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Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, Italy

Abstract

This work discusses the use of Lyapunov characteristic exponents for stability evaluation, and the analytical

estimation of their sensitivity to parameters of the problem. The parametric sensitivity of the stability

is formulated to provide a methodology for robustness analysis and design of dynamical systems with a

complexity level varying from linear time invariant to nonlinear, non-autonomous. Characteristic exponents

estimation and the analytical formulation of their sensitivity are based on the discrete QR decomposition

method. The proposed methodology is illustrated considering the flapping of a helicopter blade, and heli-

copter ground resonance with one damper inoperative and with nonlinear blade dampers. Some aspects of

characteristic exponents and sensitivity estimation from problems with complex conjugated modes, which

are typical of mechanical and aerospace systems, are discussed.
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1. Introduction

The stability of equilibrium points x0 of nonlinear, autonomous (i.e. not explicitly dependent on time)

problems ẋ = f(x) can be evaluated by considering a linearization about the points themselves, according to

the Hartman-Grobman theorem [1], when the real part of the eigenvalues of f/x is non zero; otherwise, the

Center Manifold theorem [2] can be used. When the problem ẋ = f(x, t) is nonlinear and non-autonomous

but time-periodic, of period T , the stability of periodic orbits x0(t), such that x0(t+ T ) = x0(t) ∀t, can be

evaluated using the Floquet-Lyapunov theory, after linearization about those orbits.

The practical, quantitative way of measuring stability depends on whether a system is autonomous and

linear. Linear Time Invariant (LTI) and Linear Time Periodic (LTP) problems typically result from the

linearization of nonlinear, non-autonomous problems about a steady (both LTI and LTP) or a periodic

(LTP only) reference solution. They rely on eigenanalysis of special matrices and require the existence of

such solutions, and the capability to identify and compute it. Obtaining a steady or periodic solution by

numerical integration in time requires that solution to be stable; its computation must start from within its
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region of attraction. Thus, the study of the stability of the solution is actually the study of how much stable

it is, namely of its stability margin.

A method that does not require a special reference solution (i.e. a stable point or a stable orbit) but,

on the contrary, provides indications about the existence of an attractor, being it a point, a periodic orbit

or a higher-order solution (e.g. a multidimensional torus), while computing the evolution of the system

towards it, would give valuable insight into the system properties and, at the same time, provide a viable

and practical means for its analysis. Lyapunov Characteristic Exponents (LCE), or in short Lyapunov

Exponents, are indicators of the nature and of the stability properties of solutions of differential equations

(see for example Refs. [3, 4] and references therein). They define the spectrum of the related Cauchy (initial

value) problem. Lyapunov theory can be applied to nonlinear, non-autonomous systems of differential

equations. The stability of trajectories in state space can be estimated while computing their evolution.

The possibility to extend the approach to systems of differential-algebraic equations, as outlined for example

in Refs. [5, 6, 7, 8, 9, 10], represents a promising development, in view of their use in the formulation of

modern multibody dynamics.

In a dynamical system, especially when it is used for design, the rate of change of stability estimates with

respect to a parameter plays a significant role if the value of that parameter is expected to change, to be

modified in later design phases, or is uncertain. Such sensitivity is useful to gain insight into the dependence

of stability indicators on system parameters, or can be integrated into gradient-based (or gradient-aware)

optimization procedures [11] and continuation algorithms [12], or into uncertainty evaluation problems (See

Ref. [13] for an example of helicopter blade aeroelastic tailoring). Sensitivity to design parameters can

be estimated analytically or numerically. For nonlinear, non-autonomous problems, and thus for linear

problems resulting from linearization, a change in the value of a parameter does change not only the stability

properties but also the trajectory, whereas stability estimation is independent of the trajectory for linear

systems. Hence, the development of analytical sensitivity estimation is preferable to finite differentiation

to avoid problems related to sharp changes in sensitivity parameters, and to gain the capability to detect

such topology changes of the solution and track them using continuation algorithms. The detection of a

Hopf bifurcation is an example of such a topology change in which the real part of the critical characteristic

exponents presents a singularity in the sensitivity when the parameter approaches a critical value [14].

The estimation of analytical sensitivity of stability parameters have been studied in the literature based

on linearity and periodicity assumptions (for example, Adrianova in Ref. [3] studied the sensitivity of the

spectrum of linear systems to parameter uncertainty; Shih et al. in Ref. [15] discussed parametric sensitivity

of nonlinear and periodic systems). This work presents an original contribution to the practical computation

of the analytical sensitivity of LCE estimates to changes in system parameters for nonlinear, non-autonomous

problems. The analytical sensitivity problem is based on the Discrete QR method, which exploits the QR

decomposition of the state transition matrix Y (t, t0) of a differential problem using the tangent manifold of
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the so-called fiducial trajectory. The sensitivity of LCE estimates obtained using the discrete QR method

can be practically performed in a cascaded manner:

• the LCEs are estimated using the QR decomposition of the state transition matrix from time t0 to t,

QR = Y (t, t0);

• the sensitivity of the LCEs is expressed as a function of the sensitivity of the diagonal elements of

matrix R;

• the sensitivity of matrix R is computed as a function of the sensitivity of submatrices Rj resulting

from the piecewise integration of the problem from time step tj−1 to tj , Yj : Ẏ = AY , Y0 = Yj−1;

• the sensitivity of each submatrix is computed from the sensitivity of the piecewise solutions of the

problem, Yj/p;

• the computation of the sensitivity matrix Yj/p is written in form of a self-adjoint problem, to minimize

the number of time integrations regardless of the number of parameters for which sensitivity is sought.

The proposed analysis is applied to aerospace (mostly rotorcraft) related problems.

2. Spectrum of Non-Autonomous Problems and Its Sensitivity

This section recalls the definition of non-autonomous problems and of LCEs as a measure of their

spectrum, numerical procedures for their estimation, and the procedure for the estimation of their sensitivity

to system parameters. The derivation of the algorithm for LCEs estimate sensitivity is presented in a top-

down fashion.

2.1. Non-Autonomous Problems

In engineering practice, initial value, or Cauchy, differential problems of the form

ẋ = f (x, t) , x(t0) = x0 (1)

often arise. Special cases occur when the problem is linear, i.e. f(x, t) = A(t)x(t), and in particular

periodic, i.e. linear with A(t + T ) = A(t) for a given constant T , called the period, ∀t. Autonomous

problems arise when f(x) does not explicitly depend on time t; a special case occurs when the problem

is linear, i.e. f(x) = Ax, with A constant, leading to a LTI problem. Stability indicators are the real

part of the eigenvalues of matrix A for LTI systems, the logarithm of the real part of the eigenvalues of

the monodromy matrix divided by the period for LTP problems and, as discussed in this work, LCEs for

nonlinear, non-autonomous problems, a definition that includes LTI and LTP ones as special cases.
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2.2. Lyapunov Characteristic Exponents

Given the problem of Eq. (1), with the state x ∈ R
n, the time t ∈ R, and the nonlinear function

f ∈ R
n+1 → R

n, and a solution x(t) for given initial conditions x(t0) = x0, its Lyapunov Characteristic

Exponents λi are defined as1

λi = lim
t→∞

1

t
log ‖ix(t)‖ , (2)

where ix(t) is the solution that describes the exponential evolution of the i-th axis of the ellipsoid that grows

from an initially infinitesimal n-sphere according to the map f/x tangent to f along the fiducial trajectory

x(t), i.e. the solution of the linear, non-autonomous problem iẋ(t) = f/x(x(t), t) ix(t), with ix(t0) = ix0.

The definition involves the limit for t→ ∞; hence, in practice LCEs can only be numerically estimated for

a sufficiently large value of t. In this study, unless explicitly stated, with the term “LCEs” we refer to their

estimation using a large enough value of t.

LCEs represent a measure of the rate of growth of perturbed solutions. Consider infinitesimal, indepen-

dent perturbations of the states with respect to a solution x(t) of Eq. (2) (the fiducial trajectory). The per-

turbed solution can be computed in terms of the state transition matrix Y (t, t0), considering A(x, t) = f/x,

as the solution of the problem

Ẏ (t, t0) = A(x, t)Y (t, t0), Y (t0, t0) = I. (3)

According to the Ostrogradskĭı-Jacobi-Liouville formula [3], the determinant of Y (t, t0) (the Wronskian

determinant of the independent solutions that constitute Y (t, t0)) is

det (Y (t, t0)) = det (Y (t0, t0)) e
∫

t

t0
tr(A(τ)) dτ

, (4)

where tr(·) is the trace operator. Thus, the Wronskian never vanishes when A(t) is regular in [t0, t], since

Y (t0, t0) ≡ I. The Wronskian geometrically represents the evolution in time of the volume of an infinitesimal

portion of the state space.

The evolution of an arbitrary perturbation ix(t0) = ix0 is ix(t) = Y (t, t0) ix0. As such, the contraction

or expansion rate along the direction of ix is estimated by considering

(

eχit
)2

= lim
t→∞

ix
T
ix

ix0
T
ix0

= lim
t→∞

ix0
TY TY ix0

ix0
T
ix0

. (5)

Consider now the singular value decomposition (SVD) of Y (t, t0),

UΣV T = Y (t, t0), (6)

1Actually, Eq. (2) should be

λi = lim
t→∞

1

t
log

‖ix(t)‖

‖ix(t0)‖
;

however, one can easily prove that for any finite constant c the LCE of cf(x, t) is equal to that of f(x, t).
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where U = U(t) and V = V (t) are orthogonal matrices. The singular values σi, namely the diagonal

elements of Σ = Σ(t), which are strictly greater than zero as a consequence of the above mentioned Ostro-

gradskĭı-Jacobi-Liouville formula2, express the growth of the perturbed solution along orthogonal directions

U(t) ix0 in the state space.

In the approximation of LCEs, one important issue is that of continuity with respect to perturbations.

This aspect can be particularly critical when sensitivity is addressed. It is known that the property of

integral separation is a necessary and sufficient condition for the computability of distinct LCEs [16]. This

result has been extended to the case of multiple LCEs, i.e. sets of LCEs which converge to same value [17].

So-called continuous formulas for the estimation of the LCEs can be derived from the definition based

on the SVD, as well as on the QR decomposition (see for example [18]). Such formulas originally suffered

from the numerical difficulty of dealing with matrices whose coefficients either rapidly converge to zero

(exponential stability) or diverge (instability), although in recent times they have seen extensive development

[19, 20, 21, 22]. For this reason, different approaches have been formulated; the so-called discrete QR method,

based on the incremental use of the QR decomposition of the state transition matrix for each time step, is

discussed in the next section.

2.3. The Discrete QR Method

The definition of Eq. (2) is not practical, because the determinant of the state transition matrix usually

either contracts to zero or expands to infinity, depending on the (lack of) stability of the solution, thus either

over- or underflowing. The practical computation of LCEs requires one to exploit re-orthogonalization of

local directions of evolution of the solution, as proposed in the seminal work of Benettin et al. [4], which

first showed that the computation of LCEs could be practically and effectively achieved. Numerical methods

have been devised for this purpose. A most popular one is the so-called Discrete QR method, which is based

on incrementally updating the LCE estimates with the contribution of the diagonal elements of the matrix

R resulting from the QR decomposition of the state transition matrix between two consecutive time steps.

The state transition matrix Y (t, t0) from an arbitrary initial time t0 to an arbitrary time t is the solution

of the problem Ẏ = f/x(x(t), t)Y with Y (t0, t0) = I. Its QR decomposition yields Y (t, t0) = Q(t)R(t, t0) =

Q(t)R(t), where the initial time t0 has been omitted from matrix R for clarity. The state transition matrix

from time t0 to time tj , Y (tj , t0), can be split as Y (tj , t0) = Y (tj , tj−1)Y (tj−1, t0). Consider now the QR

decomposition Y (tj−1, t0) = Q(tj−1)R(tj−1) which, combined with that of the complete state transition

matrix, yields

Q(tj)R(tj) = Y (tj , tj−1)Q(tj−1)R(tj−1). (7)

2After choosing Y (t0, t0) = I, its determinant is 1; the integral of matrix A(t) is finite, and thus its exponential is a strictly

positive number.
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Consider now the QR decomposition of matrix Y (tj , tj−1)Q(tj−1) = QjRj , which, replaced in Eq. (7),

yields Q(tj)R(tj) = QjRjR(tj−1). Clearly, Qj = Q(tj) and R(tj) = RjR(tj−1). The LCEs are then

estimated from R(tj) as

λi = lim
j→∞

1

tj
log rii(tj), (8)

where rii(tj) are the diagonal elements of matrix R(tj).

Since the product of two upper triangular matrices C = AB is also an upper triangular matrix, whose

diagonal elements are cii = aiibii, the logarithm of cii can be incrementally computed as log(aiibii) =

log(aii) + log(bii), which helps prevent overflow/underflow in numerical computations. Furthermore,

rii(tj) = Πj
k=0r(j−k)ii , (9)

where r(j−k)ii stands for the ith diagonal element of matrix Rj−k that results from the incremental QR

decomposition at step j − k; thus

log (rii(tj)) =

j
∑

k=0

log(rkii
), (10)

which leads to

λi = lim
j→∞

1

tj

j
∑

k=0

log(rkii
). (11)

2.4. Sensitivity of Lyapunov Exponents Estimates

Consider a set of bounded parameters p ∈ P, and assume that the problem ẋ = f(x, t,p) depends on

parameters p. The sensitivity of the LCEs with respect to a generic parameter p ⊂ p, using the form of

Eq. (11), can be expressed as

λi/p = lim
j→∞

1

tj

j
∑

k=1

rkii/p

rkii

. (12)

In this case, only the sensitivity of Rj is needed, which is obtained in the next section by computing the

sensitivity of the QR decomposition.

2.5. Sensitivity of QR Decomposition

The sensitivity of the QR decomposition can be obtained along the lines of the state transition matrix

QR decomposition differentiation that is used to formulate the continuous QR method for LCE estimation

(see for example [4, 23]).

Consider the QR decomposition of an arbitrary matrix M ∈ R
n×n:

M = QR (13)
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with QTQ = I, and R upper triangular, with positive diagonal elements. Consider the derivative of M

with respect to a scalar parameter p,

M/p = Q/pR+QR/p, (14)

and the corresponding derivative of the orthogonality condition QTQ = I,

(

QT
)

/p
Q+QTQ/p = 0, (15)

i.e.

(

QTQ/p

)T
+QTQ/p = 0. (16)

The latter condition states that QTQ/p must be skew-symmetric; thus, only n(n − 1)/2 coefficients are

independent (for example, those in the strictly lower triangular portion, i.e. the lower triangular part,

excluding the diagonal).

Finally, premultiply M/p by QT :

R/p = QTM/p −QTQ/pR (17)

Since matrix R/p is upper triangular, after defining operator triu(·), which extracts the upper triangular

part of the argument, and operator stril(·), which extracts the strictly lower triangular part of the argument,

the whole problem can be re-cast in the form:

compute W = QTQ/p (18a)

such that stril
(

QTM/p −WR
)

= stril (0) (18b)

subjected to W T +W = 0 (18c)

compute R/p (18d)

such that triu
(

R/p

)

= triu
(

QTM/p −WR
)

(18e)

and stril
(

R/p

)

= stril (0) . (18f)

The last statement is redundant since W computed according to Eqs. (18a–c) already yields R/p with the

strictly lower triangular part set to zero.

It is worth noticing that, since R is upper triangular, W is computed as

WL = stril
(

QTM/pR
−1
)

W = WL −W T
L (19)

whereR−1 does not require any factorization, but only back-substitution. In fact, after settingB = QTM/p,

the generic coefficient of stril(W ) is

wij =
1

rjj

(

bij −

j−1
∑

k=1

wikrkj

)

j = 1, n− 1 i = j + 1, n. (20)
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Then

Q/p = QW . (21)

2.6. Sensitivity of Lyapunov Exponents Estimated by the Discrete QR Method

The discrete QR method requires the decomposition of YjQj−1; thus, the sensitivity of YjQj−1 = QjRj

is actually required, i.e.

Qj/pRj +QjRj/p = Yj/pQj−1 + YjQ(j−1)/p, (22)

where Qj−1 and Q(j−1)/p are available from the previous step.

First of all, Eq. (22) is premultiplied by QT
j to obtain

QT
j Qj/pRj +Rj/p = QT

j Yj/pQj−1 +QT
j YjQ(j−1)/p. (23)

Then the strictly lower triangular part of the equation is evaluated to compute WL,

WL = stril
((

QT
j Yj/pQj−1 +QT

j YjQ(j−1)/p

)

R−1
j

)

= stril
((

QT
j Yj/pQj−1 +RjWj−1

)

R−1
j

)

, (24)

the strictly lower triangular part of Wj = QT
j Qj/p = WL − W T

L . See Eq. (20) for details about the

computation of WL.

Finally, the upper triangular part of Eq. (23) is evaluated to obtain Rj/p,

Rj/p = QT
j

(

Yj/pQj−1 + YjQ(j−1)/p

)

−WjRj

= QT
j Yj/pQj−1 +RjWj−1 −WjRj (25)

The sensitivity of Yj , i.e. the state transition matrix from tj−1 to tj , is needed.

2.7. Sensitivity of the State Transition Matrix

The sensitivity of Y at time tj , namely Y/p(tj), is needed to compute the sensitivity of the LCEs. In

principle, this is obtained by integrating the sensitivity of the problem Ẏ = AY . Then

Ẏ/p = AY/p +
(

A/xx/p +A/p

)

Y

= AY/p +
dA

dp
Y , (26)

i.e. a problem with the same matrix A of the original one, forced by a term (dA/dp)Y that depends on

the reference solution, as also noted in Ref. [15] in the context of parameter sensitivity of nonlinear periodic

problems. The total derivative of the generic element of matrix A with respect to the parameter is

daij
dp

=
∂2fi

∂xj∂xk

∂xk

∂p
+

∂2fi

∂xj∂p
. (27)
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The terms ∂2fi/∂xj∂xk are the elements of the second-order derivative of function f with respect to the

state x. It vanishes for linear problems. The sensitivity of the state to the parameter p is obtained by

perturbing the problem ẋ = f(x, t),

ẋ/p = f/xx/p + f/p, (28)

and integrating it in time accordingly. A similar problem needs to be solved for each parameter.

The sensitivity of the state transition matrix Y/p(t, tj) can be calculated using the integration method

that is applied to compute the state transition matrix itself. For example, if Hsu’s method [24] is used to

compute the state transition matrix of a Linear Time Variant (LTV) problem, the state transition matrix

is readily obtained as

Y (t, tj) ≈ eÂ(t−tj)Y (tj , tj), (29)

where Â is a suitable average of matrix A in the neighborhood of tj [24]; the matrix exponential may

be approximated (e.g. truncated when computed as a matrix power series) to improve the computational

efficiency of the method. In this case, the sensitivity of the state transition matrix can be approximated as

Y/p(t, tj) ≈ Â/p(t− tj)e
Â(t−tj)Y (tj , tj)

= Â/p(t− tj)Y (t, tj). (30)

Care must be taken in the computation of the sensitivity matrix Y/p(t, tj), as differentiation is an ill-posed

problem.

2.8. Summary

In summary, the steps required for LCE estimation are:

• increment the fiducial trajectory x(t) from tj−1 to tj , Eq. (1);

• compute the state transition matrix increment Yj , Eq. (3);

• compute the QR decomposition increment QjRj = YjQj−1;

• update the LCE estimates using the diagonal elements of Rj , Eq. (11).

The steps required for LCE sensitivity estimation are:

• if the problem is nonlinear, increment the sensitivity of the fiducial trajectory, x/p(t), Eq. (28);

• compute the sensitivity of the state transition matrix increment Yj/p, Eq. (26);

• compute the sensitivity of the QR decomposition, Qj/p and Rj/p, Eqs. (18);
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• update the LCE sensitivity estimation using the diagonal elements of Rj/p, Eq. (12).

The computation of the fiducial trajectory, the estimation of the LCEs, and the estimation of their sensitivity

can be computed sequentially, or incrementally at each time step. In the latter case, the computation can

be stopped when LCE sensitivity estimation converges as desired.

3. Numerical Examples

3.1. Helicopter Blade Flapping

Rigid blade flapping can be modeled as a second order single degree of freedom LTP problem (from

Ref. [25]) under simplifying assumptions. Since the purpose of this example is to address the sensitivity

estimation of the stability properties of LTP systems, instead of using a more realistic but complex helicopter

blade dynamics model, only periodicity is retained; the model is oversimplified by linearizing the dynamics,

using quasi-static aerodynamics and neglecting reverse flow conditions. The dots represent differentiation

with respect to the azimuth angle t (in this context it represents non-dimensional time). The equation of

motion can be written as

β̈ +
γ

8

(

1 +
4

3
µ sin(t)

)

β̇+

(

ν2β +
γ

8

(

4

3
µ cos(t) + µ2 sin(2t)

))

β = 0 (31)

that represents the flapping of a rigid helicopter blade, where β is the blade flap angle, γ is the Lock number

(the non-dimensional ratio between aerodynamic and inertial flapping loads, which is roughly proportional

to the damping factor), µ is the advance ratio (the ratio between the helicopter forward velocity and the

blade tip velocity in hover, which weighs the periodic part of the coefficients) and νβ is the non-dimensional

flapping frequency. In order to demonstrate the trend of LCE estimates with respect to a parameter, the

advance ratio µ is chosen.

The non-trivial trajectories can be obtained starting from arbitrary initial conditions; if β(t) = 0 is

asymptotically stable, the solution converges to it. Since this problem is linear and homogeneous, β(t) = 0

is the unique equilibrium point and stability does not depend on the initial conditions.

The problem is rewritten in first order form and integrated to compute the state transition matrix at

each time step. LCEs and their sensitivity are estimated according to the proposed approach. The expected

fiducial trajectory is readily obtained within a few periods when it is asymptotically stable. The evolution

of LCE estimates associated with complex conjugated eigenvalues (µ = 0.15) is shown in Fig. 1a; a zoom is

shown in Fig. 1b. Owing to periodicity, the mean value of two LCEs associated with complex conjugated

eigenvalues shows a decaying oscillatory behavior with the period of the system, T = 2π. The decay is

caused by division by t, according to Eq. (2).
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In order to have an accurate estimate of the LCEs, integration needs to be performed for a large enough

non-dimensional time, to let the oscillations vanish. It is observed that in those cases, considering the

average of LCE estimates that appear to converge to the same value gives a much better estimation and

allows earlier truncation of the analysis. The numerical examples reported in the following make use of

this technique to improve the estimation of LCEs. More robust approaches for the detection of LCEs with

multiplicity greater than one are being formulated by the authors.
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Figure 1: Blade flapping: time evolution of LCE estimates and zoomed plot after convergence, µ = 0.15
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Figure 2: Blade flapping: estimates of LCEs and their sensitivity with respect to advance ratio µ.

The LCEs and their sensitivity estimates are compared in Fig. 2a and Fig. 2b respectively with the

corresponding sensitivity values obtained using the Floquet-Lyapunov theory according to the approach
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presented in [26], for a range of advance ratio 0 ≤ µ ≤ 1.5. The results are in good agreement; only where

strong gradients occur the results differ slightly, probably because the LCE estimates were not sufficiently

close to convergence.

3.2. Helicopter Ground Resonance with Non-Linear Lead-Lag Dampers

Ground Resonance is a mechanical instability caused by the interaction between the in-plane degrees of

freedom of a helicopter rotor and the motion of the airframe (see for example [27], or the seminal work by

Coleman and Feingold, [28]). The combination of the in-plane motion of the blades causes an overall in-

plane motion of the rotor center of mass which couples with the dynamics of the airframe and undercarriage

system. For this reason, the damping of the in-plane motion of the blades is essential in articulated and

soft-inplane rotors; it is usually provided by lead-lag dampers.

Hammond’s model of a four-blade rotor [29] has been extensively used due to its simplicity; as such, it

is chosen as the helicopter ground resonance model in this study. The equations of motion in the rotating

reference frame can be written as

Mr(ψ)q̈r +Cr(ψ)q̇r +Kr(ψ)qr = 0 (32)

where qr is the degrees of freedom vector, and Mr, Cr, and Kr are the azimuth-dependent mass, damping

and stiffness matrices in the rotating frame, with periodic terms as given in the original work [29]. Ham-

mond’s model considers four blade degrees of freedom (ζi, i ∈ [1, N ] being the blade index, with N = 4)

and two hub in-plane degrees of freedom, x being longitudinal (rotor head displacement due to pitch) and

y being lateral (rotor head displacement due to roll). Therefore,

qr = [ζ1 ζ2 ζ3 ζ4 x y]T ; (33)

ψi = ψ + i2π/N is the azimuth angle of the corresponding blade with blade index i; ψ is the reference

azimuth angle. The parameter values are reported in Ref. [29].

The degrees of freedom vector and the matrices can be expressed in the non-rotating frame using the

transformation matrix T0, its first time derivative T1 and second time derivative T2, normalized with the

angular speed of the rotor, Ω, as described in Ref. [30]. Then, the degrees of freedom vector in the non-

rotating frame is

qnr = T−1
0 qr = [ζ0 ζ1c ζ1s ζN/2 x y]T ; (34)

qnr includes the collective, ζ0, cyclic, ζ1c and ζ1s, and reactionless, ζN/2 blade lead-lag coordinates, and the

two hub displacement coordinates x and y, as in qr. The equation of motion in the non-rotating frame can

be written as

Mnrq̈nr +Cnrq̇nr +Knrqnr = 0 (35)
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Table 1: Saturated hydraulic damper parameters.

χ̄ 1.2203× 106 Nms2 rad−2

ζ̇L 1.0 deg s−1

with the corresponding non-rotating mass, Mnr, damping, Cnr, and stiffness, Knr, matrices, which are

transformed from the rotating-frame matrices Mr, Cr and Kr as

Mnr = T−1
1 MrT1 (36)

Cnr = T−1
1 (2ΩMrT2 +CrT1) (37)

Knr = T−1
1 (Ω2MrT3 +ΩCrT2 +KrT1) (38)

These matrices are no longer azimuth-dependent when the rotor is isotropic.

Although linearized and time-averaged models are commonly used in practice, the dynamics of helicopters

is generally described by nonlinear, time-dependent equations [31]. Among nonlinear phenomena, limit

cycle oscillations (LCO) are defined as isolated closed trajectories of nonlinear dynamical systems. When

an LCO develops, the system oscillates in a self-sustained manner without the need of an external input

[32]. Clearly, the occurrence of LCOs can affect structural life, flight safety and ride comfort of a rotorcraft;

their occurrence can only be detected considering the nonlinearity of the problem.

A distinctive advantage of LCEs is their capability to analyze the stability of generic trajectories of

nonlinear, non-autonomous dynamical systems. For this purpose, Hammond’s ground resonance model is

modified using lead-lag dampers characterized by a nonlinear constitutive law, to verify the application of the

method to nonlinear problems. The simple nonlinear constitutive law of the damper considered in Ref. [33]

(a moment that is quadratic in the angular velocity, to model turbulent viscous flow, with saturation) is

modified by adding a linear term to the quadratic characteristic, yielding the moment

fd =











χζ̇|ζ̇|+ CLζ̇ |ζ̇| < ζ̇L

χ̄sign(ζ̇)ζ̇2L |ζ̇| ≥ ζ̇L

(39)

about the lead-lag hinge, where χ = χ̄ − CL/ζ̇L to ensure that the value of damping at the discontinuity

points |ζ̇| = ζ̇L remains the same when the slope at zero angular velocity, CL, is changed. The slope is

chosen as the parameter for investigating the sensitivity of the LCE estimates. It is expressed as a fraction

of the nominal linear damper Cd given in Ref. [29]. The same values of Ref. [33] are used for the other

parameters, as reported in Table 1.

In the model of Ref. [33] the slope CL is zero, and Limit Cycle Oscillations (LCO) are observed. Without

the linear term, the model is not realistic, since flow in a hydraulic damper tends to be laminar at small

flow rates. Thus, the linear term better describes the physics of the device in the low angular rate ζ̇ regime.
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Indeed, this problem has been selected to obtain a LCO in an otherwise reasonably realistic model and to

test estimation of LCEs and their sensitivity with a nonlinear, non-autonomous problem that may include

LCO, exponential stability, and unstable equilibria.

The blade lag motion ζ (only one of four blades is shown for clarity) is discussed first. Figure 3 shows

the blade lag motion when the blade experiences LCO (CL = 0) and exponential stability (CL = Cd). In

both plots, simulations start from different initial conditions. In Fig. 3a, the curves tend to oscillations with

the same amplitude and period, thus confirming the limit cycle interpretation of the attractor. It is worth

noticing that the trivial solution ζ = 0 is also an equilibrium solution; however, since solutions obtained with

initial conditions close to ζ = 0 converge to the LCO rather than vanishing, ζ = 0 is topologically an unstable

equilibrium point. The present analysis for ζ = 0 as the fiducial trajectory estimates a positive largest LCE,

thus confirming its instability when CL = 0. On the contrary, Fig. 3b shows that when CL = Cd, the

resulting curves converge to ζ = 0, confirming that such fiducial trajectory is now a stable point.

If the system has a periodic attractor, a so-called LCO, zero-valued LCE estimates (or values very close to

zero in a numerical sense) are expected [34]. In order to observe this and also further investigate sensitivity,

LCEs and their sensitivity are estimated for a range of damper slopes at zero lag rate, CL. Results are shown

in Fig. 4a for LCEs and in Fig. 4b for sensitivity of LCEs. Although all LCE estimates have been computed,

only the largest ones are shown for clarity, since they are the most critical with respect to stability. In

the latter Figure, the analytical sensitivity is compared with the corresponding values obtained using finite

differences: λi/p|pj
= (λi|pj+1

− λi|pj−1
)/(pj+1 − pj−1). As one can observe from Fig. 4a, starting from

CL = 0 the largest LCE is zero and remains approximately zero until CL ≈ 0.35Cd. Hence, a LCO occurs in

this range after the system encounters a perturbation. For larger values of CL, the two largest LCEs (nearly)

merge (i.e. they become numerically quite close to each other) and the system becomes exponentially stable

with all LCEs negative. The differences in Fig. 4b between sensitivities computed using finite differences and

the proposed approach can be explained by considering that both approaches contain approximations. Finite

differences computed from LCE estimates suffer from truncation in LCE estimation and approximation in

the finite differentiation process; estimated LCE sensitivity suffers from truncation in LCE estimation. The

differences are maximal in proximity of large gradients in the sensitivity.

The previously discussed behavior is verified by looking at the lag motion of the blade. In Fig. 3a, which

corresponds to CL = 0, the blade motion converges to a stable LCO with magnitude 0.015 deg. Increasing

the zero lag rate slope provides asymptotic stability: for example, when CL = Cd, all LCEs are negative;

Fig. 3b shows an exponentially stable motion. The sensitivity analysis of Fig. 4b can successfully capture

this trend of stability properties.

The time evolution of LCE estimates corresponding to the cases of Fig. 3 is shown in Fig. 5. In the

case resulting in an LCO, (CL = 0, Fig. 3a and Fig. 5a), the two largest LCE estimates are distinct. The

largest LCE, λ1, quickly converges to zero, corresponding to the stable LCO with magnitude 0.015 deg. A
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Figure 3: Helicopter ground resonance with nonlinear blade damper: blade lag motion starting from different initial conditions.
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Figure 4: Helicopter ground resonance with nonlinear blade damper: two largest LCE estimates and their sensitivity with

respect to damper slope at zero lag rate CL.
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Figure 5: Helicopter ground resonance with nonlinear blade damper: time evolution of largest two LCE estimates.
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Figure 6: Helicopter ground resonance with dissimilar nonlinear blade damper: two largest LCE estimates and their sensitivity

with respect to damper slope at zero lag rate CL.
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Figure 7: Helicopter ground resonance with dissimilar nonlinear blade damper: blade lag motion starting from different initial

conditions, compared with the isotropic rotor case.
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Figure 8: Helicopter ground resonance with dissimilar nonlinear blade damper: time evolution of two largest LCE estimates.
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zero-valued LCE indicates an LCO; hence, the LCE estimates and the time simulations are in agreement.

Increasing the slope at zero lag rate provides stability; for a sufficiently large value of CL (for example Fig. 3b

and 5b), the two largest LCE estimates converge to the same value, suggesting that they are coincident,

with multiplicity 2, as if they were associated with complex conjugated eigenvalues in a LTI system. This

solution is stable, as observed from the time simulations and indicated by the negative largest LCEs.

3.3. Helicopter Ground Resonance with Dissimilar Nonlinear Lead-Lag Dampers

In order to apply the proposed approach to a nonlinear non-autonomous problem, one damper is removed

from the model considered in the previous ground resonance example with nonlinear dampers; thus the

symmetry is spoiled and time dependence is introduced. The linear damping characteristic (CL) of the

nonlinear damping force is again used as parameter. Stability and sensitivity analyses are performed for the

same parameter range. The two largest LCEs are shown in Fig. 6a as functions of the percentage of linear

damping CL. In the CL/Cd region up to 75% the largest LCE is greater than zero. Since, as described in

Ref. [34], for a nonlinear system with a bounded trajectory a positive LCE indicates chaos, this region is

expected to experience a somewhat chaotic motion. For damping greater than 75% of the nominal value the

largest two LCEs become negative; thus, a stable behavior is expected.

Fig. 6b presents the analytical sensitivity results of the largest two LCEs, compared with corresponding

results obtained by applying finite differences to LCE estimates of Fig. 6a. While the slope of the positive

LCE remains almost zero for CL/Cd up to 40% and then slowly decreases until a CL/Cd of about 75%, that

of the other one is initially positive until a CL/Cd of about 75%, then it decreases abruptly, and the two

LCEs merge and take the same negative slope. Analytical and finite difference results are reasonably close

and follow a similar pattern.

In order to verify the LCE indications, we can further analyze the two extreme points of Fig. 6a. Fig. 7a

shows the lag motion of one blade (only one blade is presented for simplicity) when the remaining dampers

have null slope at zero lag rate (CL = 0), compared with the curve of Fig. 3a, namely the corresponding

results of an isotropic rotor with identical nonlinear dampers. The solution is not converging to an equilib-

rium point or a periodic orbit, but at the same time it remains within a bounded region of the state space.

In fact, this is a distinctive property of chaos: a never repeating bounded trajectory, as explained in [32, 34].

Hence, the positive largest LCE and the chaotic motion of the blade are in agreement. The time evolution

of LCEs for this case is given in Fig. 8a, which shows two separate LCEs.

Fig. 7b presents the lag motion of the blade for the remaining dampers having nominal slope at zero

lag rate (CL = Cd). Again there is no dominant period and the motion seems arbitrary, but this time the

amplitude converges to zero, indicating that the solution is stable. The corresponding evolution of the LCE

estimates is presented in Fig. 8b, showing two LCEs that converge to the same value, suggesting an LCE

with multiplicity 2.
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4. Conclusions

The sensitivity analysis of Lyapunov Characteristic Exponents with respect to system parameters is

presented. Especially for several aerospace related applications, it is believed that time dependence, often

in conjunction with non-strict periodicity and quasi-periodicity, as well as nonlinearity, cannot be neglected.

Lyapunov Exponents correspond to the real part of the eigenvalues of the state matrix for linear time

invariant systems, and to Floquet multipliers for linear time periodic systems; hence, they represent a

natural generalization of stability indicators that are familiar in current engineering practice. Therefore,

analytical sensitivity analysis of Lyapunov Exponents formulated in this work can proficiently support the

sensitivity analysis of systems with an increasing level of complexity. The method is illustrated in relation

with linear time periodic, nonlinear time invariant and nonlinear non-autonomous problems. Lyapunov

Exponents estimations that have been shown to be compatible with Floquet-Lyapunov analysis and time

marching simulations are analyzed for sensitivity. The results of Lyapunov Exponents analytical sensitivity

are compared with corresponding ones obtained with Floquet-Lyapunov’s theory for linear time periodic

problems and with results obtained using centered finite differences for nonlinear problems. An acceptable

level of agreement has been found in all cases, especially far from strong gradients.

It is noted that multiplicity of LCEs can be inferred by considering nearly periodic oscillations in LCE

estimates that tend to very close values. After de-trending, the period in the oscillations of Lyapunov Expo-

nents average can be associated with the period of linear time periodic problems. When correctly recognized

as Lyapunov Exponents with higher multiplicity, the average of their estimate presents a much faster con-

vergence to the correct value. The latter aspects need further investigation to improve the robustness of

such considerations.
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