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ABSTRACT  19 

The main aim of this work is to present a prototype of seismic risk assessment study at urban 20 

scale which incorporates next generation tools for hazard assessment, with application to the 21 

city of Thessaloniki, Northern Greece. The key ingredient of the proposed approach is the 22 

characterization of earthquake ground motion by means of three-dimensional broadband 23 

physics-based numerical simulations, which explicitly account for the fault rupture, the 24 

propagation path in heterogeneous media and complex geological conditions. The seismic 25 

damage of contemporary reinforced concrete building stock of the city of Thessaloniki has 26 

been evaluated using the capacity spectrum method, for a scenario corresponding to the 27 

destructive historical earthquake of June 20th 1978 (MW6.5). Although the vulnerability model 28 

considered in these analyses reflects the contemporary building stock and, hence, differs from 29 

the situation at the time of the earthquake, the soundness of our damage estimates has been 30 

successfully verified through the comparison with the post-1978 earthquake damage 31 

observations. Results of this study demonstrate that 3D physics-based simulations can provide 32 

a more accurate and detailed characterization of earthquake ground motion and of its spatial 33 

variability, as compared to standard empirical approaches, and can be effectively used to 34 

improve seismic risk studies for strategic urban areas.  35 

 36 

Keywords: seismic risk; capacity spectrum method; 3D physics-based numerical modeling; 37 

displacement-based fragility functions   38 
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1. INTRODUCTION 39 

Seismic risk studies at urban scale are crucial: (i) to assess quantitatively the socio-economic 40 

impact of future earthquakes on a densely populated area, of potential interest for insurance 41 

and reinsurance industries; (ii) to assist national authorities in planning effective actions for 42 

seismic risk mitigation and preparedness, including also the drafting of seismic codes for the 43 

design of new structures; (iii) to improve decision making in support to emergency response 44 

and disaster management; and eventually (iv) to optimize retrofitting strategies. The seminal 45 

goal of such studies is to estimate the spatial distribution of the expected damages and losses 46 

to structures and people due to an earthquake of any intensity. Key ingredients to achieve this 47 

goal are, on one hand, the accurate evaluation of seismic hazard and of its spatial variability, 48 

and, on the other one, the use of up-to-date vulnerability models, which establish a correlation 49 

between hazard and structural damage.  50 

Standard methods for hazard assessment, both in a probabilistic and deterministic framework, 51 

are based on the use of Ground Motion Prediction Equations (GMPEs), which are empirical 52 

regression laws for peak ground motion parameters calibrated on instrumental observations 53 

from past earthquakes. In spite of their simplicity and their enormous progress in recent years, 54 

they have some intrinsic drawbacks, especially when applied to the evaluation of seismic risk 55 

at regional scale. Specifically, (1) they are poorly constrained in the conditions of potential 56 

major interest for seismic risk reduction objectives, in particular, in the near-source region of 57 

large, destructive earthquakes; (2) characterization of site condition, typically parametrized in 58 

terms of shear wave velocity in the top 30 m (VS30), may not be fully adequate to describe 59 

complex site effects at local scale, such as those occurring in alluvial valleys where densely 60 

populated urban centers are often built; (3) they provide only estimates of peak ground 61 

motion, without the entire waveform, of potential interest for non-linear time history analyses 62 

of structures; (4) they cannot provide an accurate description of the spatial correlation 63 

between peak ground motion intensities at multiple sites. Referring to the latter point, it is 64 

widely recognized that a proper description of the spatial variability of ground motion 65 

intensity is of paramount importance for seismic risk and loss assessment of large urban areas 66 

with spatially distributed building portfolios and infrastructure systems (see e.g. Park et al. 67 

2007; Jayaram and Baker 2010; Weatherill et al. 2015). For this reason, in such cases, 68 
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additional models describing the spatial correlation structure of ground motion have to be 69 

implemented (see e.g. Jayaram and Baker 2009; Esposito and Iervolino 2011; 2012), in 70 

conjunction with GMPEs.  71 

To overcome these limitations, three-dimensional (3D) physics-based numerical simulation of 72 

earthquake ground motion has emerged as a powerful alternative tool to the use of GMPEs. 73 

Based on the rigorous numerical solution of the elastodynamics equation, simulations provide 74 

synthetic ground motion time histories reflecting the physics of the seismic wave propagation 75 

problem from the source up to the site of interest, including directivity effects in near fault 76 

conditions, topographic and complex site effects. Although its use remains rather limited in 77 

engineering practice, such an approach has become feasible and mature enough owing to the 78 

continuous progress of computational resources and to the increasing number of verification 79 

experiments (see e.g. Bielak et al. 2010; Chaljub et al. 2010; SCEC project: 80 

https://www.scec.org/workshops/2016/gmsv) and validation studies against real recordings 81 

(Taborda and Bielak 2014; Paolucci et al. 2015; Gallovič 2016).  82 

Among the state-of-the-art methodologies for vulnerability assessment (for a thorough review 83 

see Calvi et al. 2006), those based on the Capacity Spectrum Method, referred to hereafter as 84 

CSM (Freeman 2004), are recommended in the HAZUS procedure (FEMA 1999) and ATC-85 

40 (ATC 1996). The CSM is a performance-based method which provides the estimate of the 86 

median response of an idealized non-linear single degree of freedom oscillator, when 87 

subjected to a postulated ground shaking scenario, at the performance point of the structure. 88 

The latter is determined graphically as the intersection between the capacity of the structure, 89 

in the form of a pushover curve, with the seismic demand, in the response spectral 90 

displacement and acceleration space. This approach has been applied successfully for seismic 91 

risk evaluation in different urban environments worldwide (Erdik et al. 2003; Barbat et al. 92 

2008; Riga et al. 2017) and this will be the method used in this paper.  93 

The main aim of this paper is to present a novel approach for scenario-based seismic risk 94 

assessment study at urban scale, incorporating next generation tools for the hazard evaluation, 95 

based on physics-based numerical simulations of ground shaking including an explicit 3D 96 

model of the seismic source, the propagation path and geological basin structures. There are 97 

very few case studies in the literature where 3D physics-based numerical simulations have 98 

been included in the methodological chain for seismic risk assessment. To the authors’ 99 
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knowledge, the Great Southern California Shake-Out Project (Porter et al. 2011) has been the 100 

only study so far using 3D physics-based numerical simulations to estimate the large-scale 101 

physical damage of built environment as well as the economic losses caused by a hypothetical 102 

major earthquake (M 7.8) in Southern California.  103 

In this work, the city of Thessaloniki, Northern Greece, is taken as case study owing to the 104 

abundance of detailed data regarding both the local geology and the exposed building stock. 105 

Recent works (Pitilakis et al. 2015; Riga et al. 2017) have addressed the seismic risk 106 

assessment in the city of Thessaloniki using the CSM but in these studies a different 107 

representation of seismic hazard was adopted, based on the available PSHA studies combined 108 

with either code-based or detailed soil classification schemes and site specific ground 109 

response analyses. In this study a step forward will be made by incorporating the results of a 110 

3D physics-based scenario reproducing with reasonable accuracy the historical Volvi 111 

earthquake of June 20th 1978 (moment magnitude MW=6.5), which affected dramatically the 112 

city of Thessaloniki. 113 

For this purpose, starting from the numerical analyses performed by Smerzini et al. (2017), 114 

reliable only in a limited frequency range, specifically up to about 1.5 Hz, a promising 115 

approach based on Artificial Neural Networks has been applied to enrich the frequency 116 

content of the synthetic ground motions and, therefore, make them usable for the evaluation 117 

of the damage for the contemporary Reinforced Concrete (RC) building stock. Maps of 118 

expected damage for the RC building portfolio in the urban area of Thessaloniki will be 119 

produced and compared with actual damage observations to highlight the feasibility and 120 

advantages of using 3D physics-based numerical simulations in risk analyses at urban scale.  121 

2. STUDY AREA 122 

The study area is located in one of the most seismo-tectonically active zones in Europe. Its 123 

seismicity is mainly associated with the activity of the Mygdonia and the Anthemountas fault 124 

systems, which were responsible of severe destructive earthquakes with magnitude up to 7 125 

from historical times to present (Papazachos and Papazachou 1997). Thessaloniki, the second 126 

largest city in Greece after Athens, is the financial center in Northern Greece and was the first 127 

modern urban center in Greece hit by a major earthquake. The MW 6.5 June 20th 1978 128 
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earthquake occurred near the Volvi and Langada lakes, at nearly 30 km to the East of the city 129 

of Thessaloniki, and had a tremendous impact on the city, causing 47 victims, most of them in 130 

an eight-storey RC building which collapsed, 220 injuries and serious damages to about 4000 131 

buildings (Penelis et al. 1988; Panou et al. 2014). The earthquake revealed indeed the extreme 132 

fragility of a modern society where a significant portion of the building stock was constructed 133 

in RC including basic earthquake-resistant design criteria (post 1959 code). The extensive 134 

damage induced by the 1978 event encouraged the development of a series of research studies 135 

aimed at improving the knowledge on the seismotectonic context (see overview in Roumelioti 136 

et al. 2007), at providing a large-scale geophysical and geotechnical characterization for 137 

microzonation purposes (e.g.,. Anastasiadis et al. 2001; Apostolidis et al. 2004), as well as at 138 

defining detailed vulnerability and exposure models for contemporary and masonry buildings, 139 

lifeline and utility systems (see e.g. Kappos et al. 2006; Argyroudis et al. 2014). 140 

Figure 1 shows the study area on two scales: on the broader scale used for seismic hazard 141 

assessment through 3D numerical modeling (bottom) and on the scale of the central 142 

municipality of the city of Thessaloniki considered for risk assessment (top). The latter is 143 

subdivided into twenty Sub-City Districts (SCD), based on the European Urban Audit 144 

database provided by EUROSTAT (http://www. urbanaudit.org), and has a total population of 145 

about 380,000 inhabitants, corresponding roughly to one third of the population in the whole 146 

urban agglomerate.  147 

In this work seismic risk will be evaluated only for the contemporary RC building stock, as it 148 

constitutes the majority of the buildings in the study area. The building inventory was 149 

compiled in previous studies, first, within the 2001-2004 RISK-UE Project (Pitilakis et al. 150 

2004) and, then, within the 2009-2012 Syner-G Project (Pitilakis et al. 2014), and has been 151 

used in recent seismic risk studies (Kappos et al. 2008; Riga et al. 2017; Pitilakis et al. 2015). 152 

The elementary unit of the building inventory is the building block (BDG), which comprises 153 

the buildings included in a 50 m wide rectangular area. The inventory includes 2892 building 154 

blocks, classified into 54 different building typologies according to the Building Typologies 155 

Matrix (BTM) classification scheme proposed by Kappos et al. (2006), as reported in Table 1. 156 
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seismic design (roughly corresponding to pre-1980 codes in S. Europe, e.g., the 1959 172 

Code for Greece); M = Moderate code, representing RC buildings with medium level 173 

of seismic design (roughly corresponding to post-1980 codes in S. Europe, e.g., the 174 

1985 Supplementary Clauses of the Greek Seismic Codes) and reasonable seismic 175 

detailing of R/C members; H = High code, representing RC buildings with enhanced 176 

level of seismic design and ductile seismic detailing of R/C members according to the 177 

new generation of seismic codes (similar to Eurocode 8, CEN 2004). 178 

Each building typology is hence referred to with the following acronym RCS.XHC, where 179 

S.X represents the structural system, H the height and C the code class. 180 

Figure 2 shows the classification of the Thessaloniki buildings based on structural system (a), 181 

height (b), code level (c) and building type (d) according to the BTM of Table 1. The majority 182 

of buildings belongs to the RC4.2ML (about 33%) and RC4.3ML (21%) classes, i.e., 183 

medium-rise RC buildings with regularly and irregularly infilled dual systems and low code 184 

level prior to 1980, with minor contributions from RC4.2MM (7.7%), RC4.3HL (8%), and 185 

RC4.3MM (8%) classes.   186 

Table 1 RC Building Typology Matrix (BTM) for the city of Thessaloniki city (from Kappos et 187 
al. 2006).  188 

Type Structural system Height Code level 

RC1 Concrete moment frames 
(L) Low-rise (1-3) 
(M) Mid-rise (4-7) 
(H) High-rise (8+) 

(N)o/pre code 
(L)ow code 
(M)edium code 
(H)igh code 

RC3 Concrete frames with unreinforced masonry infill walls 

3.1 Regularly infilled frames 
(L) Low-rise (1-3) 
(M) Mid-rise (4-7) 
(H) High-rise (8+) 

(N)o/pre code 
(L)ow code 
(M)edium code 
(H)igh code 

3.2 Irregularly infilled frames (pilotis) 
(L) Low-rise (1-3) 
(M) Mid-rise (4-7) 
(H) High-rise (8+) 

(N)o/pre code 
(L)ow code 
(M)edium code 
(H)igh code 

RC4 RC Dual systems (RC frames and walls) 

4.1 Bare Systems (no infill walls) 
(L) Low-rise (1-3) 
(M) Mid-rise (4-7) 
(H) High-rise (8+) 

(N)o/pre code 
(L)ow code 
(M)edium code 
(H)igh code 
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The main steps of the methodology, starting from the estimation of 3D broadband physics-201 

based ground motions to obtain the seismic demand at each building block, up to the 202 

application of the CSM to estimate the probability of different damage states, is depicted in 203 

Figure 3. Each step is briefly described below. 204 

Step 1. A large-scale 3D numerical model extending over considerable distances (of the order 205 

of several tens of kilometers on the horizontal scale) is constructed to simulate the seismic 206 

wave propagation phenomenon occurring during an earthquake with specified magnitude and 207 

location (scenario-based seismic hazard assessment). In this study, the historical MW6.5 1978 208 

Volvi earthquake has been considered. The model accounts for all factors affecting ground 209 

motion, from the features of the seismic source (represented by a kinematic model), with 210 

directivity/directionality effects due to rupture propagation along the fault, the propagation 211 

path in heterogeneous Earth media, up to the local geologic conditions within the city, which 212 

may lead to site-specific amplification patterns. The model gives as output the entire time 213 

histories of ground at any point of the model on ground surface, so that it provides a detailed 214 

picture (with resolution conditioned on mesh discretization) of variability of ground motion 215 

both in time and space. Further details on the model will be provided in Section 4.  216 

Step 2. Ground motions computed at the previous step are limited to the low frequency range, 217 

typically up to about 1.5 Hz, as in the present case, because of the computational limitations 218 

and of our limited knowledge of the mechanical properties of the medium and of the source 219 

process at shorter wavelengths. On the other hand, damage and loss assessment studies need 220 

broadband ground motions with realistic features in a broad range of periods (say at least 0-10 221 

Hz), covering the dominant vibration periods of all structural typologies of interest. 222 

Therefore, starting from the 3D low-frequency synthetics, broadband seismic demands are 223 

generated for each building block within the city of Thessaloniki, using the procedure 224 

illustrated in Section 4.   225 

Step 3. For any building block, the CSM is applied: the seismic demand is compared with the 226 

capacity curve associated with the considered structural types in the spectral displacement 227 

(SD) – spectral acceleration (SA) space, to determine the performance point of the structure to 228 

this earthquake scenario. Note that the demand curve can be a design spectrum for a selected 229 

return period (e.g. Eurocode 8 design spectrum for 475 years return period), a Uniform 230 

Hazard Spectrum (UHS), computed from a PSHA study, or, as in this work, the response 231 
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Geoscience Australia (Robinson et al. 2005), has been adopted. Further details regarding the 251 

assumptions at the basis of the vulnerability model adopted in EQRM will be provided in 252 

Section 5.  253 

4. 3D BROADBAND PHYSICS-BASED MODELING FOR HAZARD 254 

EVALUATION 255 

In this study, the ground shaking in the city of Thessaloniki has been estimated through 3D 256 

physics-based numerical simulations of the MW 6.5 June 20th 1978 Volvi earthquake. 3D 257 

modeling of earthquake ground motion in the Thessaloniki area has been addressed by the 258 

authors of this paper in a previous study (Smerzini et al. 2017), where efforts were devoted to 259 

the construction of the numerical model and the comparison of the synthetics with the 260 

observations available in terms of ground motion time histories, macroseismic intensity and 261 

site-specific amplification functions.  262 

The numerical simulation of the Volvi earthquake was performed using the open-source 263 

computer package SPEED based on the Discontinuous Galerkin Spectral Elements Method 264 

DGSEM (http://speed.mox.polimi.it/; Mazzieri et al. 2013). Referring to Smerzini et al. 265 

(2017) for a detailed description of the numerical model, herein we limit ourselves to 266 

summarize its main features. The large-scale computational model can propagate frequencies 267 

up to about 1.5 Hz and includes, as main features, a kinematic representation of the fault 268 

rupture and a 3D subsoil model of the Thessaloniki urban area with non-linear visco elastic 269 

behavior for the shallow soil layers in the top 100 m. A sketch of the computational model 270 

adopted for the simulation of the Volvi earthquake is shown in Figure 4. To highlight the 271 

spatial variability of the ground motions predicted by numerical modeling, some 272 

representative ground motion velocity time histories (horizontal component, projected along 273 

the direction normal to the fault strike), simulated at selected observation points on ground 274 

surface, are superimposed on the numerical grid.  275 

One of the main shortcomings of 3D physics-based numerical simulation, which strongly 276 

restricts its applicability in earthquake engineering applications, is that synthetics are reliable 277 

only in the long period range, owing to the limitations posed both by computational 278 

constraints as well as by insufficient knowledge of the medium at short wavelengths. 279 



13 

 

Increasing the maximum frequency of numerical models, from 0.2-0.5 Hz achieved in the first 280 

pioneering applications in the late 1990’s, up to 2-3 Hz, has been made possible by the 281 

incessant development of computational infrastructures along with refinement of computer 282 

algorithms in a parallel environment (for a careful review see Paolucci et al. 2014). 283 

Nonetheless, such a progress is still insufficient for earthquake engineering applications, such 284 

as structural analyses and risk assessment studies, which require the use of ground motion 285 

time histories with realistic features in a broad range of vibration periods, covering the 286 

fundamental and higher vibration modes of most structures (0-10 Hz). Consider that for the 287 

portfolio of RC buildings in Thessaloniki, the fundamental elastic vibration period of the 288 

building typologies of Table 1 falls in the range 0.15-1.5 s, with most values between 0.4 s 289 

and 0.7 s.  290 

To overcome this issue and generate broadband (referred to as BB hereinafter), ground 291 

motions usable for damage assessment purposes, we adopted a promising approach based on 292 

Artificial Neural Networks (ANN). The key points of this procedure are briefly presented 293 

herein, while for a more detailed description and verification examples we refer the reader to 294 

Paolucci et al. (2017). For any building block, the response spectral accelerations at short 295 

periods, namely at T<T*, where T*= 0.75 s is the minimum period of the numerical 296 

simulations, are predicted from the long period spectral ordinates (TT*), using an ANN 297 

previously trained on a database of recorded earthquake ground motions (namely, SIMBAD 298 

database, illustrated in Smerzini et al. 2014). Therefore, the target broadband response 299 

spectrum equals the spectrum simulated by SPEED in the long period range, while at short 300 

periods it is constructed based on the outputs of the ANN. The main advantage of this ANN-301 

based procedure is that a correlation between the spatial variability of ground motion at long 302 

periods, simulated by the physics-based approach, and the one at short periods is naturally 303 

established.  304 

 305 
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normal focal mechanism, fault distance (Rf) and VS30 specific for each considered site. The 322 

only available recording during the 1978 earthquake (THE station, located in the basement of 323 

an 8-storey building at the shoreline of the city) is also compared with the results for BDG 324 

1245 (top left sub-plot of Figure 5), being the latter the closest site to the strong-motion 325 

station. Note that the synthetic response spectrum at THE station is in good agreement with 326 

the observation for almost all periods, although it tends to be higher at short periods, most 327 

likely because of the particularly low values of ground motion provided by the instrument at 328 

high frequencies, with PGA of around 0.15 g, associated with strong non-linear site effects 329 

and, to a minor extent, to soil-structure interaction effects. Overall, the synthetic BB spectra 330 

are in reasonable agreement with the GMPE of CEA15, although differences are found both 331 

in the short and long period range especially at soft deep sites in the southern part of the city 332 

(see e.g. BDG#1777 for T1.5-2 s). In spite of the different nature of the SA from this 333 

deterministic study, which is associated with a specific earthquake scenario, and the UHS, 334 

which, instead, results from different earthquakes, being derived from a full PSHA, the 335 

comparison is still satisfactory especially when EC8-based site amplification factors are 336 

considered. The PEA15 amplified UHS represents an upper bound of the spectral ordinates 337 

for nearly all periods.  338 

Figure 6 presents maps of SA computed from the 3D broadband physics-based numerical 339 

simulations (a, top panel) and from CEA15 (b, bottom panel), for selected periods, namely, 340 

PGA, T=0.5 s and 1 s. Empirical estimates (without any spatial correlation model) are rather 341 

homogeneous across the study area because they take into account only the attenuation with 342 

distance (which is limited for the distance ranges under consideration) and site condition (VS30 343 

= 300, 500 and 800 m/s passing from the shoreline to the North-East). Empirical estimates 344 

tend to be lower than 3D simulations especially in the South-South-East part of the city owing 345 

to the directionality of fault rupture combined with long-period (T  1s) site amplification 346 

effects occurring in the deepest portion of the Thessaloniki basin. Note that such effects, 347 

reproduced by our 3D simulations, are reflected also in the short period range through the 348 

ANN-based procedure.  349 

 350 
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7, where the semivariogram values (h) associated with SA(0.5s), on the left, and SA(1.0s), on 370 

the right, for a large suite of receivers falling in the urban area and in the surroundings are 371 

plotted. Note that, for this geostatistical analysis, it was necessary to consider a set of 372 

receivers sampling a wider area than the one adopted for risk computations to adequately 373 

catch the overall trend of (h) over a suitable range of inter-station distances. In Figure 7 the 374 

least-squares best-fitting exponential model (dashed lines), which is the commonly adopted 375 

model in literature, is also shown. It turns out that the spatial correlation of response spectral 376 

ordinates of ground motion is realistically reproduced both at short and long periods, with an 377 

average behavior of semivariogram across multiple sites for increasing inter-station distances 378 

and for different structural periods in agreement with studies based on recorded ground 379 

motions (see e.g. Jayaram and Baker 2009; Esposito and Iervolino 2012). On the other hand, 380 

the use of GMPEs would produce a semivariogram equal to zero at all inter-station distances. 381 

Specifically, the range of semivariograms, i.e. the inter-station distance at which the 382 

semivariogram  tends to a plateau or, in other words, the correlation drops to zero (see 383 

superimposed arrows in Figure 7) turns out to be equal to around 39 km and 49 km for 384 

SA(0.5s) and SA(1.0s), respectively, with a tendency to increase for longer periods, in 385 

agreement with the research works previously cited. It is noted that the rather high values of 386 

ranges obtained here are consistent with the values found by Jayaram and Baker (2009) for 387 

selected earthquakes (e.g. the 1999 Chi-Chi earthquake in Taiwan; the 2003 Big Bear City 388 

earthquake in USA) and may be attributed to the clustering of VS30 values, as for the case of 389 

Thessaloniki.   390 
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5. VULNERABILTY MODEL  405 

As described in Section 3, the CSM has been adopted to estimate the expected damage of the 406 

RC building stock in the Thessaloniki urban area when subjected to the 1978 earthquake-like 407 

scenario. The CSM requires the definition of the capacity and displacement-based fragility 408 

curves for each building typology. In this study, the capacity and fragility curves developed 409 

by the Aristotle University of Thessaloniki - AUTH (Kappos et al. 2006; D’Ayala et al. 2012) 410 

are used. In the following further details regarding both capacity and fragility curves will be 411 

provided.  412 

The capacity curves were first obtained by Kappos et al. (2006) specifically for the Greek 413 

buildings in Thessaloniki area using a hybrid approach, where statistical data from 414 

earthquake-damaged buildings were combined with results of non-linear dynamic or static 415 

analyses. For all Low and High code RC (see Table 1) buildings capacity curves were derived 416 

on the basis of a pushover analysis using 2D models, where RC members were modeled using 417 

lumped plasticity beam-column elements, while infill walls were modeled using the diagonal 418 

strut element. Under the hypothesis of a 2D model, the effects of plan irregularity and, thus, 419 

torsional effects, were neglected; however, as discussed in Kappos et al. (2006), such effects 420 

are found to have a minor impact on the overall loss estimates in the city of Thessaloniki and 421 

are less influential than irregularities in elevation (e.g. presence of soft storeys), which were 422 

explicitly accounted for. Based on these numerical analyses empirical corrections were then 423 

applied to produce curves for the pre-code and moderate-code buildings.  424 

The capacity curves for the most frequent building typologies, RC4.2ML, RC4.3ML, 425 

RC4.2MM, RC4.3HL and RC4.3MM, are presented in Figure 8 in the standard bilinear form, 426 

defined by the yield point (SDy, SAy) and ultimate point (SDu, SAu). However, it should be 427 

underlined that in the EQRM code the capacity curve is modelled in such a way (specifically, 428 

the non-linear part from the yield point to the ultimate point is modeled as an exponential 429 

function) that strain-hardening is scarcely accounted for and this may play a role especially 430 

for concrete walls buildings. The uncertainty associated with the capacity curve is taken into 431 

account in the computations by describing the ultimate spectral acceleration SAu as a aleatory 432 

variable following a log-normal probability distribution with standard deviation u = 0.3, as 433 

recommended in FEMA (1999).  434 
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Fragility curves define the probability that the expected damage d of a particular building or 435 

building class exceeds a given damage state DSi, as a function of a parameter quantifying the 436 

severity of the seismic demand, which is, in the CSM, the spectral displacement SD. In the 437 

code EQRM, fragility curves are provided for four different damage states, namely, slight, 438 

moderate, extensive and complete, and for both structural and non-structural damage. In the 439 

present study only structural damage has been considered. The fragility functions are assumed 440 

to follow a log-normal distribution such that the conditional probability of exceeding a certain 441 

damage state DSi is given by the following expression:  442 

 















iSD

iDS,T
i

S/SDln
]DSd[P     (1) 443 

where () is the standard normal cumulative distribution function, 
iDS,TS  is the median 444 

value of spectral displacement corresponding to the spectral displacement threshold 445 

associated with the damage state DSi and 
iDS is the logarithmic standard deviation. 446 

Therefore, under this assumption, for each building typology, the fragility curve is completely 447 

defined by only two parameters: the mean spectral displacement 
iDS,TS  and the 448 

corresponding standard deviation 
iDS .  449 

The displacement thresholds for the Greek RC buildings were defined by D’Ayala et al. 450 

(2012) as a function of the yield and ultimate spectral displacement, for five damage states, 451 

namely, DS1 (slight), DS2 (moderate), DS3 (substantial to heavy), DS4 (very heavy) and DS5 452 

(collapse), as described in Table 2. As in EQRM only four damage states are defined, 453 

following other studies (see Pitilakis et al. 2015; Riga et al. 2017), the damage states have 454 

been modified as follows: DS1 for slight damage, DS2 for moderate, DS3 for extensive, while 455 

DS4 and DS5 damage states have been combined to express complete damage state (DS5 is 456 

taken for complete damage). For the logarithmic standard deviation of fragility, a value 
iDS457 

= 0.4, for all damage states, was assumed based on the recommendations in FEMA (1999). 458 

The resulting fragility curves are illustrated in Figure 9 for the same building typologies as 459 

presented in Figure 8.  460 
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6. RESULTS: DAMAGE AND LOSS SCENARIO  482 

Coupling of the broadband physics-based ground shaking scenario with the vulnerability 483 

model of the RC building block allows to estimate the spatial distribution of the expected 484 

damage in the urban area of Thessaloniki during the historical 1978 earthquake. Results of the 485 

seismic risk scenario in terms of structural damage are presented in this Section and then 486 

compared with the post 1978 earthquake damage observations.  487 

Figure 10 presents the spatial distribution of the percentage of building floor area (FA) in the 488 

four damage states, from slight to complete (collapse), within in the city of Thessaloniki, 489 

building block by building block. For each building block and each damage state, the 490 

damaged FA is computed by multiplying the probabilities of exceeding the damage state for 491 

any building typology by the FA associated with all buildings of the given type and within the 492 

considered building block and, then, by integrating these quantities over all building 493 

typologies. For graphical purposes, data for each DS are grouped using the natural break 494 

classification implemented in ArcGIS software. Although the damage is computed building 495 

block by building block, it is useful to show the damaged FA also at the aggregated level of 496 

the sub-city districts (SCD), as illustrated in Figure 11. In this figure, in addition to the 497 

damaged FA (right), the Mean Damage Ratio (MDR) per SCDs is also reported. The MDR 498 

represents the total cost of repair normalized with respect to the reconstruction cost and is 499 

computed using the following relationship:  500 

 


4

1i
iiDS LIFAMDR     (2) 501 

where 
iDSFA  is the percentage of FA in damage state i and iLI  denotes the corresponding 502 

loss index for RC structures, according to Kappos et al. (2008), see Table 3.  503 

Overall, it turns out that about 23% of the RC buildings undergoes slight damage, 38% 504 

moderate damage, 8% extensive damage and 0.3% complete damage. Higher damages are 505 

found predominantly in the South-South-East sector of the urban area, where higher seismic 506 

demands are found especially in the range of periods T=0.4-0.7 s, corresponding to the 507 

fundamental vibration period of the most common building types. Intermediate to long period 508 

amplification of ground motion in the southern sector of the city is mainly associated with 509 
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work, Kappos et al. (1991) mapped the post 1978 earthquake losses in terms of cost of repair 565 

per unit area for a part of the city, i.e. the central (intramuros) part and a major South-East 566 

sector (see Figure 13c). More recently, Panou et al. (2014) merged the damage datasets 567 

coming from the traditional questionnaire-based study and from in-situ inspections by expert 568 

engineers to compile a map in terms of European Macroseismic scale EMS-98.  569 

Figure 13 presents a qualitative comparison of the results of our study in terms of spatial 570 

distribution of MDR (a) with the MSK map compiled by Leventakis (2003) (b) as well as the 571 

repair costs estimated by Kappos et al. (1991) (c). Considering the assumptions in our 572 

analyses and differences between the actual and modelled building stock, the comparison can 573 

be considered reasonable, especially with Kappos et al. (1991). With respect to Leventakis 574 

(2003), less conservative damage estimates are found in the north-western and central 575 

(intramuros) sector of the city; referring to the latter, where serious damages have been 576 

reported, underprediction may be due to the peculiar soil conditions (i.e., presence of 5-15 m 577 

thick debris of the ancient Hellenistic and Byzantine city), which could not be taken into 578 

account in the 3D model with a sufficient level of resolution, and to the fact the our risk 579 

analyses do not include the masonry buildings. 580 

As a further comparison, we considered the damage statistics provided by Penelis (2008), 581 

where the damaged buildings are classified according to the familiar “Green”, “Yellow” and 582 

“Red” tag scheme. Consider that this study covers the same portion of the city (central -583 

intramuros part and a major S-SE sector) as considered in Kappos et al. (1991). The 584 

correspondence between tag color and DS adopted in our damage computations was assumed 585 

as follows: “Green” = DS0 (no damage) + DS1 (slight) + 30%DS2 (moderate); “Yellow” = 586 

70%DS2 (moderate) + 50%DS3 (extensive); “Red” = 50% DS3 (extensive) + DS4 587 

(complete). The 30%-70% partition of DS2 between “green” and “yellow” was based on the 588 

previous study by Pitilakis et al. (2015), while for the “red” tag it was decided to include a 589 

good proportion of buildings in DS3 (extensive) since in our computations DS4 corresponds 590 

only to collapse. This choice is in line with the considerations provided by Kappos et al. 591 

(2008). The comparison of our damage predictions with the statistics provided by Penelis 592 

(2008) is reported in Table 4 together with the results obtained with two robust GMPEs for 593 

shallow crustal earthquakes, namely CEA15 (already considered in previous comparisons) 594 

and Akkar et al. (2014), referred to as AEA14. It turns out that overall the results of this study 595 
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7. CONCLUSIONS 615 

In this study we have shown an innovative approach for seismic risk assessment in large 616 

urban areas relying on next-generation tools for the prediction of earthquake ground shaking, 617 

based on 3D broadband physics-based numerical simulations including the seismic fault 618 

rupture, the complete propagation path from the source to the site and local complex site 619 

conditions (topographic and basin-edge effects). Referring to the vulnerability model, 620 

displacement-based fragility functions are adopted in a performance-based assessment 621 

framework like the Capacity Spectrum Method. The use of fragility functions defined in terms 622 

of response spectral displacement, as compared to more traditional fragility functions 623 

compiled as function of short period intensity measures (e.g. PGA), allows us to fully exploit 624 

the capabilities of 3D approaches, which are known to perform better in the long period range 625 

owing to computational limits.  626 

To verify the feasibility and advantages of using 3D physics-based simulations for risk 627 

assessment studies, the physical damage scenario for the RC building stock of the urban area 628 

of Thessaloniki during the MW6.5 June 20th 1978 earthquake has been estimated and 629 

compared with the damage observations. Significant damages are found predominantly along 630 

the shoreline, especially in the central-southern sector of the city, where high spectral 631 

accelerations are obtained in the short to intermediate range of periods (0.4-0.7 s), 632 

corresponding to the fundamental vibration mode of the most common building types. In 633 

these zones of the city ground motions are amplified primarily owing to local site conditions 634 

and, secondarily, to directionality effects coming from the extended source. It has been 635 

proved that a satisfactory comparison with the post 1978 earthquake damage observations can 636 

be achieved using 3D physics-based numerical modeling, especially in reproducing the extent 637 

of heavily damaged buildings, and that such a fit cannot be achieved by standard empirical 638 

approaches.  639 

This study demonstrates the advantages of using a non-ergodic approach for ground motion 640 

prediction based on 3D physics-based numerical simulations, rather than standard empirical 641 

approaches, in seismic risk assessments, in relation to different aspects, namely, (i) the 642 

capability to reproduce realistically the spatial correlation structure of ground motions, which 643 

is of paramount importance for damage evaluations in large urban environments; (ii) the 644 
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detailed prediction of ground shaking in the near-source region of large earthquakes and in 645 

complex geologic conditions with peculiar amplification patterns; (iii) the reliable assessment 646 

of damage distribution, as compared with observations during real earthquakes.  647 

Although the seismic risk estimates presented in this work are limited to a single case study 648 

and a single scenario within a deterministic framework, extension to further case studies can 649 

be easily accomplished, provided that a detailed knowledge regarding both the geologic 650 

context as well as the portfolio of assets is available to calibrate with sufficient accuracy a 3D 651 

model. Nowadays, 3D physics-based numerical modeling has become mature enough to be 652 

incorporated also into a probabilistic framework (see e.g. Graves et al. 2011; Villani et al. 653 

2014; Stupazzini et al. 2017) and future research will certainly move towards its integration 654 

into advanced probabilistic seismic risk assessment tools.  655 
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