69" International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright (© 2018 by Stefan Frey et al. Published by the IAF, with permission and released to the IAF to publish in all forms.

TAC-18-A6.10-C1.7.8

Evolution of Fragmentation Cloud in Highly Eccentric Earth Orbits
through Continuum Modelling

Stefan Frey®", Camilla Colombo?, Stijn LemmensP

?Department of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy
bSpace Debris Office, ESA/ESOC, Darmstadt, Germany
*Corresponding author; stefan.frey@polimi.it

Abstract

A considerable number of fragments orbit around the Earth in Highly Eccentric Orbits (HEOs), mainly
in the geostationary transfer orbit. These are believed to have originated in part from the 100 plus fragmen-
tations of parent objects in the same orbit. Many of these objects are characterised by a high area-to-mass
ratio, and, as such, especially susceptible to forces induced by atmospheric drag and solar radiation pres-
sure. The complicated dynamics make it difficult to model the evolution of a cloud of such objects, as the
spreading depends heavily on their area-to-mass ratios which is difficult to assess. Assumptions on the rapid
distribution of a HEO fragment cloud into a band limited by its parent orbit inclination were shown to be
inaccurate, and thus oversimplify the problem at hand. Moreover, the time to form a uniformly distributed
cloud is higher than the time it takes many of the particles to re-enter.

This work aims to increase the understanding of these complex dynamics by accurately modelling the
evolution of a cloud of fragments in HEO. The fragment cloud is modelled as a continuum, and its phase space
density, rather than single objects, is propagated in time using averaged dynamics in Keplerian elements.
Such an approach is not only much faster in terms of computational load when compared to the individual
propagation of fragments, but it also improves the accuracy of the density estimation. The perturbations
considered are atmospheric drag using a model that was specifically developed for highly eccentric orbits,
solar radiation pressure, third bodies and a non-spherical central body implemented in the PlanODyn suite.
Keywords: Space Debris, Continuum Modelling, Eccentric Orbit

in such orbits are generally difficult to observe as their
apparent angular velocity, as well as their altitudes,
vary over a wide range along their trajectories, mean-
ing that the true number of objects in HEO might

Abbreviations

DISCOS Database and Information System

Characterising Objects in Space.

ESA European Space Agency. .
QTO Geostationary Transfer Orbit. be underestimated [2]. Two decades ago, the Euro-
HAMR High Area-to-Mass Ratio. pean Space Agency (ESA) established an optical sur-
HEO Highly Eccentric Orbit. vey program to observe fragments at high altitudes,
LEO Low Earth Orbit. revealing a population of High Area-to-Mass Ratio
MC Monte Carlo. (HAMR) objects, of unknown origin [3, 4]. Such
MCMC Markov Chain Monte Carlo. objects are especially susceptible to solar radiation
NASA National Aeronautics and Space Ad- Pressure, increasing and decreasing their inclination
ministration. and eccentricity, potentially reducing the perigee suf-
PDF Probability Distribution Function. ficiently to be captured by the atmosphere. Unknown
PlanODyn  Planetary Orbital Dynamics. shape and attitude further complicate the orbit evo-

lution of HAMR objects in HEO. Even now, the ma-
jority of the fragments in such orbits are of unknown

1. Introduction origin despite knowledge of more than 100 fragmen-

Out of the nearly 12500 space debris fragments
which are orbiting Earth and being tracked on a reg-
ular basis, roughly 600 are located in the Geostation-
ary Transfer Orbit (GTO), and hundreds more reside
in other Highly Eccentric Orbits (HEOs) [1]. Objects
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tations in orbits with high eccentricities (> 0.2),
according to the Database and Information System
Characterising Objects in Space (DISCOS) [5].

In spite of their low mass, they can still constitute
a danger for missions in Low Earth Orbit (LEO) due
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to their high orbital velocities of 11 km/s at perigee.
It is therefore of interest how a fragmentation in HEO
affects other space missions in terms of collision risk.
Long-term space debris evolutionary models such as
DELTA [6] and LEGEND [7] can model fragmenta-
tions using representative objects. However, they rely
on random selection of the fragments, which can re-
sult in very different collision risk estimations for each
Monte Carlo (MC) simulation run.

A more insightful approach into the evolution of a
cloud of fragments is by treating it as a continuum.
MecInnes [8] derived, based on the continuity equa-
tion, an analytical model for the evolution of space
debris as a function of altitude. Letizia et al. [9] ex-
tended the approach to account for low eccentricities
and applied it to model the evolution of a fragment
cloud. But it was still limited to a simplified drag
model and assumed randomisation of the particles
into a band. For clouds in HEO, it can take decades
for a band to form [10], limiting the application of
the model using simplified dynamics.

In this work, the characteristics of the continu-
ity equation are propagated semi-analytically, which
allows the accommodation of more elaborate force
models, and can be extended to any dimension. Sim-
ilarly, Halder and Bhattacharya [11] applied this
method for the dispersion analysis of satellite plan-
etary entry. Here, the initial density distribution is
sampled to find initial conditions for the character-
istics, which are subsequently propagated. The den-
sities are then interpolated to estimate the distribu-
tion in between characteristics, allowing further re-
ductions in the number of required propagations.

Another method of integrating a phase space den-
sity numerically is through differential algebra, shown
by Wittig et al. [12]. The advantage of the latter is
that no interpolation is required in the neighbour-
hood of each grid point, as the Taylor expansion of
the flow is propagated. However, the resulting accu-
racy is difficult to gauge as it depends on the propa-
gation time and the truncation order of the approxi-
mating polynomial. Contrary to their approach, here
a fully analytical formulation of the Jacobian is used,
making the density propagation along each charac-
teristic accurate down to the tolerances set during
integration.

The paper is organised as follows; in Section 2 the
formulation of the problem is discussed, in Section 3,
the interpolation of the distribution is explained, Sec-
tions 4 and 5 describe the workflow and a casestudy
of a fragmentation in a Molniya type orbit. Finally
the conclusion and future work can be found in Sec-
tion 6.
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2. Density Modelling

The aim of this work is to find a fast and accurate
way of predicting the evolution of a break-up on-orbit
with hundreds of thousands of fragments, where indi-
vidual propagation becomes infeasible. This section
illustrates the advantages of density modelling com-
pared to MC simulations and shows the formulation
of the former.

2.1 Motivation

In MC simulations, once the samples are drawn
from a density or Probability Distribution Function
(PDF) (used interchangeably in this paper), they be-
come equi-probable. For a known distribution, such
as a multi-variate Gaussian, it might be sufficient to
fit the samples to the distribution. But as the dynam-
ics start to distort the distribution over time, an an-
alytical model cannot be fit and the density needs to
be inferred for each point in the domain, e.g. by bin-
ning and counting the population. A large amount of
equi-probable samples is required to accurately esti-
mate the underlying distribution. This does not scale
well with increasing dimensions, d, and decreasing bin
sizes.

If instead the density itself is propagated forward
in time, the evolving PDF at each point is directly
and accurately given (only integration rounding er-
rors need to be accounted for) and need not be esti-
mated. Such a weighted approach reduces the num-
ber of required samples drastically, decreasing the
computational load whilst still allowing estimation of
the underlying PDF with enough accuracy (see Sec-
tion 3).

2.2 Formulation

The model is based on the differential form of the
general continuity equation [8]

an
dx

with the density, n € R, the independent variable
time, ¢t € R, the phase space, z € R?, and the dy-
namics, F € R and ignoring sources and sinks.
The partial differential equation 1 can be turned into
the following ordinary differential equation, using the
method of the characteristics (following the deriva-
tions of [9], with slightly different notation)

d
dn 8Fd
- ¢ _ 9
i +ni:1 iy 0 (2a)
dx
T F (2b)
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As is evident in the extended phase space, * = [z, n],
the characteristics of the system in Equation 1 simply
follow the trajectories of the dynamics and the den-
sity changes exponentially with the negative trace of
the Jacobian of the dynamics. This is convenient,
as it allows for the comparison of the traditional MC
and the density approach using the same sample pop-
ulation.

3. Continuum Estimation

Given the population of samples at any time after
the fragmentation, At;, the full PDF in the domain
of interest, e.g. the domain affecting a certain orbital
region, needs to be estimated.

3.1 Methods

In a case where the samples are all equi-probable,
the bin count just needs to be multiplied by the fixed
weight. In case the information of the density — a
variable weight — is available, there are two different
ways to infer the distribution; either through aver-
aging over the weighted samples within each bin; or
through interpolating between the weighted samples.
Figure 1 illustrates the three different ways of esti-
mating the density from 500 samples in R?. The aver-
aging, while very simple and fast, requires at least one
sample to be in each bin, or else the bin is assumed
to have zero density. With too small bin sizes or an
insufficient number of samples, the total number of
fragments will thus be underestimated. The interpo-
lation, on the other hand, can deal with ever smaller
bins or diverging dynamics. However, its complexity
increases with non-convex, or highly localised distri-
butions. Both methods tend to overestimate the total
number of objects if the bin sizes are too large.

3.2 Interpolation Procedure

The interpolation is performed on a grid using De-
launay triangulation between the samples to find the
d-simplexes. Subsequent linear interpolation uses the
barycenter coordinates of each simplex together with
the weights of the vertices [13]. For interpolation
points outside of any simplex, the density is set to
zero. Integration over the bins computes the total
number of fragments, Ny. If the distribution is well
behaved, i.e. convex and non-localised, this is already
sufficient.

However, in most cases, the distribution of a cloud
of fragments tends to be non-convex. One way of han-
dling such cases is resorting to a-shapes, which can
more accurately capture the true shape of a distribu-
tion in any dimension [14]. Instead here, a simple con-
trol variable, [, is introduced to remove all simplexes
where the maximum distance in between any of the
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corresponding samples is larger than §. This control
parameter can be optimised such that Ny matches
the one added up through the equi-probable method.
Since Ny € R is a single dimensional quantity, it can
be recovered very accurately from the latter. Clearly,
this is only a first solution of the problem of non-
convex shapes, with room for improvement in future
work.

Another problem is that the chosen interpolation
points, here a grid for easy subsequent integration,
can miss large parts of the distribution if it is highly
localised, i.e. is nearly non-spread in at least one
dimension. Decreasing the bin size helps, but for in-
creasing d will very quickly lead to memory issues.
One solution would be to use an adaptive density
mesh, which could be readily derived from the sim-
plexes given from the triangulation. Integrating each
simplex would result in higher accuracy, without the
need for large memory. The example shown in Sec-
tion 5 is only in R? and sufficiently spread, but for
extensions into higher dimensions, more work is re-
quired.

4. Tools

Figure 2 shows a schema of the steps involved.
First, the cloud distribution needs to be drawn, which
is generally modelled independently of the fragmenta-
tion location on the orbit. Together with the parent
orbit, the phase space selection and the binning, the
fragment cloud defines the initial continuum. From
there, initial characteristics are drawn, which are
then propagated from the initial to the final time with
given step sizes, Atg, Atq,...,Aty. After grouping
the characteristics, the continuum can be retrieved
for each time step, At;.

4.1 Fragment Distribution € Initial Continuum

Any break-up model that gives the distribution in
orbital elements and fragment characteristics can be
used. Herein, the National Aeronautics and Space
Administration (NASA) break-up model [15] is em-
ployed, which gives the fragment properties in terms
of characteristic length, area-to-mass ratio, A/m, and
the initial velocity impulse, Av. The direction in
which Aw is introduced needs to be drawn randomly.

Together with the information of the parent orbit
and fragmentation location, initial fragment orbits
can be determined. The distribution is transformed
into Keplerian states by sampling.

4.2 Initial Characteristic Selection

Theoretically, the evolution of the distribution is
not dependent on the initial selection of characteris-
tics. To keep the number of characteristics, N, low,
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Equi-probable Weighted & Averaged Weighted & Interpolated

(a) From equi-probable samples, result- (b) From weighted samples using the (c) From weighted samples using the
ing in a very poor estimation. average method, resulting in an accurate interpolation method, resulting in a very
estimation, albeit full of holes. accurate estimation for this simple con-

vex distribution.

Fig. 1: Estimation of the underlying distribution from a population of 500 samples using different methods.
The colour code shows the density, i.e. number of fragments divided by bin area.

they should contain as much information of the initial
distribution as possible. E.g. points with zero prob-
ability are not of interest, as — without sources — the
density along those characteristics remains zero (see
Equation 2a). Instead, they are sampled from the
initial continuum using a Markov Chain Monte Carlo
(MCMC) method, e.g. regions of high probability
are represented with more characteristics. Here, the
Metropolis-Hastings algorithm [16] is used in nor-
Parent orbit(s) malised space as the variables in x are generally of
Selection of x Initial continuum different units.

Binning

Fragment

Break-up model distribution

sampling Characteristics 4.3 Propagation

at ¢
> The trajectories are integrated using the Plane-

Integrator tary Orbital Dynamics (PlanODyn) suite [17], a semi-
settings Propagator analytical propagator. The suite analytically calcu-
lates the Jacobian of the dynamics required for the in-
tegration of n. The gravitational perturbations taken
into account are due to the second degree zonal har-
monic, Ja, as well as due to the moon and Sun grav-
ity, whose positions were taken from NASA’s Spice
toolkit [18]. Solar radiation pressure was consid-
equi- weighted &  weighted & ered using the Cannonball model. Orbital decay due
probable averaged interpolated to atmospheric drag was estimated using a superim-
posed exponential fit to the Jacchia-77 atmospheric
density model (with fixed exospheric temperature,
Fig. 2: Schema of the steps involved for estimating T, = 1000 K)7 and computed using an extended
the density at different time steps, given a break- King-Hele orbital contraction model [19, 20].
up scenario.

Characteristics

Merging at to, ty, ..., t

Continua at g, ty, ..., tr

4.4 Interpolation

Lastly, the equi-probable, weighted & averaged and
weighted & interpolated continua are derived from the
same population of fragments using the methods de-
scribed in Section 3.
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Table 1: Parent orbit as of 12pm, 9 September, 1981,
given in semi-major axis, a, eccentricity, e, incli-
nation, 4, right ascension of the ascending node,
), and the argument of perigee, w.

e[=] i[deg]
0.4537 634

a [km]
13577

Q [deg]
300.9

w [deg]
330.6

5. Case Study

The studied case is inspired by the real fragmen-
tation of a rocket body with international identifier
1981-088F, which unsuccessfully attempted to deliver
a communications satellite into a Molniya type orbit,
but malfunctioned during the orbit raise burn shortly
after launch [21].

5.1 Fragmentation Type

Fragments down to 1 mm are considered, resulting
in Ny = 360000 objects, according to the break-up
model assuming a rocket body explosion with scaling
factor, S = 1.

5.2 Parent Orbit

The epoch and orbital elements are taken from
DISCOS and listed in Table 1. Due to a lack of
better information, the location of fragmentation is
assumed to be at the right ascension of ascending
node, €2, i.e. at a mean anomaly of My = 10.1 deg.
The parent orbit sits on the critical inclination, which
cancels out the drift of the argument of perigee, w.
So fragments with small inclination changes in pos-
itive and negative directions are expected to drift
apart in w. Due to the high perigee and apogee alti-
tudes of 1038 x 13359 km, the fragments will initially
mainly be influenced by solar radiation pressure and
the third bodies. Eccentricity build-up and the large
surface area will lead to atmospheric re-entry at a
later stage.

5.8 Phase Space

In a first approximation of the evolving dis-
tribution, the phase space is chosen to be x =
(a,e, A/m) € R3 where a and e are the semi-major
axis and eccentricity respectively. This is a trade-off
between balancing accuracy and the computational
memory at hand (see Section 3). The characteris-
tics still contain information about the evolution in
inclination, 7, 2 and w. To simulate the initial con-
dition outside of z, i, 2 and w are drawn individu-
ally from a Gaussian distribution, as expected accord-
ing to the break-up model, with standard deviations,
0;/0q/o, = 0.5/0.0/0.025 deg. Note that the distri-
bution in €2 is zero, as the fragmentation is modelled
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Table 2: Root mean square of the differences in
the density estimation against the original den-

sity over all the bins. The errors are given in
[km ™" (m? /kg) ™.

Estimation Number of characteristics, N,
method 103 104 10°
equi-probable 1.8 x 10 6.1 x 10° 2.5 x 10°
averaged 5.8 x 10 3.5 x10° 2.2x 103
interpolated 2.7x10% 1.9x10® 1.1 x10?

to occur at the node.

5.4 Accuracy on Inferring Initial Continuum

The different methods of inferring the PDF from
the samples are compared against the initial contin-
uum, which is illustrated in Figure 3 for 100 bins in
each dimension, linearly spaced in a and e and log-
arithmically spaced in A/m. The root mean square
of the differences in estimated and true density over
all the bins can be found in Table 2 for different V..
The results depend on the method of interpolation
of the initial weights, for which here a linear grid in-
terpolation method was chosen, but a similar trend
can be observed also for other methods. As expected,
the weighted approach outperforms the equi-probable
summation and the interpolation manages to fill the
gaps caused by empty bins. The larger the number of
characteristics, the better the estimation for all the
methods.

5.5 Evolution

The cloud was propagated for 100 years to see the
long term effects on the density, depicted in Figure 4
for At = 0, 50 and 100 years after fragmentation.
Only the integration over A/m ratio is shown, as the
area of the target satellite or rocket body generally
is much larger than the fragment itself. Initially, the
optimised [-value, a measure for the simplex sizes,
is rather high (8 > 2 in normalised space), as the
cloud is still very compact, then, as the sample pop-
ulation starts to diverge, it reduces to a near constant
B = 0.16. It is not useful at this point to compare
the evolution estimated from N, = 1000 character-
istics using the interpolated method against the one
estimated from N, = 100000 characteristics using the
equi-probable method, because, as can be seen from
Table 2, the errors for both scenarios are in the same
order of magnitude. Hence, for a fair assessment of
the interpolation method, the fragment population
needs to be increased even further to improve the
accuracy of the equi-probable method. Future work
will deal with this using an analytical formulation of
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Fig. 3: Initial distribution of a HEO rocket body frag-
mentation in a, e and A/m.
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the third body ephemerides, the current bottleneck
of the propagation.

6. Conclusion and Future Work

The evolution of a cloud of space debris is mod-
elled through interpolation of the characteristics of
the continuum equation, where each sample caries the
information of the distribution along the trajectory.
This approach allows us the modelling of any degree
of complexity in the dynamics. It was shown to esti-
mate the underlying distribution function much more
accurately than inference through equi-probable sam-
ples, allowing a reduction in the number of samples
required to propagate. A low number of samples also
means a small amount of disk space required to share
the information with interested parties.

The problems identified with the interpolation are
two-fold; first the proper identification of voids is re-
quired so as not to integrate over a volume of zero
probability and hence overestimate the number of
fragments. The second problem is related to the
points of interpolation. If the interpolation grid is
chosen to be too large, highly localised distributions
might be missed and not accounted for. Simply de-
creasing the grid size, however, will exceed available
memory capacity, especially for d > 4.

Once these issues are addressed, the phase space
will be extended to also include i, 2 and w, expanding
the applicability of the method to any fragmentation,
and even the whole space debris population. Finally,
given a smart way of converting the phase space den-
sity into a spatial density, the method could be ap-
plied to give accurate information about collision risk
in a statistically coherent way without resorting to
MC simulation.

Acknowledgement

This project has received funding from the Euro-
pean Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 679086 - COMPASS).

References

[1] ESA’s Space Debris Office. ESAs annual space
environment report, produced with the discos
database, 2018.

[2] T. Schildknecht, R. Musci, M. Ploner, G. Beut-
ler, W. Flury, J. Kuusela, J. de Leon Cruz, and
L. de Fatima Dominguez Palmero. Optical ob-
servations of space debris in GEO and in highly-
eccentric orbits. Adwvances in Space Research,
(34):901-911, 2004.

Page 6 of 8



69" International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright (© 2018 by Stefan Frey et al. Published by the IAF, with permission and released to the IAF to publish in all forms.

At = 0 year(s), N. = 1000

0.5 f.-p‘..,,...
04 .‘:.,a-
© .
£ 03
.2
3
g
802
Q
&)
0.1
0.8 1 1.2 1.4
Semi-major axis a [km| ~x10*
(a) Characteristics at At = 0 years.
At = 50 year(s), N. = 821
0.5
T 0.4
© .
203
8
=
=
S 02 -
Q
=
01t
0.8 1 1.2 1.4
Semi-major axis a [km] x10*
(c¢) Characteristics at At = 50 years.
At = 100 year(s), N, = 750
0.5 .
T 04
o L
£03 L’
S 02 :
S :
=
0.1

0.8 1 1.2 1.4
Semi-major axis a [km] x10*

(e) Characteristics at At = 100 years.

x10*
14

12

10

n km~! (m?/kg) ]

x10*

14

12

oo
n [km* (m?/kg) !

x10*

14

12

n [km™! (m?/kg) !

At = 0 year(s), Ny = 3.63e + 05 x10*

0.8 1 1.2 1.4
a [km] %10

(b) Estimated density at At = 0 years.

At = 50 year(s), Ny = 2.98e + 05 %10
0.5
0.4
T 03
RS)
0.2
0.1
0
0.8 1 1.2 1.4
a [km] x10*
(d) Estimated density at At = 50 years.
At = 100 year(s), Ny = 2.72e 4 05 x10*
0.5
0.4
T 03 "f
— g
o =
2 =
0.2
0.1
0
[km} x10*

(f) Estimated density at At = 100 years.

Fig. 4: Characteristics and estimated density through the interpolation method, integrated over A/m for
different time steps. The size and color of the characteristics correspond to A/m and n respectively.

TAC-18-A6.10-C1.7.8

Page 7 of 8



3]

[10]

[12]

[13]

69" International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright (© 2018 by Stefan Frey et al. Published by the IAF, with permission and released to the IAF to publish in all forms.

J.-C. Liou and J. K. Weaver. Orbital dynamics
of high area-to-mass ratio debris and their dis-
tribution in the geosynchronous region. In In
Proceedings of the 4™ European Conference on

Space Debris, 2005.

T. Schildknecht, R. Musci, and F. Flohrer. Prop-
erties of the high area-to-mass ratio space debris
population at high altitudes. Advances in Space
Research, (41):1039-1045, 2008.

F. McLean, S. Lemmens, Q. Funke, and
V. Braun. DISCOS 3: An improved data model
for ESA’s database and information system char-
acterising objects in space. In Proceedings of the
7 Buropean Conference on Space Debris, 2017.

B. Bastida Virgili. DELTA debris environment
long-term analysis. In Proceedings of the 6 In-
ternational Conference on Astrodynamics Tools
and Techniques (ICATT), 2016.

J.-C. Liou, D. T. Hall, P. H. Krisko, and J. N.
Opiela. LEGEND - a three-dimensional LEO-
to-GEO debris evolutionary model. Advances in
Space Research, 34(5):981-986, 2004.

C. R. Mclnnes. An analytical model for the
catastrophic production of orbital debris. ESA
Journal, 17:293-305, 1993.

F. Letizia, C. Colombo, and H. G. Lewis. Multi-
dimensional extension of the continuity equation
method for debris clouds evolution. Advances in
Space Research, 57:1624-1640, 2016.

S. Frey, C. Colombo, S. Lemmens, and H. Krag.
Evolution of fragmentation cloud in highly ec-
centric orbit using representative objects. In
Proceedings of the 68™ International Astronau-
tical Congress, 2017.

A. Halder and R. Bhattacharya. Dispersion anal-
ysis in hypersonic flight during planetary entry
using stochastic liouville equation. Journal of
Guidance, Control, and Dynamics, 34(2):459—
474, 2011.

A. Wittig, C. Colombo, and R. Armellin. Long-
term density evolution through semi-analytical
and differential algebra techniques. Celestial
Mechanics and Dynamical Astronomy, 128:435—
452, 2017.

D. F. Watson. Contouring: A guide to the anal-
ysis and display of spatial data. Pergamon, 1994.

TAC-18-A6.10-C1.7.8

[14]

[16]

[17]

[18]

[19]

H. Edelsbrunner, D. G. Kirkpatrick, and R. Sei-
del. On the shape of a set of points in the plane.
IEEE Transactions on Information Theory, 1T-
29(4):551-559, 1983.

N. L. Johnson, P. H. Krisko, J.-C. Liou, and
P. D. Anz-Maedor. NASA’s new breakup model
of EVOLVE 4.0. Adwvances in Space Research,
28(9):1377-1384, 2001.

S. Chib and E. Greenberg. Understanding the
metropolis-hastings algorithm. The American
Statistician, 49(4):327-335, 1995.

C. Colombo. Planetary orbital dynamics (Plan-
ODyn) suite for long term propagation in per-
turbed environment. In Proceedings of the
6™ International Conference on Astrodynamics
Tools and Techniques (ICATT), 2016.

C.H. Acton. Ancillary data services of NASA’s
navigation and ancillary information facility.
Planetary and Space Science, 44(1):65-70, 1996.

L. G. Jacchia. Thermospheric temperature, den-
sity, and composition: new models. SAO Special
Report, 375, 1977.

D. King-Hele. Theory of satellite orbits in an
atmosphere. London Butterworths, 1964.

NASA’s Orbital Debris Program Office. History
of on-orbit satellite fragmentations, 14*" edition,
2008.

Page 8 of 8



	Introduction
	Density Modelling
	Motivation
	Formulation

	Continuum Estimation
	Methods
	Interpolation Procedure

	Tools
	Fragment Distribution & Initial Continuum
	Initial Characteristic Selection
	Propagation
	Interpolation

	Case Study
	Fragmentation Type
	Parent Orbit
	Phase Space
	Accuracy on Inferring Initial Continuum
	Evolution

	Conclusion and Future Work

