We perform this step before the beginning of the
negotiation through a uniform sampling in the operating policy parameter space ®, from
which the objective functions J are evaluated via simulation of the system dynamics over

a given inflows trajectory sufficiently long to represent wet, normal, and dry conditions.

The synthetic inflow trajectory is constructed with a two-level procedure: a Thomas-
Fiering model, where daily inflows are generated by an autoregressive model (AR) with
log-normal distribution [Harms and Campbell, 1967], combined with an hidden Markov
model which determines its parameters according to three different climate states corre-
sponding to dry, normal, and wet conditions. The parameters used for the inflow genera-
tion are reported in Table 1. The resulting empirical cumulative distribution function for
the different climate states and the associated relevant statistics for the two objectives are

illustrated in Figure 3.

3 Numerical results

We numerically tested our modeling approach on the synthetic case study introduced
in the previous section by performing the following experiments: i) we demonstrate the
ability of SEC negotiations (section 2.1) in identifying alternative tradeoffs in repeated

negotiations over a sequence of 100 periods, which includes dry, normal, and wet condi-

—12—
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the underlining Dry, Normal or Wet parameter set (see Table 1). Relevant statistics for the two considered

objectives (i.e., maximum and average inflow over the time period for flooding and irrigation, respectively) of
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Cumulative distribution functions for the synthetic inflows (panel a), where the color indicates

the generated inflow scenario over 100 time periods (panel b).
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tions, with the goal of reproducing the synthetic historical operations of the system with
time-varying tradeoffs; ii) we calibrate our dynamic attitudes model (section 2.2) over a
sequence of 1000 periods trying to explicitly condition the evolution of the tradeoffs upon
the recent system performance. In each experiment, the domain of the attitude parameters
is ' = [0.005;0.5] and @? = [0.005;2.5]. In the tradeoff identification, we calibrate the
agents’ attitude in order to reproduce the synthetic historical tradeoff by searching the best
value of @ over a regular grid of 36 possible values for each parameter. In the tradeoff
evolution modelling, the values of @ are dynamically updated using eq. 1, with the sim-
ulation initialized with @' = @ = 0.1. To demonstrate the scalability of the approach to
more than two objectives, in the Supporting Information we report another tradeoff evolu-

tion modelling experiments run for a three objectives/agents problem.

3.1 Tradeoff identification

In this section, we run a retrospective analysis where the proposed SEC negotiation
protocol is used to identify the selected tradeoffs from observations of the synthetic histor-
ical operations of the system over a scenario composed of 100 time periods characterized
by dry, normal, or wet conditions according to the probabilities reported in Table 1. In
each time period, the two agents, representing the flooding and the irrigation objectives
respectively, negotiate the value of the Standard Operating Policy parameters 8 € @ for
different combinations of concession rates @, defined over a uniform grid obtained as the
Cartesian product of the respective discretized domains. Each combination of o' (with
i = 1,2) produces a different negotiation outcome (i.e., standard operating policy), corre-
sponding to a different balance of the conflicting objectives based on the attitudes of the
two agents. The simulation of the negotiated policies produces a set of release trajectories.
The tradeoff of the synthetic historical operations can be hence identified by looking at the
accuracy in reproducing the synthetic historical release trajectory, measured in terms of
coefficient of determination R%. The negotiated policy attaining the maximum value of R>

is the one having the closest tradeoff to the synthetic historical one.

Figure 4 illustrates the SEC negotiation process in a single time period: at the be-
ginning of the negotiation (7 = 0), each agent explores its fitness landscape by mapping
each parameter vector § € ®, which defines a different Standard Operating Policy, into
its corresponding objective function J! or J? computed over the entire inflow scenario

to represent the long-term average hydrologic conditions. The colormap is proportional
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Figure 4. Excerpt of the SEC negotiation in a single time period. At the beginning of the negotiation,

each agent explores its fitness landscape. The colormap is proportional to the performance of each solution,
moving from blue (good performance) to red (poor performance). The negotiation starts with both agents
proposing their individual optimal solutions in the first step and proceeds with the agents enlarging their pro-
posal set at each step with less preferred solutions. Eventually, an agreement is found when a specific solution

is included in the proposals of all the agents.

to the performance of each solution, moving from blue (good performance) to red (poor
performance). Then the negotiation starts with both agents proposing their individual op-
timal solutions in the first negotiation step and proceeds with the agents enlarging their
proposals at each step (e.g., 7 = 30, 110, 177 representing 25%, 50%, 75% of the nego-
tiation) including less preferred solutions according to the monotonic concession strategy.
The concession of each agent is modulated by its attitude a’. Eventually, an agreement is

found when a specific solution is included in the proposals of all the agents.

The best combination of concession rates for this specific time period is @ = [0.01, 0.05].
The resulting operating policy accurately reproduces the synthetic historical one (R* =
0.95) and attains almost equivalent performance in terms of flood control and irrigation

supply, i.e. J = (-10.82, -389.6) against a target performance JT = (-11.14, -365.5).

In this tradeoff identification experiment, we repeated the SEC negotiations in each

time period, independently searching the values of « that produce a trajectory of releases
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Figure 5. Model accuracy over a 100 time periods scenario obtained through repeated SEC negotiations
(top), corresponding tradeoft (middle), and associated best values of «. In the top panel, the black solid line
represents the best solution found in each time period, while the single dots are solutions obtained with other

values of a.

reproducing the synthetic historical one. Numerical results are illustrated in Figure 5,
which shows the values of R? obtained over the 100 time periods. The black solid line
represents the best solution found in each time period (the single dots are instead solutions
obtained with other values of @), which attains an average R” equal to 0.91 over the entire
evaluation scenario. The low R? values in the figure can be explained by the discretized
domains of @ and of the policy parameters adopted during the agents’ negotiations, while
the synthetic hystorical operations was designed without such constraint. These results
demonstrate the flexibility of SEC negotiations in modeling the diverse tradeoffs (middle
panel of Figure 5) adopted in the synthetic historical operations by modifying the agents’

attitudes over the different time periods (bottom panel).

“16-



ass 3.2 Tradeoff evolution modelling

386 The results of the repeated negotiations illustrated in Figure 5 require the selection
a7 of proper concession rate values « in each time period by maximizing the accuracy in re-
a8 producing the synthetic historical sequence of releases. Conversely, these values can be
ass determined by means of the dynamic attitudes model described in section 2.2 for pro-

350 jecting possible evolutions of the operator’s tradeoff in the future, when we have no his-
a1 torical operations to reproduce. The core of the model is eq. (1), which implements the
as2 availability bias and defines the attitude of each agent as a function of the recent system
a0 performance. This function requires the calibration of the behavioral parameter u over a
a0 sufficiently large dataset of observed tradeoff changes. To this purpose, in this second ex-
ass periment we considered a scenario composed of 1000 time periods, which is assumed to
as6 represent the long-term average hydrologic conditions used to estimate the maximum ex-
as7 pected utility of each agent for the computation of the regret R;_ | in eq. (1). We repeated
308 the SEC negotiations over each time period y = 1,..., 1000, where, rather than searching
a%9 the best values of a for each time period as in the Figure 5, we updated the vector @ via
400 eq. (1). The procedure is repeated for different values of y sampled from a uniform grid
401 in the range [0.01, 1], where u = 1 yields constant values of @ over time, thus represent-
402 ing a stationary preference set.

403 The accuracy of the attitude’s dynamic model as a function of the behavioral pa-

404 rameter y is illustrated in Figure 6 (top panel). Numerical results show that the proposed
405 model is sensitive to the adopted values of y, with variable accuracy levels ranging from

s R? = 0.58 (for u = 1) to R? = 0.63 (for u = 0.736). This limited sensitivity of the model

407 performance with respect to u is probably due to the linear, low-order autoregressive model
408 formulation used in the analysis and to the nature of the specific problem (e.g., in the

409 three objective problem reported in the Supplementary Information the values of R? vary
410 between 0.65 and 0.85). The underlying relationship between the experienced inflow sce-
att nario and the dynamics of the agents’ attitudes is represented in Figure 6 (bottom panel).
412 Depending on the value of u reported on the y-axis, the attitudes of the two agents have
413 different correlations with the inflow scenarios, characterized in terms of the maximum
a1s and the average inflow in the time period to represent relevant statistics for flood protec-
415 tion and irrigation supply. The attitude of the agent representing the flooding objective
a16 (left panel) is positively correlated with the maximum inflow in the time period, with the
a7 highest correlations observed for low values of u and short lag-times. Conversely, the at-
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titude of the agent representing the irrigation objective (right panel) is negatively corre-
lated with the average inflow in the time period, with the maximum negative correlation
observed again for low values of u and short lag-times. This situation corresponds to
extremely sensitive attitudes, with the agents becoming highly conservative every time a
flood/drought event occurs. When u = 0.736, the value producing the highest model accu-
racy, we can observe positive and negative correlations over longer lag-times. This result
demonstrates that the proposed attitude’s dynamic model, which defines the values of @
on the basis of the recent system performance, is indirectly reproducing the evolution of

the tradeoff as driven by the changing inflow scenarios.

To better understand the relationships among agents’ attitudes, utilities, and under-
lying hydrologic conditions, Figure 7 illustrates an excerpt of the results in terms of sys-
tem performance obtained by the synthetic historical operations in each time period (top
panel), agents’ attitudes values for two different values of u (middle panels), and the max-
imum and the average inflow in the time period (bottom panel). The figure shows how
after large inflow peaks (e.g., the peak of the blue line at time period 217 in the bottom
panel), the values of a' tend to increase, and this effect lasts for longer when the agents’
have a longer memory (i.e., 4 = 0.736). Similarly, periods of low inflow (e.g., the low
values of the red line at time period 210 in the bottom panel) produce increasing values
of a2. In both cases, these modifications of the agents’ attitudes successfully capture the
change of tradeoff in the synthetic historical operations (top panels), which, after observ-
ing a low performance in one of the two objectives, tend to favor the underperforming one
in the next time periods (e.g., see the increasing values of J? after the dry periods 209-

210, which resulted in a very low performance in terms of water supply).

Finally, it is worth noting that the values of R? reported in Figure 6 are significantly
lower than the ones discussed in the previous section, where the repeated calibration of @
in each time period allowed attaining an average R” equal to 0.911. This degradation of
performance is probably due to the structural limitations associated to the linearity and
low autoregressive order of the implemented attitudes” dynamic model. However, this
value of accuracy per se, obtained over a very long time series of interdependent natural
and human processes, represents a promising starting point for modeling evolving water
operator’s preferences and projecting the coevolution of the system under changing climate

and socio-economic drivers.
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1000 time periods scenario (panel a). Correlation analysis between the trajectories of the parameters (@, a?)
and some features of the inflow scenario (maximum inflow and average inflow, respectively) for different

values of u and increasing lag-times (panel b).
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4 Conclusions

This paper contributes a new modeling approach for the identification of the tradeoft
selected by a water operator in the management of a multipurpose water resource systems,
and the model-based simulation of the dynamic evolution of such tradeoff when exposed
to extremely wet and dry events. The tradeoff identification is reproduced via multilateral
negotiations according to a new Set-based Egocentric Concession protocol. The evolu-
tion of the tradeoff is then modeled through the repetitions of the SEC negotiations, with
the attitudes of the agents determined by the recent system performance. A synthetic case
study representing a lake operated for flood control and irrigation supply exposed to dry,

normal, and wet conditions is used to demonstrate the proposed approach.

Numerical results show that SEC negotiations allow identifying the operator’s trade-
off via calibration of the attitudes of the agents involved in the negotiation. The identified
tradeoffs reproduce the synthetic historical operations of the lake over a sequence of 100
time periods with variable external forcing and water operator’s preferences. The resulting
model accuracy (average R? higher than 0.9) demonstrates the potential of SEC in sup-
porting retrospective analysis of observed human behaviors in multipurpose contexts. SEC
negotiations are then successfully coupled with the autoregressive dynamic attitude model,
which, according to the availability bias, links the evolution of the selected tradeoft with
the recently experienced system performance. Our results show that the best model pa-
rameterization attains acceptable accuracy levels (i.e., R* = 0.63) over a 1000 time periods
simulation horizon, thus representing a promising solution for describing the coevolution

of the natural processes and human behaviors under changing climate conditions.

Future research efforts will focus on testing the proposed approach in a real world
system to retrospectively identify the historical tradeoff and to make a projection of the
system evolution under changing climatic and socio-economic forcing. This will require
long behavioral time series exposed to a sufficiently high number of shocks, which would
also allow a better exploration of the sensitivity of our results to some key parameters
(e.g., agents’ attitudes and memory) and model settings (e.g., increasing the order of the
autoregressive attitude model). In addition, looking at long-term projections and non sta-
tionary alterations of the hydrologic conditions will also require exploring the dynamics
of the Pareto front. In fact, while under stationary conditions we can focus on modelling

the tradeoff dynamics along a given Pareto front computed over average conditions, un-
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der non-stationary conditions this reference front is very likely evolving as well. How-
ever, although the results of this paper were generated for a synthetic case study, they
demonstrate the potential of the proposed approach. A key outcome of this study is the
formalization of a modeling procedure able to reproduce potentially evolving water op-
erators’ preferences as driven by extreme wet and dry events. This result has significant
implications for the construction of reliable projections of the future evolutions of Coupled

Human-Natural Systems.
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