Machine-Learning-Assisted Routing in
SDN-based Optical Networks

Sebastian Troia"), Alberto Rodriguez), Ignacio Martin®®, José Alberto Hernandez®,
Oscar Gonzalez de Dios®, Rodolfo Alvizu, Francesco Musumeci!, Guido Maier("

() Politecnico di Milano,
sebastian.troia@polimi.it

Dipartimento di

Elettronica

Informazione e Bioingegneria, ltaly

(2) Universidad Carlos Il de Madrid, Telematics Engineering Department, Spain

(3) Telefonica Global CTO, Spain

Abstract

We demonstrate a Machine-Learning-based routing module for software-defined networks.

By training with the optimal routing solutions of historical traffic traces, the module can classify traffic

matrices to provide real-time routing decisions.

Introduction

The amount of data transported by current
telecommunications networks and the complex-
ity of the applications they generate are challeng-
ing network operators, mainly due to the develop-
ment and variety of network services requested
by end-users. Moreover, network operators must
deal with high dynamics of bandwidth require-
ments, so that network reconfiguration is often
required to efficiently exploit the available capac-
ity. However, performing optimal routing of several
end-to-end connections is typically a very com-
plex task, thus, efficient algorithms, such as those
enabled by machine learning (ML), are needed to
quickly provide accurate network reconfiguration
in reasonable time.

Software-Defined Networking (SDN) has re-
cently emerged as one of the most promis-
ing technologies for implementing centralized
and programmable control planes. The SDN'’s
logically-centralized control plane is able to ac-
quire network information, such as network topol-
ogy, topology updates, real-time bandwidth re-
quests, link load, network device status, etc., and
use them to feed optimization algorithms. Given
this large number of information available from the
control plane, it is possible to train machine learn-
ing algorithms to automatically and continuously
optimize the network.

In this demonstration we show an SDN archi-
tecture based on ONOS controller ' which is able
to train and apply machine learning models to
determine optimized network configuration upon
distinct traffic matrices. To do this, we have imple-
mented an intelligent network optimization mod-
ule called Machine Learning Routing Computa-
tion (MLRC) module that drives the provisioning

of paths in an SDN network. Using REST APIs’',
it captures traffic matrices with variable granular-
ity (e.g., every 5 seconds) and trains the model
continuously in order to keep it updated. The pur-
pose of MLRC is to classify traffic matrices by
means of a supervised learning algorithm trained
with a set of optimal routing solutions. Such op-
timal routing solutions have been obtained using
the Net2Plan network optimization tool“. Once
the MLRC module has been trained, it is used to
provide real-time routing decisions upon the de-
tection of changes in the network traffic matrix.

Demo live presentation

The demonstration will be provided exploiting a
virtualized lab created with Mininet®, in the frame-
work of EU H2020 Metro-Haul project®. Mininet is
a network emulator that runs a collection of end-
hosts, switches and links on a single Linux kernel.
In Fig.1(a) we show the network topology used in
the demonstration which is composed by 12 Open
vSwitches® and 4 end hosts/servers.

The control plane is deployed with the ONOS
SDN controller' (version 1.12). Via the North-
bound interface, it provides APIs to the applica-
tion plane. ONOS is a carrier-grade SDN con-
troller that consists of applications that manage
several network functions, such as: host mo-
bility, Packet-Optical integration, proxy ARP, etc.
Moreover, the Southbound interface is used by
the ONOS controller to implement communica-
tion with the infrastructure plane. In this demo we
use the OpenFlow” protocol, that gives access

"Weblink: https://wiki.onosproject.org/display/ONOS/
Appendix+B%3A+REST+API

2Weblink: https://metro-haul.eu

30pen vSwitch is an open-source implementa-
tion of a distributed virtual multilayer switch. weblink:
https://www.openvswitch.org/

APPLICATION PLANE

Reactive L2 Host Packet
forwarding mohility Optu-al integ.

Intent Intent based
calendaring Proxy ARP f |, forwarding

NorthBound interface ‘ APl

CONTROL PLANE
ONOS SDN controller

‘OpenFlow

SouthBound interface

INFRASTRUCTURE PLANE

Machine Learning Routing
Computation

‘ REST API

Machine Learning Routing Computation

MODEL TRAINING
—® hyperparameters,
training phase

DATA COLLECTION
Traffic Matrix acquisition

Y
ROUTING CLASSIFICATION

COMPUTATION MODEL
Post the flow rules on the Update of weights,
0OVS switches model evaluation

(b)

21703

Legend

Host/]
Server / yA|

ERA Epf Ef EL

(a)

E OpenvSwitch I e /

(c)

Fig. 1: Machine learning aware SDN network architecture. (a) SDN architecture composed by Infrastructure, Control and
Application planes. (b) Detailed schema of the machine learning Routing Computation module. (c) GUI provided by the ONOS
SDN controller in which is visible the topology and the flows of the Mininet network.

to the forwarding plane of the Open vSwitches.
Furthermore, ONOS provides a graphical user in-
terface (GUI) from which the network topology
and installed routing paths can be observed (see
Fig.1(c)).

Traffic is generated by the 4 hosts using the Dis-
tributed Internet Traffic Generator (D-ITG) tool®.
D-ITG is a platform capable of producing packet-
based traffic, emulating various stochastic pro-
cesses for both IDT (Inter Departure Time) and
PS (Packet Size) random variables (e.g., with Ex-
ponential, Uniform, Cauchy, Normal, Pareto, etc.).
D-ITG supports both IPv4 and IPv6 traffic gener-
ation and it is capable to generate traffic at net-
work, transport, and application layer.

To demonstrate the performance of dynamic re-
configuration of routing plan given by the machine
learning module, we run several experiments on
the described testbed. Assuming that the ML
model is continuously trained with the traffic matri-
ces extracted from the network, we designed two
use cases.

The first one uses generic TCP traffic to gener-
ate all possible combination of flows between the
available hosts. Each host acts as a server for
the other three and, meanwhile, it is client of each
server instantiated on the others. While the ac-
tive cycles follow an Exponential distribution, the
distribution for the inter-departure time is set to
Poisson.

The second use case corresponds to a sub-
tler scenario. TCP connections share the net-
work with UDP flows that have higher QoS re-
quirements than the former. This example pro-
pounds Video streaming and VolIP flows to take
this role. VoIP profile is already integrated inside
D-ITG using the codecs of G.711 and G.729 fam-
ilies whereas video streaming traffic can be repli-
cated by fine tuning the traffic generation options
exposed by D-ITG.

The goal of the use cases is to show two fun-
damental aspects of the demo:

1. Show in real-time the learning process of
the ML model. Traffic flows are collected
from the MLRC module in order to generate a
4x4 traffic matrix with the end-to-end instan-
taneous traffic. After an initial collection of
about 10,000 traffic matrices, the ML model
is trained in order to generate the appropri-
ate path for each flow.

2. Show what the ML model has learned.
Once the model has been trained with traffic
traces derived from the traffic profiles in the
two use cases, it is compared with the na-
tive ONOS app, called Reactive L2 forward-
ing (see Fig.1(a)). This application provides
always the shortest path between two end
hosts. The MLRC app instead provides a
smarter routing scheme by decreasing net-
work congestion.

During the ECOC demo session, we will show
how the ML model provides a routing strategy that
is different from the one provided by the native
application of ONOS Reactive L2 forwarding. In
order to reduce network congestion, the MLRC
module will propose routing that does not corre-
spond to shorter ones, thus avoiding bottlenecks
and congestion in advance.

In the next section, we will show in more de-
tail the ML model implemented in this demo. Fur-
thermore, we will show that the time required to
compute the routing scheme and the consequent
installation of the flow rules takes less than 100
ms.

Machine Learning Routing Computation

We now provide a more detailed description of
the MLRC module, which consists of 4 sub-
modules: Data collection, Model training, Classifi-
cation model and Routing computation, as shown
in Fig.1(b).

Data collection. This is the first phase of the
module, that is, the acquisition of traffic matrices
from the network. Every 5 seconds, the amount
of bytes on each ftraffic flow is extracted from the
switches and are subsequently stored. After that,
they are made available to the next sub-module.

Model training. In this sub-module the machine
learning algorithm is trained. This represents the
heart of the whole proposed system. From a
pure machine learning point of view, we thought
of routing as a classification problem. Each traffic
matrix has its own optimal routing configuration,
obtained through Net2Plan“?, that can be shared
by different traffic matrices. The goal of this sub-
module is to learn how to classify traffic matrices
that share the same routing configuration. For
this demonstration, we adopt a logistic regression
classifier, due to its simplicity and explainability.

Classification model. This sub-module hosts
the last updated classifier that is actually used
to classify the input traffic matrix. The output of
this sub-module is the optimal routing scheme
that is passed to the Routing computation mod-
ule. The subdivision between Model training and
Classification model was made to have a scalable
model, as it is possible to add other classification
algorithms, and always updated, as the training is
done continuously.

“4For each traffic matrix an optimization problem is solved
which aims to minimize network congestion. To obtain this
result, we used Net2Plan, a network optimization tool, thanks
to which it is possible to label traffic matrices, i.e. to associate
them with routing configurations.

Routing computation. Finally, the routing
scheme obtained by the classifier is appropriately
translated into flow rules for network switches.
After that it overwrites the old flows with those
just obtained, avoiding memory over-flow of the
switches.

ML-based routing improves the shortest path
based algorithms, because in addition to propos-
ing a routing scheme based on traffic history, it
minimizes network congestion in a dynamic way.
Furthermore, the machine learning module takes
about 80 ms to acquire the traffic matrix, ob-
tain the routing configuration, and install the flow
rules, enabling real-time network re-configuration.

Conclusions

We demonstrate the use of Machine Learning
to provide dynamic network routing configuration
that can be integrated with SDN and fulfil the re-
quirements of network operators. As a result, the
ML model can be optimally mapped into ONOS
SDN controller and applied to our SDN-testbed
network in such a way that with any incoming
change in the traffic matrix, the SDN network
is capable to recompute its routing configuration
and apply it in a very small lapse of time. In spite
of this simple setting, industrial applications can
leverage more advanced models together with
real traffic matrices coming from real networks.

Acknowledgment

The work leading to these results has been sup-
ported by the European Community under grant
agreement no. 761727 Metro-Haul project.

References

[1] P. Berde et al.,, “ONOS: towards an open, distributed
SDN OS. In Proceedings of the third workshop on Hot
topics in software defined networking,” ACM pp. 1-6
(2014).

[2] P. Pavon-Marino et al., “Net2plan: an open source
network planning tool for bridging the gap between
academia and industry,” IEEE Network, vol. 29 no 5 p.
90-96 (2015).

[3] N. Handigol et al., “Reproducible network experiments
using container-based emulation,” In Proceedings of the
8th international conference on Emerging networking ex-
periments and technologies, pp. 253-264 ACM (2012).

[4] N. McKeown et al., “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Commu-
nication Review 38.2 pp. 69-74 (2008).

[5] A. Botta et al., “A tool for the generation of realistic net-
work workload for emerging networking scenarios,” Com-
puter Networks (Elsevier), Vol. 56, Issue 15, pp 3531-
3547 (2012).

	Introduction
	Demo live presentation
	Machine Learning Routing Computation
	Conclusions

