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Abstract 

 
We develop a First Principle Model (FPM) simulator of a solenoid micro-valve 

of the control system of a train braking system. This is used for failure diagnostic 

when field data of normal and abnormal system behaviors are lacking. A 

procedure is proposed to adjust the diagnostic model once field data are 

available. 
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1 Introduction 

The engineering field that focuses on Detection, Diagnostics and Prognostics is often 

referred to as Prognostics and Health Management (PHM) (Zio, 2012). PHM allows 

for a significant reduction in the system unavailability through an efficient and agile 

maintenance management, capable of providing the right part to the right place at the 

right time, together with the necessary resources to perform the maintenance task (Pipe, 

2008). This has obviously gained the interest of industry and has resulted in new win-

win maintenance service contract models.  

This new situation has led several companies of different industrial sectors (i.e., 

transport, aviation, energy, etc.) to look into PHM first of all simply because having a 

PHM-equipped system may be the mandatory condition to sell it and, then, because 

there may be new important sources of income, related to the new opportunities arising 

if the company is able to sell added values by taking over parts of clients’ business risks 

and other (financial) burdens. In this way, a contractor can diversify his ‘‘product” 

range and may be able to achieve a higher profit. 

On the other side, the companies interested in PHM have to balance the risks of PHM 

due to the lack of experience and the capital expenditures required to purchase the 



necessary instrumentation, software and specialized knowledge. These risks and costs 

are larger at the beginning of the development of PHM, when real data of normal and 

abnormal system behaviors are lacking or scarce, and in case of new systems, when 

there is no experience on their operation. In these situations, the capability of PHM is 

difficult to be estimated, and this may lead potentially interested companies to distrust 

the investment in developing a PHM solution. 

One possible way to overcome the initial skepticism of the companies is to propose 

an adaptive and robust PHM development framework, which allows updating and 

adjusting the PHM tool on the basis of the Knowledge, Information and Data (KID) 

that incrementally become available as the development goes on from the design to its 

operation in different working and aging conditions. This gives the companies the 

possibility of tracking the development of the PHM and the improvement of its 

performances, which are, then, partially reassured about the risks undertaken in the 

different stages.  

In this work, we present a case study concerning a solenoid valve mounted on the 

braking system of trains, which has been proposed by a company of the transportation 

industry interested in fault diagnostics. The case study is characterized by the fact that 

real data patterns of both normal and abnormal solenoid valves behaviors are currently 

unavailable. Thus, to start the PHM development pathway, we have developed a First 

Principle Model (FPM) simulator, which gives a sound basis for an initial identification 

an optimal subset of features for the development of a diagnostic classifier with high 

classification performance. 

This work paves the way to future works, when real signal measurements from the 

solenoid valve become available: the developed algorithms will be adaptively tuned 

and their parameters updated to provide more accurate and precise estimates, and, 

further, field data will be exploited to take into account uncertainty related to un-

modelled dynamics. For this, we also sketch the entire development pathway for 

building a diagnostic tool, from the FPM development up to the tuning of the diagnostic 

classifier based on real data. 

Obviously, the simulator can also be used as a reliability-based design tool, for 

designing solenoid valves meeting given reliability requirements with a specific 

confidence, and as a workbench to design tests on the valve. 

The paper is organized as follows: in Section 2, the FPM-based fault diagnostic tool 

is presented in details; Section 3 details the FPM of the solenoid valve; Section 4 

illustrates the development of the diagnostic system based on the FPM. Section 5 

concludes the work. 

2 Diagnostic tool based on FPM simulator 

In this Section, we present our methodology for the fault diagnostic issue. The main 

tasks to be addressed by the diagnostic tool are: 

• Detect anomalous conditions at an early stage of the initiation of the degradation 

processes (Fault Detection), for problem awareness. 



• Characterize the detected conditions (Fault Diagnostics), for establishing the correct 

maintenance action. 

• Quantify the uncertainty on the Detection and Diagnostics outcomes. 

These tasks are pursued by implementing the procedure detailed in the following 

Subsections. Notice that in general, fault detection and fault diagnostics are tackled 

separately, whereas our approach these tasks are properly integrated. 

2.1 Fault detection procedure 

A general procedure to tackle the fault detection issue is made up of the following steps: 

S1) Building a dataset (data history matrix) containing the signals corresponding to 

the normal system operation. To do this while field data are unavailable, either a first 

principle model (FPM) or a parametric model (PM), (Zio, 2012) is developed and 

simulated in the expected normal operating conditions. 

S2) Feature extraction and selection: The aims of this step are: a) the extraction of 

features from the simulated Condition Monitoring (CM) signals and b) the selection of 

an optimal subset of features to be used for fault detection. For more details, see, for 

example (Baraldi et al., 2016). 

S3) Fault detection: Two different strategies can be pursued to address the fault 

detection issue, which are referred to as “Strategy A” and “Strategy B”. 

 

Strategy A 

This strategy is based on the development of an Empirical Classification Model 

(ECM), which builds a mapping function between signal features coming from step S2) 

and degradation levels (normal condition or abnormal condition). 

S3A) Fault detection: Build an empirical detection classification model (e.g., 

Support Vector Machine (SVM), Fuzzy K-Nearest Neighbors (FKNN), Artificial 

Neural networks (ANN), etc., (Hastie et al., 2009)) based on the features selected at 

step S2. The assumption here is that the values of the features corresponding to 

normal conditions are different from those corresponding to abnormal conditions. 

 

Strategy B 

This strategy is based on the development of an Empirical Reconstruction Model 

(ERM) (Baraldi et al., 2011), which reconstructs the values of the features expected in 

the component normal conditions: features are extracted from signals observed during 

operation and compared with the reconstruction provided by the ERM; then, abnormal 

component conditions are detected when the reconstructions are remarkably different 

from measurements (Baraldi et al., 2011). 

S3B) Normal operation data reconstruction: the aim of this step is to build an ERM 

(e.g., based on non-parametric Auto-Associative Kernel Regression (AAKR), Artificial 

Neural Network (ANN), Self Organizing Maps (SOMs) Fuzzy Similarity Analysis 

(FSA)) to reconstruct the values of the features corresponding to normal operation 

based on the optimal subset selected at step S2, even if the measured ones correspond 

to faulty conditions.  



S3B) Residual generation; compute the residuals between the measured data and the 

normal operation data reconstructed at step S3B. 

S3B) Fault detection: develop an algorithm, e.g., Sequential Probability Ratio Test 

(SPRT) (Baraldi et al., 2010), to perform fault detection. The detection is typically 

alarmed when the distance between the signal feature values corresponding to the 

normal operating conditions and their actual values achieve a given threshold. Finally, 

the uncertainty in the distance estimation is also evaluated, which comes from both the 

lack of knowledge and the stochastic behavior of the signals. This allows controlling 

the robustness and the confidence on the maintenance decisions made upon the alarm. 

S4) Fault history matrix update: as normal operation data is collected on the 

component/system (in lab experiments or in the field), the data history matrix built at 

step S1 is updated by appending the new data. 

S5) FPM calibration. This activity makes use of as much information as possible 

from well-designed laboratory or pilot-plant experiments to obtain the most accurate 

characterization of the fundamental physics of the process involving the continual 

adjustment of the model and its parameters. The problem of estimating the FPM 

parameters from real field data can be framed as an inverse problem. The two currently 

predominant approaches to parameter estimation are those based on Particle Filtering 

(PF, Kantas et al., 2015), and Moving Horizon Estimation (MHE, Kühl et al, 2011). 

S6) Fault detection model updating: this step requires relaunching the feature 

selection algorithm in the light of the updated fault history matrix (step S4) and FPM 

parameters. 

S7) Uncertainty Analysis: see Subsection 2.3. 

2.2 Fault Diagnostics 

D1) Faulty operation data history matrix generation: while field data are 

unavailable, inject faults in the FPM to simulate faulty operation data. This allows 

creating the faulty operation data history matrix generation. 

D2) Feature extraction and selection as described in S2. 

D3) Fault diagnostics: build a fault classification model in a similar manner, as 

illustrated in S3B.  

D4) Fault data history matrix updating. As faulty operation data is collected (in lab 

experiments or in the field), update the data history matrix generated in D1, similarly 

to what is done in S4. 

D5) FPM calibration as described in S5. 

D6) Fault diagnostic model updating as described in S6. 

D7) Uncertainty Analysis: see Subsection 2.3. 

 

Notice that our approach to fault diagnostics is based on the development of an ECS 

as in “Strategy A” for fault detection. Therefore, this can be easily integrated with 

diagnostics by letting steps D1-D2-D3-D4 above be preceded by step S1. 

 

2.3   Uncertainty Analysis 

 



When field data becomes available, i.e., after steps S4 and D4, this can be used to take 

into account unmodeled dynamics due to epistemic uncertainty related to the nature of 

the measurement apparatus, assumptions made by the experimenter, and the FPM used 

to make inferences based on the observed data. Different representations of epistemic 

uncertainty are possible: probability bound analysis, imprecise probability, evidence 

theory and possibility theory. (Aven & al., 2014). Once uncertainty has been 

represented using the approaches listed above, it must be propagated to the quantity of 

interest (e.g., the predicted RUL). Methods for uncertainty propagation are described 

in detail in (Aven & al., 2014). 

3 FPM simulator for solenoid valves 

The application of our approach to fault diagnostics to a pilot case is proposed in this 

Section. The equipment considered are solenoid valves mounted on the control system 

of train backing systems. Steps S1, D1, D2 and D3 of the procedure described above 

are implemented. Specifically, “Strategy A” for fault detection is applied and integrated 

with fault diagnostics. Namely, we first develop a FPM model for normal behavior (step 

S1), which is exploited to simulate the valve behavior and acquire the solenoid current 

signals. Then, the model of the degradation process due to the accumulation of debris 

at the valve seat is embedded into the FPM simulator. This mechanism of degradation 

behaves as a continuous-state stochastic process, and it has been approximated as a 

discrete-state process. The simulation of the degradation mechanism together with the 

valve behavior allows acquiring the signals corresponding to the different behaviors of 

the solenoid valve in the different degradation states. A FKNN classification algorithm, 

then, is developed for diagnostics (steps D2 and D3), based on the simulated solenoid 

current signals. The development of the classification algorithm (step D3) has been 

integrated with a wrapper method for optimal feature selection (step D2), based on the 

Differential Evolution technique (Baraldi et al., 2016). Figure 1 summarizes the 

application of steps (S1), (D1), (D2) and (D3) of the proposed methodology to the 

solenoid valve case study. 



 

Fig. 1.   Scheme for fault detection and diagnostics of the solenoid valve 

3.1 Solenoid valves First Principle Model (Step S1 and D1) 

In this Subsection, the FPM of the solenoid valve under study is presented. The solenoid 

valve here considered is a fast switching spring return 3/2 valve which is used in the 

Normally Open (NO) setting (Daigle & Goeble, 2010). 

 
 

Fig. 2. Solenoid 3/2 valve 

    The solenoid valve can be framed as made up of  three interacting subsystems: 

magnetic, electric and mechanic subsystems (Taghizadeh et al., 2009). In the following, 

these are deeply investigated and the governing equations are derived in the form of 

nonlinear state equations for a NO valve. The objective is to build a valve model that is 

accurate, relies on a reasonable number of parameters, and can be used as an effective 

simulation tool.  

3.1.1  Magnetic Subsystem  

 



The magnetic circuit consists of two parts (Figure 3): 

• a fixed core surrounded by 𝑁 coil turns carrying a current 𝑖, and  

• a moving part, called cylindrical air gap, which moves under the effect of the exerted 

magnetic force 𝐹𝑚.  

 

 

Fig. 3. Model of the magnetic circuit 

The quantities appearing in Figure 3 are: 

• 𝜇0: magnetic permeability in the vacuum. 

• 𝜇𝑟: magnetic permeability of the core. 

• 𝑑: pole diameter of the cylinders. 

• 𝑙0: air gap total length. 

• 𝑥: decrease in the length of the air gap due to the magnetic force. 

Assuming that the reluctance of the core is negligible (𝜇𝑓 ≫ 𝜇𝑜), the magneto-motive 

force ℱ can be written as (Rizzoni, 2007): 

 ℱ = 𝑁𝑖 = ℛ𝑔𝑎𝑝 𝜙  (1) 

where ℛ𝑔𝑎𝑝 is the reluctance of the air gap and 𝜙 is the magnetic flux. For a 

cylindrical air gap, the reluctance is given by (Rizzoni, 2007): 

 ℛ𝑔𝑎𝑝 =
𝑙0−𝑥

𝜇0𝐴
 (2) 

where 

 𝐴 =
𝜋𝑑2

4
 (3) 

The magnetic force in the air gap is given by (Rizzoni, 2007): 

 𝐹𝑚 =
𝜙2

2

𝜕𝑅𝑔𝑎𝑝(𝑥)

𝜕𝑥
 (4) 

Eq. (1) and Eq. (2) yield: 



 𝜙 =
𝑁𝑖

𝑅𝑔𝑎𝑝
=

𝑁𝑖𝜇0𝐴

𝑙0−𝑥
   (5) 

Considering that 

 
𝜕𝑅𝑔𝑎𝑝(𝑥)

𝜕𝑥
=

−1

𝜇0𝐴
 (6) 

it follows that 

 𝐹𝑚 =
𝜙2

2

𝜕𝑅𝑔𝑎𝑝(𝑥)

𝜕𝑥
= −

𝑁2𝑖2𝜇0𝐴

2(𝑙0−𝑥)2 (7) 

This force acts on the shuttle of the valve, as shown in the mechanical subsystem 

described in Subsection 3.3. 

3.1.2  Electric Subsystem  

 

The equivalent electric circuit of the micro-valve is schematized in Figure 4.  

 

Fig. 4. Model of the electric circuit 

By applying Kirchhoff’s voltage law, the state equation of this subsystem can be 

written by 

 𝑢(𝑡) = 𝑅𝑠𝑜𝑙𝑖(𝑡) + 𝑒𝑓(𝑡) (8) 

in which 𝑢(𝑡) is the input voltage, 𝑅𝑠𝑜𝑙 is the solenoid resistance and 𝑒𝑓(𝑡) is the 

electromotive force induced by the changing magnetic field. According to Faraday’s 

law, 𝑒𝑓(𝑡) is given by (Rizzoni, 2007): 

 𝑒𝑓(𝑡) =
𝑑𝜆

𝑑𝑡
 (9) 

where 𝜆 = 𝑁𝜙 is the flux linkage, which is also equal to 𝐿 ∙ 𝑖. The inductance of the 

magnetic circuit, which determines the value of 𝑒𝑓(𝑡), can be derived from the 

expression of the magnetic flux 𝜙 in Eq. (5): 

 𝐿(𝑥) =
𝑁2

𝑅𝑔𝑎𝑝(𝑥)
 (10) 

Then, Eq. (8) can be written as: 



 
𝑑𝑖(𝑡)

𝑑𝑡
=

1

𝐿(𝑥)
(𝑢(𝑡) − 𝑅𝑠𝑜𝑙𝑖(𝑡) − 𝑖(𝑡)

𝜕𝐿(𝑥)

𝜕𝑥

𝑑𝑥

𝑑𝑡
) , 𝑖(0) = 𝑖0 (11) 

3.1.3  Mechanical Subsystem  

 

The mechanical subsystem consists of a spring with spring rate 𝐾1, a mass 𝑚 (i.e., 

the spool mass) and a second spring with spring rate 𝐾2. The mechanical system is 

shown in Figure 5. 

 

 

Fig. 5. Model of the mechanical subsystem 

The term 𝐹𝑐(𝑡) in Figure 5 represents the contact force with the seat (Daigle & Goeble, 

2010), which is described by: 

 𝐹𝑐(𝑡) = 𝐹𝑐
𝐷(𝑡) + 𝐹𝑐

𝐾  (12) 

where 

 𝐹𝑐
𝐷(𝑡) = 𝐷

𝑑𝑥(𝑡)

𝑑𝑡
 (13) 

𝐷 is the damper coefficient, and  

 𝐹𝑐
𝐾(𝑡) = {

𝐾(−𝑥)     
0                

−𝐾(𝑥 − 𝐿𝑠)

𝑖𝑓 𝑥 < 0          
𝑖𝑓 0 ≤ 𝑥 ≤ 𝐿𝑠

 𝑖𝑓 𝑥 > 𝐿𝑠           
 (14) 

In Eq. (14), 𝐾 and 𝐿𝑠 represent the (large) spring constant associated with the flexible 

seats and the maximum movement allowed to the moving mass, respectively (Daigle 

& Goeble, 2010). The force 𝐹𝑝𝑟𝑠 in Figure 5 is the pressure force, which is approximated 

by (Taghizadeh et al., 2009): 

 𝐹𝑝𝑟𝑠 = (𝐴1 − 𝐴2)𝑃𝑖𝑛 + (𝐴3 − 𝐴2)𝑃𝑜𝑢𝑡 (15) 

where 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡  are the pressures at the inlet and outlet ports of the valve and 𝐴1, 

𝐴2, 𝐴3 and 𝐴4 are different areas on the spool lands which are affected by 𝑃𝑖𝑛  and 𝑃𝑜𝑢𝑡  

in different directions. In the valve studied, the areas 𝐴3 and 𝐴4 are approximatively 

equal (Taghizadeh et al., 2009). Then, 𝐹𝑝𝑟𝑠 ≅ (𝐴1 − 𝐴2)𝑃𝑖𝑛. Finally, the equilibrium 

equation for the mass 𝑚 is given by 

 𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2 + 𝐹𝑐(𝑡) + 𝐷
𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑘2(𝑥(𝑡) − 𝑥0

2) − 𝑘1(𝑥(𝑡) − 𝑥0
1) = 𝐹𝑝𝑟𝑠 − 𝐹𝑚 (16) 



 𝑥(0) = 𝑥0,
𝑑𝑥(0)

𝑑𝑥
= 𝑥0

′   𝐿0 ≤ 𝑥 ≤ 𝐿𝑠 , 𝐿𝑜 ≥ 0 (17) 

In Eq. (17), 𝐿0 represents the displacement of the lower position of the moving mass 

with respect to its nominal position, i.e.,  𝐿𝑜 = 0. The displacement 𝑥 refers to the same 

origin as for 𝐿𝑜. 

3.1.4  Degradation Model (Step D1)  

 

In our modelling methodology, the model of the nominal micro-valve behavior is 

extended to encode the model of the effects of the friction due to the accumulation of 

debris at the seats of the micro-valve, which has been recognized by our industrial 

partner as the leading cause of performance reduction in the train braking system. As 

the debris builds up, it impedes the valve spool movements and prevents it from fully 

opening (Daigle & Goebel, 2010). This results in a change in the boundary conditions 

of the spool valve motion: the larger the degradation level, the larger the value of 𝐿0. 

We characterize the friction damage by a change in the friction coefficient 𝑟(𝑡), and 

model the damage progression as (Daigle & Goebel, 2010): 

 
𝑑𝑟(𝑡)

𝑑𝑡
= 𝜔𝑟 |𝐹𝑓(𝑡)

𝑑𝑥(𝑡)

𝑑𝑡
| , 𝑟(0) = 𝑟0 (18) 

where 𝜔𝑟 is the wear coefficient, whereas 𝐹𝑓(𝑡) is the friction force (Daigle & 

Goebel, 2010). This is defined as: 

 𝐹𝑓(𝑡) = 𝑟(𝑡)
𝑑𝑥(𝑡)

𝑑𝑡
 (19) 

Notice that the value of 𝜔𝑟 can be estimated from real data, once these become 

available. Finally, Eq. (16a) is modified to encode the damages due to friction: 

 𝑚
𝑑2𝑥(𝑡)

𝑑𝑡2 + 𝐹𝑐(𝑡) + 𝐷
𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑘2(𝑥(𝑡) − 𝑥0

2) − 𝑘1(𝑥(𝑡) − 𝑥0
1) = 𝐹𝑝𝑟𝑠 − 𝐹𝑚(𝑡) − 𝐹𝑓(𝑡) (20) 

From the discussion above, it follows that 

 𝐿0 = 𝐿0(𝑟(𝑡)) (21) 

where 𝐿𝑜 is a monotone increasing function of the kinetic friction coefficient, that 

is, the mass can no longer reach the position 𝑥 where 𝐿0 = 0 due to the debris. The 

maximum elongation allowed to the spool valve 

 𝐿𝑠−𝑜 = 𝐿𝑠−𝑜(𝑟(𝑡)) = 𝐿𝑠 − 𝐿𝑜    (22) 

is a decreasing function of 𝑟(𝑡). 



4 DEVELOPMENT OF THE DIAGNOSTIC CLASSIFIER 

(Steps S1+D1+D2+D3) 

In this Section, a classification algorithm is developed to assess the degradation level 

of the solenoid valve based on the solenoid current signals obtained from the simulator 

of the FPM described in Section 3. The FPM parameters have been set according to our 

partner knowledge and are reported in Tables 1, 2 and 3 below. 

 
𝝁𝟎 𝒅 𝒍𝟎 𝑵 𝑹𝒔𝒐𝒍 

4𝜋 ∙ 10−7 𝐻/𝑚 7 ∙ 10−4 𝑚 6.5 ∙ 10−4 𝑚 3210 𝑡𝑠 236 Ω 

 

Table 1. Values of parameters 𝜇0 , 𝑑, 𝑙0, 𝑁 and 𝑅𝑠𝑜𝑙 

 
𝑲𝟏 𝑲𝟐 𝒙𝟎

𝟏 𝒙𝟎
𝟐 𝒎 

367.875 𝑁/𝑚 588.6 𝑁/𝑚 7.13 ∙ 10−3 𝑚 0.967 ∙ 10−3 𝑚 5.4957 ∙ 10−3 𝐾𝑔 

 

Table 2. Values of parameters 𝐾1, 𝐾2, 𝑥0
1, 𝑥0

2 and 𝑚 

 
𝑫 𝑲 𝑳𝒔 𝑭𝒑𝒓𝒔 𝒊𝟎 𝒙𝟎 𝒙𝟎

′  𝑳𝟎 𝝎𝒓 

5 𝑁 ∙ 𝑠/𝑚 108 𝑁
/𝑚 

0.3 ∙ 10−3𝑚 0.7442 𝑁 0 𝐴 0.3 ∙ 10−3𝑚 0 𝐴/𝑠 0 

m 
10−10 

 

Table 3. Values of parameters, 𝐾, 𝐿𝑠 𝐹𝑝𝑟𝑠, 𝑖0, 𝑥0 , 𝑥0
′ and 𝜔𝑟 

4.1 Model simulation (Steps S1+D1) 

For the solenoid valve under investigation, we have considered 4 degradation levels: 

‘normal’, ‘low damage’, ‘medium damage’ and ‘failure’, which correspond to an 

increase in the value of the lower position of the moving mass 𝐿0 and, consequently, to 

a decrease in the value of the highest position 𝐿𝑠, as reported in Table 4. 

 
Degradation level 𝑳𝟎 (𝒎𝒎) Percentage reduction in 

𝑳𝒐−𝒔 (𝒑𝒓) 

Normal 0 ≤ 𝐿0 < 0.02 0% ≤ 𝑝𝑟 < 6.67% 

Low Damage 0.02 ≤ 𝐿0 < 0.04 6.67% ≤ 𝑝𝑟 < 13.34% 

Medium Damage 0.04 ≤ 𝐿0 < 0.06 13.37% ≤ 𝑝𝑟 < 20% 

Failure 𝐿0 ≥ 0.06 𝑝𝑟 ≥ 20% 

 

Table 4. Threshold values of 𝐿0 and 𝑝𝑟 characterizing the 4 degradation levels 

 

To simulate different levels of degradation, we need to find the values of the kinetic 

friction coefficient 𝑟(𝑡) associated to the threshold values in Table 5, which refer to the 

valve spool displacement. To establish the relationships between the displacement and 

the friction coefficient, we have simulated 2000 solenoid current signals, corresponding 

to the values {1, …, 2000} of the initial condition 𝑟0 in Eqs. (18) with 𝜔𝑟 = 0.00001 

and the input voltage coming from real measurements. For each simulated current 

profile, we have got the corresponding value of 𝐿0: this gives the curve (𝑟0, 𝐿0(𝑟0)) 

shown in Figure 6, which maps the valve spool position onto the degradation model. 

Different valve spool positions correspond to different flow rate values, and thus 

different breaking performances. From this, we can derive the upper bounds 𝑟𝑛, 𝑟𝑙 and 

𝑟𝑚 for defining the ‘normal’, ‘low damage’ and ‘medium damage’ degradation levels, 



respectively (Table 5), which correspond to decreasing flow rate levels and, thus, 

decreasing valve performance. 

 

Fig. 6. Kinetic friction coefficient 𝒓𝟎 vs 𝑳𝟎 

 
𝑰𝟎 (normal) 𝑰𝟏 (low damage) 𝑰𝟐 (medium damage) 𝑰𝟑 (failure) 

(0, 𝑟𝑛) = (0,1018) [𝑟𝑛, 𝑟𝑙) = [1019,1097) [𝑟𝑙, 𝑟𝑚) = [1098,1189) [𝑟𝑚, 2000) = [1189, 2000] 

Table 5. Kinetic friction value intervals corresponding to the four degradation levels 

4.2 Data history matrix generation (Steps S1+D1) 

We have randomly generated 200 values of 𝑟0 within each interval (see Table 5), 

and we have simulated the FPM model. By so doing, we have obtained a total of 800 

solenoid current signals, labelled as 𝑔1𝑖
, 𝑔2𝑖

, 𝑔3𝑖
 and 𝑔4𝑖

 𝑖 = 1, … ,200, depending on 

the degradation state in which they are generated: normal, low damage, medium 

damage and failure, respectively. Finally, we have also added a white noise to all 800 

generated current signals, to take into account that real data are expected to be noisy 

(e.g., owing to current sensor noise). 

4.3 Feature extraction (Step D2) 

In the case study proposed in this work, a set of 𝑛 = 177 features have been 

extracted (see Appendix B) from each current signal, which include statistical 

indicators (features 1 to 9), Wavelet Transforms (WPT) using different basis 

(Biorthogonal 2.4 (features 10 to 51), Reverse Biorthogonal 2.4 (features 52 to 93), 

Symlet5 basis (features 94 to 135) and Haar basis (features 136-177)) (Baraldi et al, 

2016). 

By so doing, we have obtained a dataset 𝑋 consisting of 800 patterns in the 177-

dimensional space. Since the range of signal values of the entries of the matrix 𝑋 can 

widely vary, these have been normalized: the values in every column of 𝑋  have been 



re-scaled so that they are (standard) normally distributed with mean equal to 0 and 

standard deviation equal to 1.  

Then, all the available 800 labelled data of 𝑋 are partitioned into  

• A set used for the feature selection task, which is made up of 50% of the total 

number of patterns, obtained by randomly sampling 100 patterns among the 

200 patterns available at each degradation level. 

•  A validation set, which contains the remaining patterns. These will be used 

for validating the performance of the diagnostic model after the optimal 

features subset selection. 

4.4 Feature Selection (Step D2) 

  The problem of selecting from the set of features extracted an optimal subset of 

features relevant for classification can be framed as a Multi-objective (MO) 

optimization problem. Namely, the wrapper approach builds a number of candidate 

features set 𝒛 ∈ {0,1}𝑛, where 𝑧(𝑘) = 1 denotes that feature 𝑘 is selected, whereas 

𝑧(𝑘) = 0 that it is not selected. The performance of each feature set 𝒛 is evaluated with 

respect to a multi-objective fitness function 𝑭, which is defined as: 

 𝑭 = [−𝐹1(𝒛), 𝐹2(𝒛)]  𝒛 ∈ {0,1}𝑛 (23) 

where 𝐹2(∙) counts the number of features (to be minimized) forming the subsets:  

 𝐹2( 𝒛) = ∑ 𝑧(𝑘)𝑛
𝑘=1  (24) 

whereas 𝐹1(∙ ) represents the classification accuracy of the diagnostic classifier (in 

Eq. (23) the sign is changed, as we use a DE algorithm for minimization). To calculate 

this value, the total number of pre-labelled available patterns is randomly subdivided 

into training set and test set, consisting of 75% and 25% of the data, respectively. The 

random subdivision of the available patterns in training and test sets is repeated 20 times 

(i.e., 20 cross-validations): the mean recognition rate, i.e., the average fraction of 

correct classifications over the 20 cross-validation tests, is then calculated and 

represents the fitness value 𝐹1 of candidate solution 𝒛. Finally, the classification 

algorithm used in this work is the Fuzzy K-Nearest Neighbor (FKNN) algorithm. 

The performance of the MO optimization can be quantified in terms of the diversity 

of the solutions and the convergence to the Pareto optimal front (Baraldi et al, 2016). 

Since in a MO optimization problem, it is typically not possible to simultaneously 

improve the values of two or more objective functions without causing the deterioration 

of some other objectives, diversity is a fundamental requirement in a MO evolutionary 

optimization. In practice, diversity in the population allows improving the coverage of 

the search space and exploring different evolutionary paths. An indicator of the 

diversity of a Pareto optimal set is the hyper-volume over the dominated set, which has 

been defined as the Lebesgue-measure of the hyper-volume with respect to a lower 

reference bound (normally, the ideal best values of each objective function) (Baraldi et 

al., 2016): the smaller is the value of such indicator, the better is the performance in 

terms of objective function evaluations and the wider is the exploration of the search 



space. In our case, we set (−1,0) as the smaller reference point (i.e., the feature set 

characterized by the best possible performances), which corresponds to the situation 

where the patterns are all classified correctly (−𝐹1(𝒛) =-1) and 𝐹2(𝒛) =0 features are 

used.  

Figure 7 shows that the optimal Pareto set hyper-volume significantly decreases until 

(approximatively) generation 200; then, it remains constant. This indicates that the 

Pareto set becomes stable and no improvement is expected in the solution optimal set 

by further increasing the number of generations. 

 

Fig. 7. Hyper-volume values iteration by iteration  

In Table 6, the candidate solutions in the Pareto optimal set are reported. 

 

Solution Classification accuracy 

(𝑭𝟐) 

Number of features 

(𝑭𝟏) 

𝒛1
𝐵 0.9469 1 

𝒛2
𝐵 0.9673 2 

𝒛3
𝐵 0.9781 3 

𝒛4
𝐵 0.9816 4 

𝒛5
𝐵 0.9837 5 

𝒛6
𝐵 0.9847 6 

𝒛7
𝐵 0.9852 7 

𝒛8
𝐵 0.9857 10 

 

Table 6. Candidate solution in the Pareto optimal front  

 

We have chosen the solution with best classification accuracy, i.e., solution 𝒛8
𝐵, 

disregarding the number of features. This choice is motivated by the fact that an 

increment in the number of features does not significantly increase the computational 

burden. We have developed the Fuzzy K-Nearest Neighbours (FKNN) to classify the 

solenoid valve degradation states. After the feature selection task, the solenoid valve 

classification system has been developed. The overall accuracy of the classification 



model obtained in a 20-folds cross validation on the data of the validation set (i.e., 

containing data not previously used during the feature selection) is 0.9671 ± 0.0133 

which is satisfactory. 

5 Conclusions 

   In this work, we have proposed a diagnostic tool based on FPM simulator to cope 

realistic case in which field data of the system in normal and abnormal condition are 

not currently available. To show the procedural steps of the approach, an application 

has been presented with reference to fault diagnostic of a solenoid valve mounted on 

the braking system of trains.  

Future works will be focussed on the further application of the proposed methodology 

to the solenoid valve pilot case study, to make use of field data as they become 

available, for: 

1. Updating the fault history matrix, the parameters of the FPM and the 

diagnostic model (steps D4-D5-D6, respectively). 

2. Extend the proposed methodology to fault prognostics and developing a 

prognostic model for solenoid valve. 

3. Making uncertainty analysis (steps D7). 
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