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Abstract A coupled hydromechanical code based on a distributed brittle damage
material model has been developed in order to simulate hydraulic fracturing pro-
cesses. As specific feature, the code does not assume the development of a discrete
number of sharp cracks but considers a diffused damage that takes place under overall
confinement of the system. The coded is validated against a laboratory test reproduc-
ing the local effects of a hydraulic fracturing procedure. The numerical model of the
laboratory test is then used to conduct a parametric analysis where the influence of
the principal hydromechanical parameters on the hydraulic fracturing performance
is assessed. Finally, the code is applied to simulate multiple hydraulic fracturing in-
terventions in a large scale shale reservoir. In all applications considered, the model
shows a good predictive capability in terms of damage extension.

Keywords Brittle damage · recursive faulting · poromechanics · multiscale
simulation · hydraulic fracturing

1 Introduction

Hydraulic fracturing is a process characterized by the nucleation and propagation of
multiple diffused fractures in soil or rock masses as a consequence of a localized
solicitation driven by hydraulic pressure. Hydraulic fractures are found frequently in
normal geophysics and geology situations, e. g., magma-driven propagation cracks
[48,42]. In industrial applications hydraulic fractures are created artificially: heat pro-
duction from geothermal reservoirs and the estimate of rock mass stress state [3,54,
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18] are just a couple of examples. In the last decades hydraulic fracturing has been
employed massively in the field of extraction of hydrocarbons from unconventional
reservoirs [47]. In this context, the United States Environmental Protection Agency
defines hydraulic fracturing as a process that creates artificial fractures in the rock
formation to facilitate the flow of natural fluids, therefore increasing the volume of
recovered hydrocarbons. The first attempts to improve the production of reservoirs
through fracturing started on the late 1930s making use of artificial explosions, and
later of acidizing treatments. The first hydraulic fracturing process specifically for
stimulation was performed in 1947, in western Kansas (USA). Hydraulic fracturing
is now used extensively in the petroleum industry to stimulate hydrocarbon wells, in
order to increase or, in many cases, to activate their production, cf. [23] and [47]. The
oil or gas production as a consequence of a hydraulic fracturing treatment is influ-
enced strongly on length, extension and width of the induced fractures [40]. Although
hydraulic fracturing is associated commonly with low permeability gas shales, it is
has been applied also to other diverse geological situations, including weakly consol-
idated offshore sediments, coal beds, and naturally fractured reservoirs [1].

To design satisfactory hydraulic fracturing treatments in a reservoir, it is of out-
most importance to estimate qualitatively and quantitatively the evolution of the frac-
ture network as a function of the parameters of the process through analytical or
numerical models. Regrettably, modelling of hydraulic fracturing processes is a de-
manding task, due to the numerous coupled processes involved: (i) the mechanical de-
formation induced by the localized peak of fluid pressure within the porous medium;
(ii) the flow of the fluid within the fracture and the fluid exchange with the surround-
ing porous medium; (iii) the actual propagation of the fracture surfaces that modify
the permeability of the medium [1,10]. The hydro-mechanical process is transient
in nature, and its evolution is characterized by a strongly non-linear, non-local and
history-dependent response: the actual evolution of fractures in a heterogeneous for-
mation is a complex phenomenon and it is very difficult to obtain reliable predictions
through simple models.

Looking back at the literature in the topic, early attempts to model hydraulic frac-
turing were based on analytical solutions, obtained by assuming that a unique well-
defined crack propagates within an elastic medium under the action of a pressure,
thus disregarding the hydromechanical coupling and nonlinear effects. Such models
are not able to account for the fluid flow within the reservoir, the damage processes
around the stimulated area, and the fluid-solid interaction. Moreover, such models do
not account for the existence of a moving boundary and for the stress singularity at
the crack tip. Classical examples in two-dimensional setting are: the Perkins-Kern
(PK) model [39], based on plane strain crack solution; the Perkins-Kern-Nordgren
model, an extension of the PK model accounting for the effect of fluid loss [36]; the
Kristianovic-Zheltov-Geertsma-de Klerk (KGD) plane strain model [26]. The strong
simplifying assumptions at the basis of these models imply severe limitations to their
applicability and predictive capabilities, as demonstrated by field measurements [52].
The remarkable differences between model predictions and field observations can be
justified possibly by the presence of complex multiple fracture systems induced by
the hydraulic solicitation, or the presence of a layer of small cracks around the main
hydraulic fracture [5,6], or by the infiltration of the pumping fluid in the porous rock
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[13]. In spite of such limitations, the use of analytical models is still widespread, be-
cause of their negligible computational cost. Morevover, analytical or semi-analytical
models proved able to give insights on the competing processes that control the prop-
agation of fluid-driven fractures, for both impermeable and permeable materials (see,
e.g., [43,25,8,29,9,19,21,33,22]), evidencing the presence of different timescales
and length scales in the evolution of a single fracture. Recently, theoretical models
have been used to describe the propagation of arrays of closely spaced fractures [9,
32]. Despite scaling provides interesting frameworks to classify different regimes of
hydraulic fractures as well as to design small-scale laboratory tests that mimic field
conditions, this procedure can be hardly applied for complex injection geometries
or in situations where the state of stress is not uniform, or the reservoir material
is heterogeneous. Finally, the microstructural features of rocks make scaling proce-
dures rather complex (if not impossible), due to the dramatic dependence of rock
hydro-mechanical properties on its microstructure: scaled model tests performed on
brittle-elastic materials like glass or polymethyl methacrylate is precluded for real
rocks [17].

The necessity of developing fully three-dimensional models thus stems from the
typical material and stress anisotropy observed in rock formations, which causes the
deviation of cracks from an ideal planar path and the non easily predictable propaga-
tion across multiple layers [40]. Thus, pseudo-three-dimensional models (P3D) have
been proposed [46,44,24,34,35], and further extended to account for complex frac-
ture networks or natural fractures [51]. More versatile approaches include planar-3D
(PL3D), based on a 2D description of the coupled flow equations and of the frac-
ture footprint [44,2], ad fully 3D models, based on elasticity equations and used to
describe the changes of the width of an existing fracture opening displacement with
the pressure of the fluid. The computational cost, higher than the one requested by
P3D models, is balanced by the possibility to obtain reliable results also in geological
situations characterized by irregular stress and inhomogeneities [1].

With the improvement of the computational power, in recent years plenty 3D
numerical approaches have been proposed to tackle hydraulic fracturing. Approaches
are based on Finite Difference (FD), Finite Element (FE), Boundary Element (BE),
Distinct Elements Methods (DE), or a combination of the different methods. Most
approaches rely on the a priori knowledge of a single crack geometry and topology.
A 3D numerical scheme based on a surface integral method to find crack opening
for any pressure distribution obtained via a 2D FE discretization of the continuity
equation has been discussed in [14].

A FE scheme to simulate the 3D evolution of non-planar hydraulic fractures,
accounting for hydro-mechanical coupling, linear elastic fracture mechanics, and lu-
brication theory was discussed in [11]. Hydromechanical coupling has been treated
with a mixed approach, where the evolution of an existing crack was analyzed with a
geomechanical FE solver and the flow equations was solved with a FD scheme [30].
The literature testifies a recent effort to develop more reliable models of fracture prop-
agation in the context of hydraulic fracturing [28]. Zero-thickness cohesive elements
with proper fracture criteria and constitutive laws have been used in [10]. Cohesive
fracture propagation under hydraulic pressure, simulating explicitly the fluid flow
across of network of discrete fractures, has been discussed in [45]. The Extended Fi-
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nite Element Method [31] and the Virtual Element Method [7] have also been used
with the aim to increase the predictive capabilities in reproducing the evolution of
fracture networks. All these approaches rely on the explicit modelling of pre-existing
fractures or defects, a very strong limitation because in field applications the location
of fractures is unknown. Further shortcomings are related to the difficulties to model
the interactions between natural and induced fractures, the complexity of the adap-
tive discretization procedures, and the overall computational cost, unacceptable for
simulations at the reservoir scale.

Alternatively, by adopting a continuum point of view, fracture networks induced
by hydraulic fracturing can be described by a complex pattern of micro-cracks in
contrast to a set of well-defined and localized cracks. Using this approach, the mod-
ification of the microstructure due to the progression of damage can be rendered
readily in terms of modification of hydraulic conductivity, and linked to the reservoir
production. Using a continuum approach, it is possible to ascertain the dominant role
of shear failure with respect to tensile failure in hydraulic fracturing processes [12].
A continuum approach based on damage mechanics has been considered in the 3D
fully coupled thermal-porous-mechanical FE model discussed in [53].

As well known, damage models are affected by mesh dependency and their use
requires the introduction of a characteristic length, which can be embedded in non-
local models. By the way of contrast, in the present study we use a continuum model
of distributed brittle damage characterized by multiple length scales, that is not af-
fected by mesh dependency. The material model has been introduced in terms of lin-
earized and finite kinematics in [15,16], and embedded into a in-house finite element
code for the solution of coupled hydro-mechanical problems. The approach has the
built in capability of dealing with the interaction between closely-spaced fractures,
both natural and induced by the treatment, as well as with the leak-off of the fluid
into a permeable rock. Complex geological situations can be also easily accounted
for, including reservoir heterogeneity, non-uniform far-field stress states and mate-
rial anisotropy, as generally encountered in shale reservoirs. Finally, the constitutive
model used at the material level can be easily calibrated on the basis of classical
laboratory tests performed on rock samples, like uniaxial and triaxial tests, proving
able to reproduce the most relevant peculiarities of rock behaviour like the confining
stress dependence and dilation upon shearing. We discuss the validation of the code
against experimental results and use the validated code for a parametric analysis and
the simulation of hydraulic fracturing processes in a shale reservoir.

2 Hydromechanical model

We adopt the standard hydro-mechanical framework for porous media in linearized
kinematics. In consideration of the highly nonlinear behaviors involved in fracture
and frictional contact, in this study we opt for Therzaghi’s approach to porous me-
chanics, disregarding the more general approach due to Biot. The adoption of the
simplified Terzaghi model is based on the assumption of negligible compressibility
of solid grains: as well recognized, cf. [20], this ansatz is acceptable for soils, yet de-
batable for sandstones and mudstones. Our assumption has been forced by the need
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of obtaining a simplified model for wide field applications and motivated by the fol-
lowing reasons. Biot’s theory has been developed for linear elastic porous media and,
in particular, the Biot-Wills coefficient α, introduced to deliver a modified effective
stress able to account for solids and fluid compressibility, was derived under the as-
sumption of linear elastic behavior. In problems where failure is not of concern and
linear elasticity is a good approximation of rock behavior, Biot’s approach has been
proved to be predictive in terms of volume change, pore pressure built up, and ex-
pelled fluid volumes [20,50]. By the way of contrast, the interpretation of failure data
on sedimentary rocks, i.e., shales or limestones of main interest for hydraulic frac-
turing, show that the assumption α=1, corresponding to Terzaghi’s approach, is more
in line with the experiments [27,41]. The key mechanical issues of the present work
are related to diffused fracturing and failure and, additionally, available failure crite-
ria are expressed in terms of Terzaghi’s effective stress. Finally, the effects of elastic
behavior of the porous matrix are negligible in all the considered applications.

Note that the simplifying assumption of negligible fluid and solid compressibility
affects the constrained specific storage coefficient of the material (i.e., the inverse
of Biot modulus M), which attains a null value. However, the particular applications
of the proposed model render this assumption acceptable from the engineering point
of view. In fact, for mass balance purposes, the significant increase in the hydraulic
conductivity of rocks due to the opening of multiple fractures and the consequent
increase of the fluid flow diminish the relevance of the contribution compressibility
of the fluid.

Assuming full saturation of the void space, incompressibility of the solid parti-
cles, and incompressibility of the fluid, the linear momentum balance and the fluid
mass balance read:

∇ · σ + b = 0 , (1)

∇ · v = −
∂n

∂t
, (2)

where σ is the Cauchy stress tensor, b is the body force vector, v is the seepage
velocity, n is the porosity (i.e. the volume of the voids over the total volume of the
porous medium), and t the time. Porosity changes are related to volume changes
through the relation

∂n

∂t
=
∂εv
∂t

, (3)

where εv is the volumetric strain, assumed positive for expansion. According to
Terzaghi’s effective stress principle, the deformability and the strength in the porous
medium are related to the effective stress σ′, defined as

σ = σ′ + pI , (4)

where p denotes the pore fluid pressure and I the identity tensor. Accordingly, all the
constitutive equations will be expressed in terms of effective stresses:

σ′ = σ′(ε) , (5)

where ε denotes the small strain tensor.
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For the fluid flow, we assume a linear relation between fluid velocity v and the
gradient of the hydraulic head h, according to the Darcy law:

v = −k
ρfg

µf
∇h , (6)

where k is the permeability tensor, ρf and µf are fluid density and fluid viscosity,
respectively, g is the gravitational acceleration, and h is the hydraulic head

h = z +
p

ρfg
. (7)

Note that in h only the elevation head and the pressure head are considered, while
the kinetic contribution is neglected due to the low seepage velocity. Static boundary
conditions on the Neumann boundary Γt of outward normal n require

σn = t̄ ,

where t̄ are the surface tractions. On the Dirichlet boundary Γu the displacement
assumes known values ū

u = ū ,

Hydraulic boundary conditions on the Neumann boundary Γq of normal n require

q · n = q̄n ,

where q̄n is the assigned flux. On the Dirichlet boundary Γp the pressure assumes
known values p̄

p = p̄ .

2.1 The constitutive model

We recall briefly the features of the linearized constitutive model, described in detail
in [15]. The material is initially homogeneous, linear elastic and isotropic, and reacts
to the application of loading according to the Hooke’s law. Critical conditions of
loading lead to the attainment of ultimate tensile or shear stress states, that induce the
inelastic behavior with formation of multiple parallel planar fractures, named ‘faults’
in reason of their repetitive structure in sharp contrast to the formation of a single,
localized fracture. The inelastic behavior manifests itself in terms of reduction of
stiffness of the material, therefore the material model falls in the class of damage
models and it is named brittle damage model.

Unlikely standard damage models, based on a phenomenological description of
the material response that leads to pathological mesh dependent effects, the model
here considered is microstructured, or complex, and therefore it is not plagued by
dependency on the discretization. Brittle damage microstructures assume the aspect
of equidistant planes, with an orientation N and a spacing L, where the scale of
the spacing is different from the scale of the body. Microstructures are embedded
in the elastic matrix and are recursive: a second set of parallel faults, of orientation
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N2 and spacing L2, can form within an existing set of faults, of orientation N1 and
spacing L1, that provide a container for the kinematics of the second set of faults. The
outermost set of faults is called rank-1, and the rank of the microstructure correspond
to the number of nested sets of faults.

We begin to describe the damaging behavior of model in the case of the pre-
existence of an unique family of faults, disregarding for the moment how the set
of faults forms. To simplify the notation we drop the index 1 from the symbol of
orientation and spacing. The kinematics of the damaged material accounts additively
for the deformation of the matrix and for fault opening, in the form

ε = sym∇u = εm + εf (8)

where u is the displacement vector, εm is the deformation of the matrix and εf the
deformation due to fault activity. The deformation due to the fault is related to the
the relative displacement of the two surfaces of the fault (displacement jump) ∆
according to

εf = sym∇uf =
1

2L
(∆⊗N + N⊗∆) (9)

where ⊗ denotes the dyadic product.
The behaviour of the matrix is assumed to be linear elastic, defined by the Young

modulus E and the Poisson ratio ν. The behaviour of the faults follows the classical
cohesive theories: it is assumed that during the early stages of damage the separation
of the fault planes is resisted by the cohesive traction T. The relation between the
cohesive traction and ∆ is expressed through a cohesive law T = T(∆,q), where
q denotes a set of variables accounting for the irreversibility of the fault separation
process. Here we assume a scalar cohesive law, expressed in terms of an effective
opening displacement ∆, defined as the weighted average of the normal component,
∆N = ∆ ·N, and the sliding component, ∆S = |∆ −N∆N |, of the displacement
jump, as

∆ =
√
∆2
N + β2∆2

S . (10)

The weight β can be seen as the ratio between the shear and the tensile strength of
the material [37].

Adopting a thermodynamically consistent approach, we postulate the existence of
a cohesive energy per unit surface Φ(∆, q), dependent on∆ and on an appropriate set
of internal variables, q, necessary to describe irreversibility. The cohesive law follows
as

T =
∂Φ

∂∆

∂∆

∂∆
= T (∆)

∂∆

∂∆
, (11)

through an effective cohesive traction T (∆). We assume a simple effective linear
decreasing law, see Fig. 1, defined by two parameters: the tensile strength Tc (cor-
responding to the peak) and the critical energy release rate Gc (corresponding to the
area enclosed by the cohesive law). Cohesive forces vanish once the critical opening
displacement ∆c = 2Gc/Tc is attained. Irreversibility is enforced by assuming elas-
tic unloading up to the origin, thus the only internal variable needed is the maximum
attained effective displacement q = ∆max. Upon attainment of full decohesion, fric-
tion remains the sole dissipation mechanism for the material. Friction is included in
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the model through a dual dissipation potential per unit area Ψ∗ [38], which for the
classical Coulomb model reads:

ψ∗(∆̇, ε,∆) = µmax{0,−N · σN} |∆̇|, (12)

where µ = tanϕ is the friction coefficient and ϕ is the friction angle, N · σN the
normal component on the traction vector on the fault plane, and |∆̇| is the norm of
the rate of the displacement jump.

Upon time discretization the local state of the material at time tn+1 can be ob-
tained variationally. We introduce an incremental work of deformation per unit of
volume En that accounts for all the energies involved in the process. We assume the
state of the material at time tn to be known and the total deformation εn+1 at time
tn+1 to be assigned. The incremental work of deformation is

En(εn+1,∆n+1, qn+1) = Wm
(
εmn+1

)
+

1

L
Φ (∆n+1, qn+1)

+
∆t

L
ψ∗
(

∆n+1 −∆n

∆t
, εn+1,∆n+1

)
, (13)

where Wm(εmn+1) is the elastic strain energy density per unit volume of the matrix
(depending on the deformation of the matrix), Φ/L is the cohesive energy density per
unit volume, and the third term accounts for the frictional dissipation density in the
time interval∆t. The inelastic variables characterizing the state of the material at time
tn+1 = tn +∆t, i. e., ∆n+1, qn+1, are obtained through a constrained optimization
conducted with respect to the inelastic variables ∆n+1 and qn+1, that accounts for
the irreversibility of decohesion

qn+1 ≥ qn , (14)

and for impenetrability of the faults upon closure

∆Nn+1 ≥ Cφ ≥ 0 . (15)

The constant Cφ may account for the presence of granular additive, that can be used
to maintain the fracture, produced by pressurization, open even after the dissipation
of the fluid pressure.

The constrained minimization, formulated as

inf
∆n+1, qn+1

qn+1 ≥ qn
∆Nn+1 ≥ Cφ ≥ 0

En(εn+1,∆n+1, qn+1) , (16)

leads to a set of four equations and two inequalities in the unknowns ∆n+1, qn+1.
The solution is sought by setting one of the two inequalities as an equality and solv-
ing the equations not automatically satisfied. If also the second inequality is satisfied,
the solution is accepted. Otherwise, the procedure is repeated by assuming the satis-
faction of the second inequality [37].

As said, at the beginning the material is purely elastic, and faults are not present,
thus the orientation N is not defined, and it has to be computed during the calculations
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on the basis of the applied load. Prior to onset of damage, at every load increment the
purely elastic solution is computed. If at a particular integration point the effective
stress violates the Mohr-Coulomb (under overall compression) or the Rankine (under
a tensile state) criteria, faults are inserted according to the attained failure condition.
Notably, in [15] has been proved that the orientation of the faults is the natural out-
come of energy optimization, if N is considered as an unknown unit vector in Eq. 16,
see the Appendix in [15] for details. Note that, for the Morh-Coulomb criterion, the
parameter β coincides with the friction coefficient µ.

By including an additional energetic term, that describes the misfit energy neces-
sary for the accommodation of the faults within the outer fault family, the minimiza-
tion process provides also the spacing L. The misfit energy represents the energy
stored in the boundary layers that form where the faults meet a confining boundary.
Since the compatibility between the faults and their container is satisfied only on av-
erage, material develops boundary layers that penetrate into the faulted region to a
certain depth. The boundary layer can be modelled as an array of dislocations of al-
ternating sign, thus the misfit energy density can be derived from standard dislocation
models [37] in the form

Emis(∆, L) = C
|∆|2

L1

1

L
log

L

L0
(17)

where L1 is the size of the container, C is a material constant proportional to the
elastic modulus of the matrix, and the coefficient L0 (with the dimension of a length)
plays the role of a core cutoff to bound the lowest scales. The misfit boundary energy
is minimized by narrow boundary layers, which are related to small values of L, in
competing demand with the cohesive energy, which is minimized by large L. By
assuming L as unknown and minimizing the incremental work of deformation with
respect to L, the optimization procedure provides also the value of L. Remarkably,
for the linear decreasing cohesive law, the optimal fault separation L is found to be
independent of ∆ and given by

L = L0 exp

[
1−

L1

C

Tc

∆c

]
. (18)

In the presence of multiple fault families, the model can be employed in a recur-
sive manner, by replacing the elastic behavior of the matrix with a new brittle damage
behavior. The number of nested fault families defines the rank of the microstructures.

2.2 Permeability and porosity

The simple fracture pattern that characterizes the model provides an analytical ex-
pression of the porosity and the permeability of the damaged material. The change in
porosity due to the fault activity nf can be computed as the first invariant of the fault
small strain tensor

nf = εfkk =
∆N

L
. (19)
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Thus the total porosity of the material is obtained by adding the fault porosity to the
matrix porosity nm, which is assumed to be related to the matrix volumetric strain

n = nm + nf . (20)

An additive decomposition holds also for the permeability tensor k

k = km + kf , (21)

where km is the permeability of the matrix, assumed to be isotropic and dependent
on matrix porosity via a Kozeny-Carman type relationship, and kf is the permeability
due to the fault activity [15]

km = CKC
(nm)3

(1− nm)2
I , (22)

kf =
1

12

∆N
3

L
(I−N⊗N) , (23)

where I is the identity tensor and CKC is a material constant. The permeability of a
rank-Q material can be estimated as the sum of the contributions of the single fault
families, as

kf =

Q∑
j=1

1

12

∆j
N

3

Lj
(
I−Nj ⊗Nj

)
. (24)

2.3 Numerical solution

The solution of the coupled problem is achieved through finite elements (FE), using a
in-house developed code. The finite element discretization is applied to the weak form
of the governing differential equations. The linear momentum balance (1) accounting
for the Terzaghi principle reads∫

V

(σ′ + Ip) : ∇s dV =

∫
Γt

t̄ · s dΓ +

∫
V

b · s dV , (25)

where s is a test function field and∇s the corresponding gradient. The weak form of
the continuity equation (2) reads∫

V

∂n

∂t
η dV −

∫
V

q · ∇η dV = −
∫
Γq

q̄n η dΓ , (26)

where η is test function and∇η the corresponding gradient.
We use a different FE discretization for the displacement field and the pressure

field. For the displacements, we use tetrahedral elements with quadratic interpolation
for displacement u and test function s, and linear interpolation for p and test function
η. The matrix form of the discretized problem is

K P + H U̇ = Qext(t) , (27)
HTP + Fint(U) = Fext(t) , (28)
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where P collects the nodal pressures, U the nodal displacement components, U̇ the
nodal velocity components, Fext(t) the external forces, Fint(U) the internal forces,
Qext(t) the imposed nodal hydraulic fluxes. Moreover K is permeability matrix and
H the coupling matrix.

In the solution algorithm, coupling is enforced weakly, by solving separately the
time discretized equations. For the solution of the continuity equation we adopt a
direct solver, while for the solution of the linear momentum balance equation we use
an explicit nonlinear solver based on the concept of dynamic relaxation. The code is
parallelized with a shared memory algorithm.

3 Numerical Applications

The brittle damage model has been conceived to describe degradation in geomateri-
als as a consequence of the modification of the microstructure, due to the onset of
diffused cracking with a specific geometry. As such, the model is not able to sim-
ulate classic problems of linear elastic fracture mechanics, since it does not feature
the presence of an isolated sharp crack tip and it is not possible to monitor the pro-
gressive separation of two fracture flanks. Moreover, it has been mathematically and
numerically proved [37] that the model is particularly efficient in modelling failure
in compression. For these reasons, it is not significant to validate the model against
the propagation of single sharp fractures. The validation of the model has been done
by simulating a small scale hydraulic fracture laboratory test [4]. The experimen-
tal test has been performed on a concrete specimen in controlled, properly applied,
boundary and initial conditions. As expected in experiments conducted on opaque
geo-materials (e.g., rock or concrete), authors in [4] reported the time history of the
measured borehole pressure and the post-mortem diffused fracture pattern. The mate-
rial was characterized for the elastic properties, while the missing strength properties
used in the numerical simulations have been taken from the literature.

The results of the numerical analyses are reported in terms of two significant
quantities: the fracture volume Vf , and the fracture surface Sf . The fracture volume
Vf is defined as the volume of the opened faults, i. e.,

Vf =

Nf∑
e=1

Ng∑
g=1

∆Ne g

Le g
Ve g , (29)

where Nf is the number of elements that experienced failure, Ng the number of inte-
gration points of the element e, ∆Ne g and Le g are the normal opening displacement
and the spacing, respectively, relevant to the g-th integration point of the element e.
Clearly, the fracture volume depends on the opening of the faults and it decreases
upon dissipation of the pore pressure. The total fracture surface Sf is the sum of the
fracture surfaces of the Nf element that experienced failure:

Sf =

Ne∑
e=1

Ng∑
g=1

Ve g
Le g

. (30)
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Property Unit Value
Density kg/m3 2000
Young modulus MPa 1.52 104

Poisson ratio 0.3
Tensile strength (*) MPa 4
Friction angle (*) Deg 30
Critical energy release rate (*) N/m 100
Initial porosity 0.05
Matrix permeability m2 2 10−14

L0/∆c 35,000
Fluid density kg/m3 1000
Fluid viscosity Pa s 100

Table 1 Laboratory test [4]. Material parameters used in the numerical analysis. The star (*) denotes the
parameters estimated from other literature sources.

In all the subsequent calculations we blocked the formation of nested microstructures
and allowed the material to develop only one family of faults.

3.1 Reference small scale laboratory test

As reported in [4], a cement block of size 28 cm × 28 cm × 38 cm containing a
cylindrical cavity (height 0.127 m, radius 0.04 m) at the center was pressurized with
a fluid up to failure, see Fig. 2a. The block was initially compressed progressively on
the six faces with different pressures, reaching the final values of σx = 17.3 MPa,
σy = 10.4 MPa and σz = 24.2 MPa. Subsequently, a viscous fluid mixed with dark
ink was injected in the cavity through a small pipe, with an imposed injection rate of
1 cm3/min, up to failure of the block. The injected fluid pressure was recorded for
the entire duration of the test. At the end of the test, the specimen was split in twice
to visualize the damaged zone, darkened by the ink.

The solid model of the specimen is discretized into 6,280 10-noded tetrahedral
elements and 8,945 nodes. To satisfy the regularity inf-sup conditions, in each ele-
ment the interpolation functions for the displacement field are quadratic, while for
the pressure field are linear. For the sake of simplicity, the borehole is not explicitly
modelled and thus the effects of stress concentration are neglected, see Fig. 2b. The
discretization is finer in proximity to the cavity, where the pressurized fluid is local-
ized and stress gradients are expected to be higher. The material parameters used for
the numerical simulation are listed in Table 3.1. The experimental paper [4] did not
provide all the material properties needed for the numerical simulation, therefore the
missing data have been estimated from the literature.

We began with a preliminary numerical simulation where the experimental injec-
tion flux is applied to the nodes of the mesh that fall within the volume of the cavity.
The corresponding pressure of the cavity node is recorded and compared with the
experimental data, see Fig. 3.

The predictive ability of the model to describe the pressure history is remarkable.
In particular, although faults begin forming at times around 400 s from the beginning
of the pressurization, a drop in the pressure is observed only when the faults undergo
a sufficient wide opening. Fig. 4 compares the distribution of the damage due to the
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pressurization obtained in the experiments with the one provided by the numerical
simulations. As expected, the damaged zone extends widely in the plane normal to the
direction of the minimum compressive stress, Fig. 4a. The extension of the damaged
zone in the numerical simulation is visualized in terms of a scalar that describes the
extension of the the damaged zone on a quarter of the numerical model that allows to
see the different extension of damage on the two symmetry planes, Fig. 4b, and is in
agreement with the experimental distribution.

Fig. 5 shows the time evolution of fracture surface Sf and fracture volume Vf .
Fig. 5a shows a progressively increasing curve. Clearly, the fracture process is char-
acterized by irreversibility and the extension of the fracture surfaces cannot reduce
when the fluid pressure starts to reduce. Indeed, the total fracture surface can extend
also when the pressure peak reduce, since the fluid can flow to other regions and
induce the formation of additional fractures. This particular aspect of hydraulic frac-
turing has been verified by means of acoustic emission measurements [49]. Contrari-
wise, the fracture volume is related to the level of the opening of the faults, strongly
influenced by the fluid pressure, and therefore it reduces when the fluid pressure goes
down.

We conducted a second analysis by applying the fluid pressure recorded during
the experiment, and obtained very similar results in shorter times. Therefore, given
the pure speculative and not applicative nature of this study, for the sake of com-
putational cost, the subsequent analyses have been conducted by applying the fluid
pressure history.

3.2 Sensitivity analysis

In order to assess the influence of mechanical parameters on the mechanism of failure
and on the hydraulic fracture efficiency, we have conducted a sensitivity analysis on
all the parameters of the model. The study showed that the response of the system
in terms of evolution of fracture volume and fracture surfaces is affected only by a
few parameters: the material strength (in terms of both the tensile strength Tc and the
friction angle ϕ), and the initial permeability of the isotropic matrix km = kI.

Tensile strength

Three different values of tensile strength have been considered: Tc =3, 4, and 5 MPa.
In terms of Mohr-Coulomb failure criterion, the change in the tensile strength causes
the translation of the failure surface according to the σ − τ plots in Fig. 6.

A few significant results of the numerical analysis are collected in Table 2.
The time evolution of fracture surface and fracture volume for these values are

shown in Fig. 7. The most evident effect of the increase of Tc is the increase in the
pressure necessary to activate the first fracture p1 (cf. see Table 2) and the correspond-
ing delay in the time of first failure, as well as the reduction of the initial extension
of the fracture surface. The time and the extension of the initial fracture surface are
visualized with black diamonds in Fig. 7b. The fact that higher tensile strengths re-
duce the extension of the initial fracture surface is related to the higher engagement
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Tc p1 pN Sf,V Vf,max Sf,1 Vf,1
MPa MPa MPa m2 mm3 m2 mm3

3 8.00 9.00 0.464 1.480 0.2241 5.60 10−3

4 10.15 10.35 0.388 0.870 0.0915 2.32 10−4

5 11.32 15.29 0.499 0.337 0.0146 4.97 10−5

Table 2 Sensitivity analysis on tensile strength. p1: fluid pressure for fault formation. pN : fluid pressure
for normal opening. Sf,V : fracture surface corresponding to the maximum fracture volume. Vf,max:
maximum value of the fracture volume. Sf,1: fracture surface at the first fault formation. Vf,1: fracture
volume at the first fault formation.

ϕ Sf,1 Vf,1
Degrees m2 mm3

30 0.0915 2.32−4

38 0.0100 1.51−4

45 0.0117 1.92−2

Table 3 Sensitivity analysis on friction angle. Sf,1: fracture surface at first fault formation. Vf,1: fracture
volume at first fault formation.

requested to the material to attain the strength in the neighborhood of the damaged
zone.

Interestingly, the formation of faults does not imply an immediate normal opening
of the faults and the fracture volume may be initially null. Faults in general begin to
open at a higher pressure pN , see Table 2. The time and the extension of the initial
fracture surface are visualized with black diamonds in Fig. 7d. Data in Table 2 show
that tensile strength of the material affects significantly the maximum value of the
fracture surface and fracture volume extensions.

Note that these analyses have been conducted at a fixed value of the critical energy
release rate Gc. In our material model the tensile strength is strictly related to the
critical opening displacement ∆c, which is also related to the selection of the scaling
parameter L. Therefore a change in Tc modifies also the kinematic aspects of the
model.

Friction angle

A change in the friction angle does not affect the values of the critical opening dis-
placement ∆c. We study the effects of friction angles ϕ =30, 38, and 45 degrees,
which in the Mohr-Coulomb criterion corresponds to three failure surfaces with dif-
ferent slope, see Fig. 8.

The results of the sensitivity analysis for the friction angle are collected in Table 3
and visualized in Fig. 9. From the data in Table 3 we observe that lower (higher)
friction angles induce higher (lower) fracture surfaces and lower (higher) fracture
volumes. This behavior can be justifed by the fact that for higher level of friction
the sliding between the crack flanks is less prone to occur, and the preferred failure
mechanism is the normal opening. Moreover, Fig. 9 show that higher values of fric-
tion angle cause a time delay in the formation of the first set of faults, due to a higher
fluid pressure necessary to bring the material to failure, and a higher extension of the
fracture surface at the fracture onset.
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Matrix permeability

At the beginning of the test, the permeability of the block is given by the initial
permeability of the porous matrix. Upon fault formation, the permeability of the ma-
terial increases as a function of fault opening and spacing, Eq. (21). A high initial
permeability may facilitate the flow of the fluid in the medium and reduce the local
effective stress as so as to anticipate the time of the formation of the first fault set. We
performed three analysis using the permeability coefficients k = 2 10−14, 2 10−16,
2 10−18 m2.

The results of the analyses are illustrated in Fig. 10. Interestingly, simulations
show that the initial permeability does not affect the timing of first failure, but it does
affect the initial extension of the fracture surface and in general the evolution of both
fracture surface and fracture volume.

The lack of monotonicity between initial permeability and evolution of the exten-
sion of the fracture surface and fracture volume can be explained as follows. Fracture
is the consequence of two concurrent physical phenomena. On one side, a low perme-
ability material does not allow a fast fluid pressure diffusion, therefore high pressures
concentrate in a limited region in the neighborhood of the injection point, leading to a
concentrated damage for the material. On the other side a high permeability material
facilitates the diffusion of the fluid pressure on a larger volume and the reduction of
the pressure peaks, limiting the extension of the damage.

4 Field application

We use the code to simulate a large scale problem, i. e., the artificial increase of the
permeability of a low-permeability hydrocarbon reservoir by means of a sequence of
hydraulic fracturing processes. We consider a very simplified geometry and homo-
geneity for the material.

We consider a parallelepiped domain in a shale reservoir of size 3.5 km× 2.15 km
× 2.15 km, subject to geostatic loads σx = 40 MPa, σy = 50 MPa, and σz = 60 MPa,
see Fig. 11a. The initial pore pressure of the repository is assumed to be uniform and
equal to p = 24 MPa. The domain is ideally crossed by a horizontal borehole parallel
to the x-axis (not reproduced in the model).

Note that in field application, where hydraulic fracturing is used to create net-
works of artificial fractures in deep rock embankments to facilitate the extraction of
gas/oil, the re-closure of cracks is an undesired event. To maintain the level of open-
ing of the cracks, granular additives named proppant are mixed to the fracturing fluid.
Proppant acts as a constraint to the reclosure of the crack flanks and it is widely used
in petroleum engineering. We simulate the effect of nine sequential fluid injections,
located along the borehole at different sites distant 300 m one from the other, by ap-
plying the 600 s fluid pressure history shown Fig. 11b. The domain is discretized in
51,066 10-noded tetrahedral elements, with 69,227 displacement nodes, see Fig. 11c.

The physical properties adopted for the large scale reservoir simulation are sum-
marized in Table 4. The results of the numerical analyses are shown in Fig. 12a,
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Property Unit Value
Density kg/m3 2.5 103

Young modulus MPa 6.0 104

Poisson ratio 0.20
Tensile strength (*) MPa 2.5
Friction angle (*) Deg 30
Critical energy release rate (*) N/m 500
Initial porosity 0.05
Matrix permeability m2 9.7 10−19

L0/∆c 10
Fluid density kg m−3 103

Fluid viscosity Pa s 10−3

Proppant diameter mm 0.1

Table 4 Sequential hydraulic fracturing of large scale reservoir. Material parameters used in the numerical
analysis. The star (*) denotes the parameters estimated from the literature.

which visualizes the extension of the damage induced by the hydraulic fracturing in
terms of magnitude of the opening displacement.

Fig. 12b shows the time evolution of fractured surface and fractured volume. Both
quantities progressively increase in time, following the sequence of fluid injection.
The presence of proppant in the injection fluid allows the fractured volume to preserve
high values also after the dissipation of the fluid pressures.

5 Conclusions

We have used a coupled porous-mechanical finite element code, including a brittle
damage material model [37,15,16], to the simulation of a hydraulic fracturing labo-
ratory test [4] and to the simulation of an extensive hydraulic fracturing procedure in
a hypothetical hydrocarbon reservoir.

We begin by validating the code against the experimental results reported in [4].
For the simulation it is necessary to complete the experimental data with additional
material parameters that are taken from the literature. Therefore, after the simulation
we conduct a sensitivity analysis on the parameters not provided by the experimental
paper (tensile strength Tc, friction angle ϕ, scaling ratio L0/∆c, and isotropic ma-
trix permeability). The sensitivity analysis allows to understand the influence of the
various parameters on the results of a boundary value problem.

We conclude the study by applying the code to the simulation of a large scale
problem, i. e., the simulation of an extensive hydraulic fracturing process in a gas/oil
reservoir. The simulation is able to provide important information on two parameters
that are usually taken in consideration to estimate the production of a reservoir: the
extension of the fracture surface and of the fracture volume.

The simulation is extremely simplified and dwarfs the complexity of the real prob-
lem. First, the actual geological information is disregarded. Second, the actual tech-
nology requires the drilling of the borehole, which causes a disturb on the geostatic
stress state, and the pre-fracturing of the hydraulic fracturing sites through small ex-
plosions, which further modifies the original stress state and permeability. Third, the
process control quantity is the amount of fluid injected, while the fluid pressure is
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an output parameter registered at the surface end of the borehole and not the actual
(unknown) pressure. To determine the pressure at the hydraulic fracturing location, a
complex fluid-dynamical problem involving a mixture of additives and water should
be solved.

On the other side, the oversimplification of the approach leads to a numerical ef-
ficiency that allows to obtain in a reasonable computational time an reliable estimate
of the hydraulic fracturing procedure. The code can be considered as a supporting
design tool for technical applications in petroleum engineering.
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Figure captions

Fig. 1 Linear decreasing cohesive law. The parameters of the model are the cohesive strength Tc and the
critical energy release rate Gc, defined as the area enclosed by the linear loading envelope.

Fig. 2 Laboratory test. (a) Geometry and initial confinement of the concrete block. (b) Section of the
discretized concrete block, showing the node refinement in proximity of the center of the specimen. The
mesh comprises 6,280 solid 10-noded tetrahedra and 8,945 nodes.

Fig. 3 Laboratory test. Comparison between the time history of the experimental borehole pressure
(dashed line) and the numerical prediction (solid line) for the experimentally imposed injection flux.

Fig. 4 Laboratory test. Comparison between the experimental and the numerical results in terms of ex-
tension of the damage induced by the fluid pressure. (a) Extension of the damaged zone observed in the
experiments [4]. (b) Visualization of the distribution of the damage in terms of magnitude (dark red color
corresponds to 0.5 mm) of the opening displacements as obtained from the numerical simulation, on a
quarter of the numerical model showing the different extension of damage on the symmetry planes.

Fig. 5 Laboratory test. Numerically obtained time history of (a) fracture surface and (b) fracture volume
(solid line). The time history of the experimental fluid pressure (dashed line) is reported for the sake of
comparison.
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Fig. 6 Sensitivity analysis on tensile strength. Failure surfaces in the Mohr plane for the three values of
tensile strength Tc = 3, 4, and 5 MPa. Figure shows two Mohr’s circles corresponding to the geostatic
state and to the state characterized by a fluid pressure able to cause the failure of the material.

Fig. 7 Sensitivity analysis of the laboratory test simulation on the tensile strength. Gray circles: Tc =
3 MPa. Black circles: Tc = 4 MPa. White circles: Tc = 5 MPa. (a) Fracture surface versus time. (b)
Fracture surface closeup at the time of the formation of the first set of faults. (c) Fracture volume versus
time. (d) Fracture volume closeup at the time of the formation of the first set of faults.

Fig. 8 Sensitivity analysis on friction angle. Failure criteria in the Mohr plane for friction angles of 30,
38, 45 degrees. Figure shows two Mohr’s circles corresponding to the geostatic state and to the state
characterized by a fluid pressure able to cause the failure of the material.

Fig. 9 Sensitivity analysis on friction angle. Black circles: 30 degrees. Gray circles: 38 degrees. White
circles: 45 degrees. (a) Fracture surface versus time. (b) Fracture volume versus time.

Fig. 10 Sensitivity analysis on the initial isotropic permeability of the matrix. Black circles: 2 10−14

m2. Gray circles: 2 10−16 m2. White circles: 2 10−18 m2. (a) Fracture surface versus time. (b) Fracture
volume versus time.

Fig. 11 Large scale reservoir analysis. (a) Geometry, geostatic loads and location of the localized in-
jections. (c) Time history of the applied fluid pressure for the single injection process. The injection time
interval is 600 s. (b) Finite element discretization of the reservoir, mid-section. The mesh comprises 51,066
10-noded tetrahedral elements and 69,227 nodes.

Fig. 12 Large scale reservoir analysis. (a) Distribution of the magnitude of the opening displacement on
the faults. Maximum opening 0.5 mm (red color). (b) Time evolution of the fracture surface and fracture
volume.


