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ABSTRACT 

School buildings in Italy are old, in critical maintenance conditions and they often perform 

below acceptable service levels. Nevertheless, data to guide renovation policies are missing or 

very expensive to retrieve. This paper presents a methodology for evaluating building’s 

energy savings potential, using the Certificazione Energetica degli Edifici (CENED) database, 

concerning energy performance labelling. Data are first clustered to identify most common 

thermo-physical properties. Three retrofit scenarios are then defined and energy savings 

potential, for each of the three, is evaluated through eight neural networks. Ultimately, data 

are geocoded and further processed to guide the definition of the retrofit strategy in most 

critical areas in Lombardy region. The results of the three scenarios proved that the highest 

energy savings can be obtained through retrofit interventions on around 50% of buildings. In 

conclusion, further insights on retrofit costs analysis and future development of the research 

are discussed. 
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INTRODUCTION 

School buildings in the Lombardy region, Italy, are obsolete and in critical maintenance 

conditions, therefore their performances are below acceptable service levels. Among 

unsatisfactory performances, those related to thermal comfort are extremely critical since they 

are strictly connected to the pupils’ learning ability [1] and to the (over)use of fossil fuels. 

Thus, under-performing buildings give rise to waste of public resources and pollution, 

contributing to climate change dynamics. Moreover, high costs for data gathering and analysis 

often force public administrations to make strategic decisions on the refurbishment of school 

buildings based on limited information. This is often a time and cost consuming process: 

approximatively one third of maintenance costs are used inefficiently as a result of improper 

and unnecessary maintenance activities. 

The administration of the Lombardy region provides a public database of Energy Performance 

Certificates (EPC), called in Italian the Certificazione Energetica degli Edifici (CENED) 

database [2]. This database encompasses data about buildings energy performances (both 

primary energy and net energy), geometry (volume, gross and net surface, windows area, etc.) 

and technologies (mainly average thermal transmittance of building components and some 
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information about plants’ efficiency). These data can be used to drive the retrofit of school 

buildings, allowing better strategic decisions without increasing costs needed to acquire the 

knowledge about current energy performance of buildings.  

Artificial Neural Networks to forecast energy demands 

Building energy demands prediction is one of the most relevant topics for the definition of an 

effective asset management strategy. In the literature, three main approaches for addressing 

the issue can be spotted: the white-box approach corresponding to the engineering approach; 

the black box approach, namely the machine learning approach and the grey box approach, 

which can be intended as an hybrid solution between the former two [3–4]. Despite being all 

widely exploited, the black box approach allows to reach the objective of prediction in a faster 

and highly precise way, compared to the other two, especially when the dataset to be analysed 

is rather extended and complex [5]. ANN is a subset of machine learning. This method, whose 

behaviour is similar to the biological neural networks, allows to predict values with high 

accuracy against a low amount of input variables due to its ability to exploit a set of equations 

characterised by two functions: the “activation function” and the “transfer function”. These 

functions trigger a sequence of connected nodes, namely the neurons of the ANN. Typically, 

the network is formed by an input layer of information to be processed, an output layer of 

values and a set of intermediate layers where the activation and transfer functions take place 

[6]. The number of intermediate layers can vary as well as the number of artificial neurons in 

each layer. The main advantage in the use of this tool concerns the possibility to forecast 

extremely reliable values using few input parameters.  

Several studies have been carried out for energy prediction exploiting ANN: from the first 

studies concerning the prediction of utility loads forecasting in 1990s, until more recent 

researches on the energy saving potential of refurbished buildings [7].  

Geographic Information Systems supporting strategic decisions  

Geographic Information Systems (GIS) are software capable to handle a great amount of data, 

coupling quantitative and qualitative information with geographic one. These system have 

been exploited for the analysis of georeferenced data since 1960s when they have been 

employed by the Canadian Government for the implementation of the Canadian Land 

Inventory [8]. In Italy, and in particular in the Lombardy region, urban planning decisions at 

the municipal and regional level must be taken based on the support of geographic 

information compliant with directive INSPIRE [9], therefore according to an homogeneous 

and harmonised framework for information management [18]. Based on the above mentioned 

circumstances, GIS database for the Lombardy region is rather developed and rich [11] and 

can be considered as a fundamental resource for analysis and representation of phenomena at 

the regional level. Accordingly, when data on energy performances of buildings are 

georeferenced and handled through the GIS platforms, they can be combined with a huge 

amount of information coming from different databases and sources. Moreover, being 

traditionally considered a tool for strategic decision, it can be intended as the most suitable 

tool for synthesis and representation analysis and predictions carried out with the ANN 

process.  

School buildings stock in Italy 

From Italian Government’s view point, energy efficiency is a key driver for improvement of 

school buildings. This stock amounts to 35% [12] of the entire national building stock and, 

most of the time, it requires deep refurbishment and maintenance interventions. Taking into 

account the whole national territory, 75% of school building dates before energy laws: 33% 

before Law 373/76 [13] and 25% before Law 10/91 [14]. Moreover, glancing at the current 
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period, this stock must be compliant with more recent standards [15] and EU Directives [16]. 

School building stock counts 45,000 public schools out of 62,000, which overtake public 

housing sector with an energy consumption of approximatively 1 million Tonnes of Oil 

Equivalent (toe) per year (70% heating and 30% electricity). Accordingly, it is possible to 

optimise these energy consumption with remarkable improvements, not only with retrofitting 

interventions on buildings, but also by promoting energy behavioural awareness, for which 

the actual energy consumption is estimated to be reduced by 20% [17]. On the other hand, 

interventions on envelope and thermal plants can heavily reduce energy consumption and 

running costs, though they generate additional investment costs. 40% of school buildings need 

refurbishment intervention: it could be feasible to include the mark-up cost of energy 

consumption improvement in overall costs for buildings’ refurbishment interventions. These 

interventions could decrease the actual average energy consumption of public schools (180 

kWh/m2year) towards those required for new constructions (30-40 kWh/m2year) introduced 

by national regulations since 2009 [18].  

Aims of the research work 

Altogether, considering the state of the art and the scope of the research, it can be stated that 

ANN have been already employed for classification of consumption of buildings and labelling 

of buildings and that GIS are used in supporting policy making. Nevertheless, the 

combination of ANN and GIS for estimation of energy savings at the regional level has never 

been used to develop an energy policy. In the next section, the setup of a portfolio 

management strategy for school buildings energy retrofit is presented. The feasibility and the 

robustness of the strategy is enhanced based on the combined use of the tools described in the 

introduction.  

METHOD 

In this research, raw data coming from the CENED database have been processed to exclude 

inconsistent values. Then they have been clustered to acquire a good knowledge of the 

building stock and used to train some multi-layer feed-forward ANN that proved to be reliable 

instruments to forecast energy performance of school buildings [6–7]. Database cleaning is an 

operation with primary importance, because of the huge number of manifestly wrong data 

found: almost half of the energy labels in the database has been discarded.  

School buildings have been analysed and classified according to their age (in an overall time 

span of more than one hundred years) and envelope’s performances, defining some 

homogeneous classes of comparable school buildings. For each class some retrofit strategies, 

suitable with their characteristics, have been defined and the potential energy savings have 

been computed through the trained ANN. The output data have been imported in a GIS 

software, through which it has been possible to carry out a spatial analysis for the whole 

Regione Lombardia territory. The results of this analysis are presented, stressing the fact that 

a low-cost analysis can affect decisions on more than 1,500 school buildings.  

Despite the existence of a gap between actual and computed performance and the imprecise 

predictions of the ANN, the proposed process balances the reliability of energy savings 

forecasts, with the necessity of decreasing efforts and expenses to carry out the estimation. 

Moreover, it allows to easily spot the most convenient retrofit strategy for the whole school 

building stock, even in the very early stage of the decision process.  

Database cleaning 

The first step of the work carried out on the dataset, concerns the database cleaning. This 

sequence of operations allowed to avoid massive errors in the following phases. CENED 

database (DB) comprehend a very extensive set of information concerning energy 
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performances of buildings in Regione Lombardia. Therefore, the first operation that is 

accomplished concerns the selection of the only records related to schools. Then, not 

completed records have been deleted, since they do not completely describe the energy 

performance of the buildings. Once these two very first operations have been completed, the 

database has been further refined, according to the parameters listed in Table 1 [6].  

 

Table 1. Constraints to spot unreliable labels in the CENED database 

 

CENED database parameter U.M. Threshold 

Heated gross surface m2 < 250 

Heated gross volume / heated gross surface m < 2.5 

Building envelope surface m2 < 5 

Walls or Roofs thermal transmittance W/m2K < 0.05 or > 17 

Windows thermal transmittance W/m2K < 0.1 

EPh/ETh  - < 0.5 or >1.5 

 

Through the DB cleaning, almost 50% of the whole database has been removed. Form the 

initial record number of 2,915 rows representing only the school buildings, a reduced DB of 

1,632 rows has been achieved.  

The following phase of the research concerns a set of specific analyses carried out in order to 

acquire a deep knowledge of the database to be handled for energy consumption prediction of 

the school buildings. Buildings in the CENED DB are organised by construction year, as can 

be seen in Figure 1. The representation of the energy labels by construction year shows a peak 

for classes 1961-1976 and 1977-1992. If this trend is combined with information provided by 

the analysis in Figure 2, it is needless to say that the energy retrofit for these two classes is 

fundamental for the definition of an effective portfolio management strategy.  

 

 
 

Figure 1. Labels groups according to the year of construction (7 groups) 

 

Nevertheless, the most critical class concerns the schools built before 1930. This is rather easy 

to understand, since it is likely that those buildings, due to the typology of systems installed, 

the effects of time, the constant use of the facilities and the spaces and the inherent 

degradation of their components, show a low performance level, especially for what concerns 

the energy issues.  
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Figure 2. Main envelope characteristics and building EPh divided by class 

 

Finally, Figure 3 represents the winter demand of primary energy consumptions (EPh) related 

to the thermal transmittance (U-value) of the three main technological unit of the envelope: 

windows, roof and walls.  

 

 
 

Figure 3. EPh according to thermal transmittance of walls, windows and roofs 
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Clustering building technologies 

Further analyses have been carried out on the DB. For the definition of an appropriate retrofit 

strategy, it is necessary to identify homogeneous classes of building, on which to implement 

retrofit interventions. To do so, a clustering technique has been chosen and, for each of the 

three envelope’s main technological units (walls, roofs and windows) a clustering algorithm 

has been run. This gave as output a clusterization of U-values almost always according to 

three groups. As an example, in Figure 4 are described clusters obtained for the technological 

unit walls over 4 classes of construction year. The U-value thresholds identified for the 

clusterization can change according to the sample taken into account, thus colours only 

represent the belonging to a specific cluster and not the width of the cluster. 

 

 
 

Figure 4. Clusters of walls' thermal transmittance according to construction year  
 

Figure 4 provides only data concerning walls, since the representation of 21 clusterization 

analysis for the three main technological units would have been too long. The lower cluster, 

for all the components and classes of construction years is considered as the best performing 

situation, especially for those buildings belonging to the older construction year classes. 

Nevertheless, Table 2 shows the mean of each cluster for the three components of the school 

building envelope. As can be seen in Table 2, roofs are responsible for the largest energy 

flows, thus for the highest energy demands. These analysis, are the starting point for a further 

step of this research, concerning the identification of the most suitable technological solutions 

according to the construction period, and U-values and the related refurbishment costs. These 

analyses are not present in this article, since they are a further development.  

Computing savings with Artificial Neural Networks  

Once analysis employed for achieving the knowledge of the database have been carried out, 

the savings have been predicted by mean of the ANN. In the following paragraphs the steps 

for achieving these results are described.  
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Table 2. Mean U-values for each cluster and for the three components of the envelope 

 

 Before 1930 1930-45 1946-60 1961-76 1977-92 1992-06 After 2006 

 2.063 2.898 2.180 1.978 2.504   1.224 

Walls 1.314 1.426 1.229 1.224 1.283 1.761 0.569 

 0.600 0.651 0.702 0.606 0.666 0.731 0.273 

 4.888 5.064  5.214 5.200 4.760 4.967 

Windows 3.608 3.630 6.751 3.630 3.640 3.520 3.186 

 2.211 2.152  3.596 2.097 2.257 2.346 1.736 

 2.832  1.935 3.133 2.597  1.621 

Roofs  1.518 1.274 1.397 1.524 1.528 1.463 0.679 

 0.563 0.254 0.587 0.669 0.668  0.562 0.257 

 

Artificial Neural Network training. CENED DB is divided in 7 timespans; therefore 7 ANN 

were trained on each CENED time span plus 1 trained on the whole cleaned CENED DB. The 

characteristics of the ANN are described as follows. The depth of the network (number of 

layers) and the type of each layer (type of equations implemented by the artificial neurons) 

have been chosen according to a trial-based process, which allowed to define the most 

suitable parameters. The number of neurons (in Table 3 the number below the type of 

function) of each layer has been optimized with an automatic process. Figure 5 shows the 

performance of the Total network, trained on the whole CENED dataset, according to the 

number of neurons on the layers. The ANN does not need input parameters directly related to 

the physical model in order to make reliable previsions. Therefore, input parameters have 

been defined empirically, as the ones that better interpolate the declared EPh values in the 

training phase. For instance, though the EPh takes into account also the building’s systems, 

among the selected parameters the efficiency of the system is not considered. Parameters 

selected for the total ANN are:  

1. winter degree days; 

2. construction year; 

3. gross surface [m2]; 

4. gross volume [m3];  

5. dispersant surface [m2];  

6. ratio between glazing surface and dispersant surface; 

7. ratio between opaque surface and dispersant surface; 

8. average U-value of walls [W/m2 K] 

9. average U-value of roof [W/m2 K] 

10. average U-value of windows [W/m2 K] 

11. average U-value of basement [W/m2 K]. 

For the other 7 ANN the selected parameters are the same, except for the construction year. In 

Table 3 are presented main characteristics of the ANN.  

According to the layer of the ANN under analysis, functions employed are presented: 

• Linear is the function characterising the layers with dense connections computing 

w.x+b; 

• Tanh – net layer applies a unary function f to every element of the input tensor, in this 

case the function is the hyperbolic tangent; 

• Ramp – net layer applies a unary function f to every element of the input tensor, in this 

case the function, gives x if x  0 otherwise 0. 

 

 

 

0043-7



8 

 

Table 3. ANNs characteristics 

 

 <1930 1931-45 1946-60 1961-76 1977-92 1993-06 >2006 Total 

Layer 1 
Linear 

9 

Linear 

9 

Linear 

9 

Linear 

9 

Linear 

9 

Linear 

9 

Linear 

9 

Linear 

10 

Layer 2 
Linear 

126 

Linear 

406 

Linear 

196 

Linear 

412 

Linear 

158 

Linear 

68 

Linear 

236 

Linear 

476 

Layer 3 
Tanh 

126 

Tanh 

406 

Tanh 

196 

Tanh 

412 

Tanh 

158 

Tanh 

68 

Tanh 

236 

Tanh 

476 

Layer 4 
Linear 

126 

Linear 

406 

Linear 

196 

Linear 

412 

Linear 

158 

Linear 

68 

Linear 

236 

Linear 

476 

Layer 5 
Tanh 

126 

Tanh 

406 

Tanh 

196 

Tanh 

412 

Tanh 

158 

Tanh 

68 

Tanh 

236 

Tanh 

476 

Layer 6 
Linear 

63 

Linear 

203 

Linear 

98 

Linear 

206 

Linear 

79 

Linear 

34 

Linear 

118 

Linear 

238 

Layer 7 
Ramp 

63 

Ramp 

203 

Ramp 

98 

Ramp 

206 

Ramp 

79 

Ramp 

34 

Ramp 

118 

Ramp 

238 

Layer 8 
Linear 

1 

Linear 

1 

Linear 

1 

Linear 

1 

Linear 

1 

Linear 

1 

Linear 

1 

Linear 

1 

Layer 9 
Linear 

1 

Linear 

1 

Linear 

1 

Linear 

1 

Linear 

1 

Linear 

1 

Linear 

1 

Linear 

1 

 

The best forecasts are given by the mean of the prediction given by the ANN for the specific 

time span and of the one trained on the whole DB. In the case of Figure 6, the correlation 

between CENED data and predicted values is equal to 0.948329. This value is achieved 

combining the predictions of the single ANN per each class of year of construction with the 

prediction on the same values made by the ANN run on the total CENED database. 

 

 
Figure 5. ANN performance according to the number of neurons (total dataset) 
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Figure 6. Correlation between the CENED Energy Demand and the one forecasted by the ANN 

 

Use of Artificial Neural Networks to compute energy savings. Once the ANN have been defined 

and trained, they have been used for the prediction of energy savings, according to the three 

retrofit strategies described in Table 4. The parameters (U-values for Walls, roof and 

windows) have been chosen according to the clusterization process represented in Figure 4.  

For the Case 1, U-values, respectively, for walls, roofs and windows equal to 1, 1, and 3.5 

W/m2K, represent the thresholds between the lower class and the intermediate class of the 

clusterization. Since the lower class is the best in terms of energy performances, the aim is not 

to retrofit school buildings already performing well, but to concentrate interventions on those 

which sit in a worst energy performance condition. Case 3, on the other hand, has been 

defined in order to be as effective as possible. Italian Decreto Ministeriale (DM) 26/06/2015 

[19] defined for the Lombardy region limits of transmittance values for walls, roofs and 

windows sets to 0.26, 0.22 and 1.4 W/m2K for buildings in climate zone E and to 0.24, 0.2 

and 1.1 for buildings in climate zone F. The same thresholds have been adopted for ANN 

predictions in Case 3. Case 2 have been defined to spot an intermediate scenario between the 

two described above. Below are summarised key values for the three scenarios.  

Although retrofit cases are described by parameters that do not consider the plants, ANNs 

have learned from a database where buildings with low levels of transmittance have efficient 

plants, thus prediction of energy savings already embed an improvement of the plants. 

 

Table 4. Retrofit cases  

 

 Case 1 Case 2 Case 3 
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Walls 1 58% 0.5 82% 0.26/0.24 95% 

Roofs 1 52% 0.5 78% 0.22/0.2 92% 

Windows 3.5 49% 2 87% 1.4/1.1 97% 
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RESULTS  

The energy savings are presented for each retrofit scenario, highlighting the total energy 

consumption pre-retrofit interventions, total energy consumption post-retrofit and total 

savings. Table 5,Table 6 andTable 7 present for each retrofitting typology, identified by main 

refurbished building components (Complete retrofit, Walls & Roof, Walls & Windows etc.) 

the number of retrofitted schools, total savings and average savings.  

Case 1 

Results obtained running the ANN are: 

• total energy consumption in current circumstances (pre-retrofit interventions): 

8.9712*108 kWh/y;  

• total energy consumption post-retrofit: 5.25874*108 kWh/y; 

• total savings 3.71246*108 kWh/y, in average 227,200 kWh/y for each of 1,216 

refurbished schools, out of 1,634 in the database.  

 

Table 5: Number of retrofit schools, total and average savings by type of intervention (Case 1) 

 

Type of 

retrofit 

Complete 

retrofit 

Walls & 

Roofs 

Walls & 

Windows 

Roofs & 

Windows 

Only 

walls 

Only 

Roofs 

Only 

windows 

Number 

of retrofit 

462 227 153 68 98 88 120 

Tot. 

savings 

[MWh/y] 

185,228.92 57,387,267 53,250.59 25,433.07 9,107.18 8,153.68 19,392.92 

Average 

savings 

[kWh/y] 

400,928.40 252,807.34 348,043.07 374,015.67 92,930.41 92,655.45 161,607.68 

Case 2 

Results obtained running the ANN are: 

• total energy consumption in current circumstances (pre-retrofit interventions): 

8.9712*108 kWh/y; 

• total energy consumption post-retrofit: 4.19596*108 kWh/y; 

• total savings 4.77523*108 kWh/y, in average 292,242. kWh/y for each of the 1,487 

refurbished schools in the database, out of 1634.  

 

Table 6. Number of retrofit schools, total and average savings by type of intervention (Case 2) 

 

Type of 

retrofit 

Complete 

retrofit 

Walls & 

Roofs 

Walls & 

Windows 

Roofs & 

Windows 

Only 

walls 

Only 

Roofs 

Only 

windows 

Number of 

retrofit  

1,166 38 118 56 19 14 76 

Whole 

savings 

[MWh/y] 

366,628.14 3,343.63 13,315.08 5,635.82 484.47 297.08 4,088.77 

Average 

savings 

[kWh/y] 

314,432.37 87,990.37 112,839.63 100,639.62 25,498.61 21,219.80 53,799.58 
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Case 3 

Results obtained running the ANN are: 

• total energy consumption in current circumstances (pre-retrofit interventions): 

8.9712*108 kWh/y; 

• total energy consumption post-retrofit: 3.44654*108 kWh/y; 

• total savings 5.52466*108 kWh/y, in average 338,106 kWh/y for 1,620 schools 

refurbished, out of 1,634. 

 

Table 7. Number of retrofit schools, total and average savings by type of intervention (Case 3) 

 
Type of 

retrofit 

Complete 

retrofit 

Walls & 

Roofs 

Walls & 

Windows 

Roofs & 

Windows 

Only walls Only Roofs Only 

windows 

Number of 

retrofit 

1,497 20 25 36 4 12 26 

Whole 

savings 

[MWh/y] 

390,862.86 948.02 751.22 808.34 80.60 603.90 664.68 

Average 

savings 

[kWh/y] 

261,097.43 47,400.81 30,048.61 22,453.93 20,151.04 50,324.96 25,564.48 

 

Figure 7 shows a comparison between the scenarios and the average savings per school. The 

graph confirms that increasing the number of buildings to be refurbished, decreases the 

average savings. This trend is due to the fact that lowering the thresholds of retrofitting 

parameters (walls, roof and windows transmittance), the ANN produces more complete 

retrofit forecasts than in the other two cases. The Case 1 can be considered as the most viable 

among the three, presenting higher average post-retrofit savings, though the percentage of 

total retrofit is much lower than in Case 2 and Case 3. This circumstance suggests that the 

average retrofit cost will be the lowest among the three cases. Despite the ANN having an 

extremely high precision, it must be taken into account that the database on which savings 

have been calculated is the cleaned one, therefore, some school buildings might not be 

present.  

 

 
 

Figure 7. Number of retrofit works divided by type compared to the potential average savings 
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GOGRAPHIC INFORMATION SYSTEM INTEGRATION FOR PORTFOLIO 

MANAGEMENT 

Results of the previous phases have been imported and processed in GIS. It is important to 

highlight that for synthesis reason, GIS analysis and representations are here presented only 

for one of the three retrofit scenarios. In order to integrate energy savings computed with the 

ANNs with spatial information it has been necessary to run a geocoding script. The address 

field in the CENED cleaned DB has been corrected according to the format required by the 

Google API, since the geocoding process has been carried out exploiting the online open 

geocoding service provided by Google. The geocoding process, gave as outcome a point 

layer, whose attribute table contain values processed through the previous data handling steps. 

The geocoding process gave an error log of 47 addresses not found, corresponding to 2.9% of 

the whole cleaned database. Points have been categorised and represented according to the 

predicted energy demands (dimension of the marker) and according to the type of intervention 

for achieving the energy retrofitting strategy (colour of the marker). Figure 8 only represents 

the school buildings retrofitted according to the Case 1.  

The geographic representation of data obtained through ANN prediction allows to spot most 

critical areas in the Lombardy region, namely where through the retrofitting interventions it is 

possible to achieve the highest energy saving. These data, combined with other concerning, 

for instance, cost for retrofit interventions, age of the assets etc. can be exploited by the public 

administrations for making informed decisions.  

 

 
 

Figure 8. Energy savings computed through ANN by type of intervention in the Lombardy 

region. 
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DISCUSSION AND CONCLUSIONS 

Regional administration needs inexpensive methods to find the way to address energy related 

issues and this research proved that the integrated use of open-data, ANN and GIS satisfies this 

need. The primary advantage of the proposed approach concerns the possibility to compute 

buildings’ post-retrofit EPh without even inspecting them and using parameters which are easily 

found or computed. The second important outcome of the research is that it has demonstrated the 

feasibility and usefulness of using GIS tools in energy policies. Focusing on the case study, a 

third result of the research is that it is demonstrated that increasing the number of retrofitted 

buildings (selecting a lower U-value retrofit threshold for the envelope), average energy savings 

decrease. This suggests that the retrofit of the whole school buildings stock in Lombardy region 

is not cost-effective. Although energy savings are rather important for the development of an 

effective asset and portfolio management strategy, when dealing with school buildings, other 

parameters related to the learning performance should be taken into account. In order to prioritise 

retrofitting interventions, it is relevant, for instance, to take into account also compliance of the 

building to the contemporary standards (e.g. flexibility of the spaces, dimensions of the 

classrooms, fire safety codes etc.). Thus, the proposed methodology should be encompassed in a 

wider framework for decision making. A further development of the research concerns the 

identifications of the costs related to the retrofit interventions, this will be done through the 

identification of walling, roofing and glazing technologies according to the year of construction 

and the thermal transmittance. This requires further efforts in research and testing of the model. 

Moreover, despite the research has been carried out at the Lombardy region level, it is possible to 

apply the same steps for data processing to further datasets at the national or European level, 

since member states must be compliant to Energy Performance Building Directive (EPBD) [16].  
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