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We discuss the following variant of the standard minimum error state discrimination problem: Alice picks
the state she sends to Bob among one of several disjoint state ensembles, and she communicates him the chosen
ensemble only at a later time. Two different scenarios then arise: either Bob is allowed to arrange his measurement
setup after Alice has announced him the chosen ensemble, or he is forced to perform the measurement before
Alice’s announcement. In the latter case, he can only postprocess his measurement outcome when Alice’s extra
information becomes available. We compare the optimal guessing probabilities in the two scenarios, and we prove
that they are the same if and only if there exist compatible (i.e., jointly measurable) optimal measurements for all
of Alice’s state ensembles. When this is the case, postprocessing any of the corresponding joint measurements
is Bob’s optimal strategy in the postmeasurement information scenario. Furthermore, we establish a connection
between discrimination with postmeasurement information and the standard state discrimination. By means of this
connection and exploiting the presence of symmetries, we are able to compute the various guessing probabilities
in many concrete examples.
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I. INTRODUCTION

Quantum state discrimination is one of the fundamental
tasks in quantum information processing. In the setting of
state discrimination, a quantum system is prepared in one
out of a finite collection of possible states, chosen with a
certain a priori probability. The aim is then to identify the
correct state by making a single measurement, assuming that
the possible states and their a priori probabilities are known
before the measurement is chosen. This can be also seen as a
task of retrieving classical information that has been encoded in
quantum states. A collection of orthogonal pure states, or more
generally mixed states with disjoint supports, can be perfectly
discriminated, while in other cases one has to accept either
error or inconclusive result. These alternatives lead to two main
branches of discrimination problems, called minimum error
discrimination and unambiguous discrimination, respectively,
that have both been investigated extensively; thorough reviews
are provided in [1–3].

Several types of variants of the state discrimination problem
have been introduced and studied in the literature. A specific
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variant of the minimum error state discrimination problem,
called state discrimination with postmeasurement information,
was elaborated in [4]. In this task, Alice encodes classical
information in quantum states and Bob then performs a
measurement to guess the correct state, but Alice announces
some partial information on her encoding before Bob must
make his guess. This task was further studied in [5], and it was
suggested that the usefulness of postmeasurement information
distinguishes the quantum from the classical world.

In this work we reveal a link between the task of state
discrimination with postmeasurement information and the
incompatibility of quantum measurements. We will first for-
malize discrimination tasks with premeasurement and post-
measurement information in a consistent way, allowing us to
compare the optimal guessing probabilities in these two cases.
(For clarification, we point out that our formulation slightly
differs from the one presented in [4] and [5]. The formulations
are compared in Sec. II C.) We then show that premeasurement
information is strictly more favorable than postmeasurement
information if and only if the optimal measurements for
the subensembles are incompatible. Since incompatibility is
a genuine nonclassical feature [6–8], this result uncovers a
peculiarity that differentiates quantum from classical measure-
ments.

As a technical method to calculate the optimal guess-
ing probabilities and optimal measurements, we show that
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FIG. 1. In minimum error state discrimination, Alice prepares a
quantum state �x from a given state ensemble which is known also to
Bob. Bob aims to determine the label x by performing a measurement
which maximizes his guessing probability. In the depicted event, Bob
is making an incorrect guess.

it is always possible to transform the problem of state
discrimination with postmeasurement information into a usual
minimum error state discrimination problem; more precisely,
any state discrimination problem with postmeasurement infor-
mation is associated with standard state discrimination for a
specific auxiliary state ensemble, in such a way that the two
discrimination tasks have the same optimal measurements, and
the respective success probabilities are related by a simple
equation. In this way, the known results for the usual minimum
error discrimination can be used for state discrimination with
postmeasurement information.

Finally, we discuss the connection between state discrimina-
tion with postmeasurement information and approximate joint
measurements in the cases when the optimal measurements for
the subensemble discrimination problems are incompatible.
We provide several examples, showing that the approximate
joint measurement is sometimes optimal, although not always.
In particular, we present an analytic solution for the problem of
state discrimination with postmeasurement information of two
Fourier conjugate mutually unbiased bases in arbitrary finite
dimension.

Notations. We deal with quantum systems associated with
a finite-dimensional Hilbert space H. We denote by L(H) the
set of all linear operators on H, and 1 ∈ L(H) is the identity
operator of H. The states of the system are all positive trace
one operators in L(H). A measurement with outcomes in a
finite set X is any positive-operator-valued measure based on
X, i.e., any mapping M : X → L(H) such that M(x) � 0 for
all x ∈ X and

∑
x∈X M(x) = 1.

II. STATE DISCRIMINATION WITH
POSTMEASUREMENT INFORMATION

A. General scenario

A state ensemble E is a sequence of states (�x)x∈X, labeled
with a finite set X, together with an assignment of some prior
probability p(x) to each label x ∈ X. It is convenient to regard
E as a map X → L(H), given by E(x) = p(x)�x . We say that a
quantum system is prepared or chosen from the state ensemble
E when a label x ∈ X is picked according to the probability
distribution p, and the system is then set in the corresponding
state �x .

In the standard minimum error state discrimination scenario
(see Fig. 1), there is a state ensemble E that is known to
two parties, Alice and Bob. Alice prepares a quantum system
from E and the task of Bob is to guess the correct state. For
a measurement M having the outcome set X, the guessing

(a)

(b)

FIG. 2. Alice encodes a label x into a quantum state �x on which
Bob performs a measurement. In the postmeasurement information
scenario (a), Alice announces the subset from which she picked x after
Bob has performed a measurement. After Alice’s announcement, Bob
can postprocesses his measurement outcome accordingly, and finally
he gives his guess. In the premeasurement information scenario (b),
Alice announces the correct subset already before Bob arranges his
measurement.

probability Pguess(E ; M) is given as

Pguess(E ; M) =
∑

x

tr[E(x)M(x)] =
∑

x

p(x)tr[�xM(x)].

The aim is to maximize the guessing probability, and we denote

Pguess(E) := max
M

Pguess(E ; M), (1)

where the optimization is over all measurements with outcome
set X. This is called the optimal guessing probability for E ,
and the minimum error discrimination problem is to find an
optimizing measurement for a given state ensemble E . The
problem was introduced in [9–11]. The existence of optimal
measurements, i.e., the fact that in (1) the maximum is actually
attained, follows by a compactness argument ([9, Proposition
4.1], [10, Lemma 1]).

In the state discrimination with postmeasurement informa-
tion, the standard scenario is modified by adding a middle step
to it. The starting point, known both to Alice and Bob, is a
state ensemble E and a partition P = (X�)�∈I of the label set
X into nonempty disjoint subsets. For each index � ∈ I , the
probability of picking a label in X� is

q(�) :=
∑
x∈X�

p(x). (2)

We further assume that q(�) �= 0 to avoid trivial cases. Then,
conditioning the state ensemble E to the occurrence of a label
in X�, we obtain a new state ensemble E�, which we call a
subensemble of E . The label set of E� is X�, and

E�(x) := 1

q(�)
E(x), x ∈ X�. (3)

The steps in the scenario are the following [see Fig. 2(a)]:
(i) Alice picks a label x from the set X, according to the

prior probability distribution p. She then prepares a state �x

and delivers this state to Bob.
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(ii) Bob performs a measurement M, hence obtaining an
outcome y ∈ Y with probability tr[�xM(y)]. The outcome set
Y of M is freely chosen by Bob.

(iii) After the measurement is performed, Alice tells Bob
the index � of the correct subset X� where the label was picked
from.

(iv) Based on the measurement outcome y and on the
announced index �, Bob must guess x. This means that Bob
applies a function f� : Y → X� to the obtained measurement
outcome y and his guess is f�(y).

Bob’s guessing strategy is therefore determined by a
measurement M and postprocessing functions (f�)�∈I . We
emphasize that the same measurement M is used at every round,
while the choice of the implemented relabeling function is
determined by the announced label �.

We denote by P
post
guess(E ; P; M,(f�)�∈I ) the guessing prob-

ability in the previously described scenario, and further, we
denote by P

post
guess(E ; P) the maximum of the guessing proba-

bility when M and (f�)�∈I vary over all suitable measurements
and relabeling functions, respectively. Remarkably, optimal
measurements and relabeling functions for the discrimination
problem with postmeasurement information actually exist, as
we will see in Sec. IV A. In the following we show that
P

post
guess(E ; P) is bounded below and above in a natural way

by the guessing probabilities corresponding to scenarios with
no information at all and with the partial information given
before Bob has to choose his measurement.

To elaborate the expression of P
post
guess(E ; P; M,(f�)�∈I ), we

denote by f�∗M the postprocessed measurement that Bob has
effectively performed when he has applied f� after M, i.e., the
measurement that has outcomes X� and is defined as

f�∗M(x) :=
∑

y∈f −1
� (x)

M(y), x ∈ X�, (4)

where f −1
� (x) denotes the preimage of x, i.e., f −1

� (x) = {y :
f�(y) = x}. We can then write the guessing probability as

P post
guess(E ; P; M,(f�)�∈I ) =

∑
�∈I

q(�)Pguess(E�; f�∗M). (5)

The use of postmeasurement information cannot decrease
the guessing probability, that is,

Pguess(E) � P post
guess(E ; P). (6)

Indeed, one possible strategy for Bob is to perform a mea-
surement M with outcomes in X that optimally discriminates
E . He thus obtains the correct outcome with the probability
Pguess(E), but he does not announce his guess yet. Then, after
hearing the index � of the correct subset X�, Bob does the
following. If his obtained measurement outcome x belongs
to X�, then Bob’s guess is x. But if x is not in X�, then
Bob infers that he got an incorrect result and chooses an
arbitrary default label x� ∈ X� as his guess. This means that the
restrictions f�|X�

of Bob’s relabeling functions are the identity
maps on X�, and f�(x) = x� whenever x /∈ X�. In this way,
the postmeasurement information allows Bob to sometimes
neglect incorrect results, hence his guessing probability cannot
be lower than Pguess(E). Formally, f�∗M(x) � M(x) for all

x ∈ X�, implying

Pguess(E�; f�∗M) � 1

q(�)

∑
x∈X�

tr[E(x)M(x)]. (7)

Using this inequality in (5), we get (6).
From (5) we also conclude a simple upper bound,

P post
guess(E ; P) �

∑
�∈I

q(�)Pguess(E�). (8)

The right-hand side of (8) is the optimal success probability
if Alice would tell the used state ensemble to Bob before
Bob performs a measurement, in which case Bob can choose
the optimal measurement to discriminate the correct state
ensemble [see Fig. 2(b)]. We will thereby denote

P prior
guess(E ; P) :=

∑
�∈I

q(�)Pguess(E�). (9)

In summary, the optimal guessing probability with post-
measurement information is bounded in the interval

Pguess(E) � P post
guess(E ; P) � P prior

guess(E ; P), (10)

whose left and right extremes correspond to situations where
Alice gives no information at all and Alice gives the partial
information before Bob’s choice of measurement, respectively.

B. Limiting to the standard form measurements

For simplicity, in the following we assume the index set
I = Im := {1, . . . ,m}.

To maximize the guessing probability in the previously
described postmeasurement information scenario, Bob must
find the optimal measurement M and relabeling functions
(f�)�∈Im

. The outcome set of M is, in principle, arbitrary
and the role of relabeling functions is to adjust the obtained
measurement outcome to give a meaningful guess. However,
as we will next show, there is a fixed outcome set, determined
by the separation of X into subsets (X�)�∈Im

, such that we can
always restrict the optimization to measurements having that
specific outcome set. This canonical choice of the outcome
set is nothing else than the Cartesian product X1 × · · · × Xm.
Then, at each measurement round Bob obtains a measurement
outcome (x1, . . . ,xm), and when Alice tells him the correct
index �, Bob just picks the outcome x� accordingly. The
respective relabeling function f� is hence just the projection
π� from X1 × · · · × Xm into X�.

When Bob’s measurement has the Cartesian product
X1 × · · · × Xm as its outcome set, we will use the shorthand
notation

P post
guess(E ; P; C) := P post

guess(E ; P; C,(π�)�∈Im
).

We thus have

P post
guess(E ; P; C) =

m∑
�=1

q(�)Pguess(E�; π�∗C)

(11)

=
m∑

�=1

q(�)
∑

x�∈X�

tr[E�(x�)π�∗C(x�)],
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FIG. 3. In the approach described in [5], Alice encodes a classical
string x into a quantum state �x,b, where b specifies one of the possible
encodings Alice can choose from. Bob must determine the string x

irrespectively of the encoding chosen by Alice. Alice announces the
encoding after Bob has performed his measurement, but before he
makes his guess.

where, according to (4),

π�∗C(x) =
∑

x1 ∈ X1, . . . ,xm ∈ Xm

such that x� = x

C(x1, . . . ,xm). (12)

The next result justifies the choice of the Cartesian product
as the outcome set.

Proposition 1. For any choice of measurement M and re-
labeling functions f1, . . . ,fm, there is a measurement C with
product outcome set X1 × · · · × Xm such that

P post
guess(E ; P; M,(f�)�∈Im

) = P post
guess(E ; P; C).

Proof. We define C as

C(x1, . . . ,xm) =
∑

y∈f −1
1 (x1)∩···∩f −1

m (xm)

M(y).

Then, by (12),

π�∗C(x) =
∑

y∈f −1
� (x)

M(y) = f�∗M(x),

hence, π�∗C = f�∗M. �

C. Remarks on other formulations of the problem

The problem of state discrimination with postmeasurement
information was first considered by Ballester et al. in [4].
According to their approach, before Alice announces the
subensemble the state was picked from, Bob is allowed to store
both classical and quantum information; his classical resources
are unlimited (an unbounded amount of classical memory),
and on the quantum side he can use a string of qubits with
prescribed length. Later, Gopal and Wehner (GW) restricted
to the case where only classical information is available for
Bob [5]; for this reason, their approach more directly compares
with ours.

In GW’s problem, Alice encodes a string x of classical
information in one of m possible quantum states (�x,b)b∈B, with
B = {1, . . . ,m}. The aim of Bob is to determine the string x,
irrespectively of the encoding chosen by Alice (see Fig. 3). The
set X from which x is picked is the same for all encodings b ∈
B, while the probability of selecting a specific encoding b ∈ B
may depend on the chosen x. Thus, if p(x,b) is the joint prob-
ability of picking the string x and using the encoding b, Bob’s
received state is the mixture

∑
x,b p(x,b)�x,b. On this state,

Bob performs a measurement C with outcomes in the Cartesian
productXm, thus obtaining the result (x1, . . . ,xm). Then, Alice
declares him the selected encoding b, and, according to the
announced b, Bob guesses the value xb for the string x. Clearly,
also in this scenario, Bob’s maximum success probability with
postmeasurement information pI

succ cannot be smaller than the
analogous probability without postmeasurement information
psucc. When pI

succ ≡ psucc, postmeasurement information is
useless for the encoding at hand; in this case, if a measurement
M with outcomes in X is optimal for the problem without
postmeasurement information, then the diagonal measurement

C(x1, . . . ,xm) =
{

M(x0) if x1 = x2 = . . . = xm ≡ x0

0 otherwise

is optimal for the problem with postmeasurement information.
Diagonal measurements correspond to the situation in which
Bob guesses the same string x0 independently of Alice’s
announced encoding, i.e., he completely ignores postmeasure-
ment information.

To cast GW’s approach into our framework, we choose
as our label set X the disjoint union of m copies of X ,
i.e., X = {(x,b) : x ∈ X , b ∈ B}, and we consider the state
ensemble E(x,b) = p(x,b)�x,b. For all b ∈ B, we denote Xb =
{(x,b) : x ∈ X }, so that the sets (Xb)b∈B constitute a partition
P of X. Then, Bob’s task of identifying the string x with
postmeasurement information b in GW’s scenario is equivalent
to the corresponding problem of detecting the label (x,b)
within our approach; in particular, pI

succ = P
post
guess(E ; P). Note

that GW actually do not consider Bob’s possibility to arbitrarily
enlarge his classical memory (i.e., his outcome set Y ), as they
directly set Y = Xm; as we have proved in Proposition 1, this
assumption is not restrictive.

However, it is important to stress that the success probabili-
ties without postmeasurement information can differ in the two
approaches; indeed, psucc � Pguess(E), with strict inequality
in many concrete examples. This is due to the fact that in
GW’s setting Bob is required to guess only the string x, while
with our definition of Pguess(E) we require Bob to guess the
whole label (x,b), i.e., both the string x and the encoding
b selected by Alice. For this reason, there are situations
in which postmeasurement information is useless for GW’s
approach, although we have P

post
guess(E ; P) > Pguess(E). For

further discussion on this point, we defer to the examples in
Sec. V.

III. POSTMEASUREMENT INFORMATION AND
INCOMPATIBILITY OF MEASUREMENTS

A. Compatible measurements

As we see from (11), the guessing probability
P

post
guess(E ; P; C) depends only on the relabeled measurements

π1∗C, . . . ,πm∗C, not on other details of C. The measurement
π�∗C, given by (12), is called the �th marginal of C. This
way of writing reveals immediately the connection with
the compatibility of measurements. Namely, we recall that
measurements N1, . . . ,Nm are called compatible (also jointly
measurable) if there exists a measurement M on their Cartesian
product outcome set such that each measurement N� is the
�th marginal of M. We remark that Proposition 1 can also be

012126-4



STATE DISCRIMINATION WITH POSTMEASUREMENT … PHYSICAL REVIEW A 98, 012126 (2018)

extracted from the fact that the functional coexistence relation
is equivalent to the compatibility relation [12]. We further note
that, by applying the equivalent definition of compatibility in
terms of the postprocessing preorder [6,13], we conclude that
allowing nondeterministic postprocessing functions does not
increase the optimal guessing probability P

post
guess(E ; P).

Combining (11), (12), and Proposition 1 allows us to
write the optimal guessing probability with postmeasurement
information as follows:

P post
guess(E ; P)

= max

{
m∑

�=1

q(�)Pguess(E�; N�) : N1, . . . ,Nm compatible

}
.

(13)

We now see that the difference between the guessing proba-
bilities in premeasurement and postmeasurement information
scenarios is that in the first one the optimization over measure-
ments N1, . . . ,Nm has no restrictions, while in the second one
the measurements N1, . . . ,Nm must be compatible. This leads
to the following conclusion.

Theorem 1. There exist compatible optimal measurements
for the discrimination problems of state ensembles E1, . . . ,Em

if and only if the premeasurement and postmeasurement
information discrimination problems have the same optimal
guessing probability, i.e.,

P post
guess(E ; P) = P prior

guess(E ; P). (14)

Proof. It follows from the definition of P
prior
guess(E ; P)

and (13) that, if there exists compatible optimal measure-
ments N1, . . . ,Nm, then (14) holds. Let us then assume
that (14) holds. This means that there exist compatible mea-
surements N1, . . . ,Nm such that

∑m
�=1 q(�)Pguess(E�; N�) =∑m

�=1 q(�)Pguess(E�). Since for any � we have Pguess(E�; N�) �
Pguess(E�), the previous equality and q(�) �= 0 for all � imply
Pguess(E�; N�) = Pguess(E�). Therefore, each N� is an optimal
measurement for the discrimination problem of E�. �

We recall that a minimum error discrimination problem may
not have a unique optimal measurement. For the statement of
Theorem 1 it is enough that at least one collection of optimal
measurements is made up of compatible measurements.

B. Incompatible measurements

We now turn to the case when optimal measurements
N1, . . . ,Nm for the standard minimum error discrimination
for the state ensembles E1, . . . ,Em are incompatible. From
Theorem 1 we conclude that in this case P

post
guess(E ; P) is strictly

smaller than P
prior
guess(E ; P). However, we can still ask if the

optimal solutions for the discrimination of subensembles E�

give some hint on the optimal solution for the postmeasurement
information discrimination.

A heuristic approach to the problem of state discrimination
with postmeasurement information relies on (13) and goes as
follows. We form a noisy version Ñ� of each optimal mea-
surement N� related to E�, and we add enough noise to make
the measurements Ñ1, . . . ,Ñm compatible. Noisy versions can
be, in principle, any measurements that are compatible but ap-
proximate the optimal measurements N1, . . . ,Nm reasonably

well. Bob then performs a joint measurement of Ñ1, . . . ,Ñm

and from here on out, he follows the same procedure as in
the case of compatible measurements. One would expect the
guessing probability to be relatively good if Ñ1, . . . ,Ñm are
good approximations of N1, . . . ,Nm.

One type of noisy version of a measurement N� is given by
the mixture

Ñ�(x) = t�N�(x) + (1 − t�)ν�(x)1, (15)

where ν� is a probability distribution and t� ∈ [0,1] is a mixing
parameter. We then have

Pguess(E�; Ñ�) � t�Pguess(E�). (16)

One would aim to choose each mixing parameter t� as close
to 1 as possible to make Ñ� a good approximation of N�, but
the requirement that Ñ1, . . . ,Ñm must be compatible limits the
region of the allowed tuples (t1, . . . ,tm). The set of all tuples
(t1, . . . ,tm) that make the mixtures (15) compatible for some
choices of ν1, . . . ,νm is called the joint measurability region of
N1, . . . ,Nm [14], and we denote it as J (N1, . . . ,Nm). Further,
the greatest number t such that (t, . . . ,t) ∈ J (N1, . . . ,Nm) is
called the joint measurability degree of N1, . . . ,Nm [15], and
we denote it as j(N1, . . . ,Nm).

The choice of the most favorable tuple (t1, . . . ,tm) ∈
J (N1, . . . ,Nm) for the discrimination with postmeasurement
information depends on the probability distribution q and the
optimal guessing probabilities Pguess(E�). Starting from (13)
and using (16), we obtain a lower bound

P post
guess(E ; P)

� max

{
m∑

�=1

t�q(�)Pguess(E�) : (t1, . . . ,tm) ∈ J (N1, . . . ,Nm)

}

� j(N1, . . . ,Nm) ·
m∑

�=1

q(�)Pguess(E�)

= j(N1, . . . ,Nm) · P prior
guess(E�; P).

The joint measurability degree of a set of observables is 1 if and
only if the observables are compatible, therefore the obtained
inequality can be taken as a quantitative addition to Theorem 1.

To derive another related inequality, we consider noisy
versions of the form

Ñ�(x) = t�N�(x) + (1 − t�)
1

n�

1, (17)

where n� is the number of elements of X�. Compared
to the more general form (15), the added noise is here
given by a uniform probability distribution. We denote
by Ju(N1, . . . ,Nm) and ju(N1, . . . ,Nm) the analogous ob-
jects as J (N1, . . . ,Nm) and j(N1, . . . ,Nm), but where all
v�’s are given by uniform probability distributions. Clearly,
ju(N1, . . . ,Nm) � j(N1, . . . ,Nm), but the benefit for the current
task is that now we can calculate the exact relation between
Pguess(E�; Ñ�) and Pguess(E�). Namely, the bound (16) is re-
placed by

Pguess(E�; Ñ�) = t�Pguess(E�) + (1 − t�)
1

n�

, (18)
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FIG. 4. Approximate cloning can be used to obtain lower bounds
for the postmeasurement information guessing probability. Alice
sends the state �x from the subsensemble E� to Bob. He then
makes an approximate cloning of �x into as many copies as the
number of subensembles and, on each approximate copy, he performs
the measurement that optimally discriminates the corresponding
subensemble. Finally, after Alice announces the index �, Bob chooses
his guess accordingly.

and the additional second term may improve the earlier bounds.
For example, in the special case when Pguess(E�) = 1 and
n� ≡ n for each � = 1, . . . ,m, we get

P post
guess(E ; P) � 1

n
+ n − 1

n
ju(N1, . . . ,Nm). (19)

Similar lower bounds can be calculated in other cases.

C. Approximate cloning strategy

An approximate cloning device is, generally speaking, a
physically realizable map that makes several approximate
copies from an unknown quantum state. One such device is the
Keyl-Werner cloning device [16,17], which takes an unknown
state � as input and outputs m approximate copies �̃ of the
form

�̃ = cm,d � + (1 − cm,d )
1

d
1, cm,d = m + d

m(1 + d)
.

This device is known to be optimal if the quality of single
clones is quantified as their fidelity with respect to the original
state.

In the current scenario of state discrimination with post-
measurement information, we can use an approximate cloning
device in the following way (see Fig. 4). Bob, after receiving
a quantum system from Alice, approximatively copies the
unknown state into m systems. For each copy, Bob performs the
measurement N� that optimally discriminates the subensemble
E�. Then, after Alice announces the index � of the correct
subset X� where the label was from, Bob chooses his guess
accordingly.

This cloning strategy is rarely optimal (see examples in
Sec. V), but it gives a nontrivial lower bound for the guessing
probability P

post
guess(E ; P). For instance, if the prior probability

distribution p is uniform, the cloning strategy leads to the lower
bound

P post
guess(E ; P) � cm,d P prior

guess(E ; P) + (1 − cm,d )
m

N
, (20)

where m is the number of blocks in the partition and N =
n1 + · · · + nm is the total size of the index set.

We can also think about approximate cloning in the Heisen-
berg picture; looking in that way the Keyl-Werner cloning

device transforms each measurement N� into

Ñ�(x) = cm,dN�(x) + (1 − cm,d )tr[N�(x)]
1

d
1. (21)

From this point of view, the approximate cloning strategy
is just a particular instance of the noisy joint measurement
strategy described in Sec. III B; the lower bound (20) then
follows just by inserting (21) into the right-hand side of (13).
The bound (20) is useful as it is universal, in the sense that it
does not depend on any details of the optimal measurements
N1, . . . ,Nm.

IV. METHODS TO CALCULATE THE OPTIMAL
GUESSING PROBABILITY

A. Reduction to usual state discrimination problem

It was noted in [5] that the problem of state discrimination
with postmeasurement information can be related to a suitable
standard state discrimination problem. Here we provide a
slightly different viewpoint on this connection.

As before, we consider a state ensemble E with label set X,
and a partition P = (X�)�∈Im

of X into m nonempty disjoint
subsets. As shown in Sec. II B, in order to maximize the
postinformation guessing probability P

post
guess(E ; P; M,(f�)�∈Im

)
over all measurements M and relabeling functions f1, . . . ,fm,
it is enough to consider all measurements C with the Cartesian
product outcome space and use the fixed postprocessings
π1, . . . ,πm. It turns out that, up to a constant factor, the guess-
ing probability P

post
guess(E ; P; C) is the same as the guessing

probability for a certain specific state ensemble in the standard
state discrimination scenario using the same measurement C.
To explain the details of this claim, we define an auxiliary state
ensemble F having the Cartesian product X1 × · · · × Xm as
its label set, and given by

F(x1, . . . ,xm) = 1

�

m∑
�=1

E(x�) = 1

�

m∑
�=1

q(�)E�(x�), (22)

where the probability q and the state ensembles E� are defined
in (2) and (3), and the numerical factor � is

� ≡ �(q; n1, . . . ,nm) = n1 · · · nm

m∑
�=1

q(�)

n�

. (23)

(We recall that n� denotes the number of labels in X�.)
The state ensemble F has n1 · · · nm labels and its states are
convex combinations of states from different subensembles
E�. Starting from (11), a direct calculation gives

P post
guess(E ; P; C) =

m∑
�=1

q(�)
∑

x�∈X�

tr[E�(x�)π�∗C(x�)]

=
m∑

�=1

q(�)
∑

x1∈X1,...,xm∈Xm

tr[E�(x�)C(x1, . . . ,xm)]

=
∑

x1∈X1,...,xm∈Xm

tr

[
m∑

�=1

q(�)E�(x�)C(x1, . . . ,xm)

]
= �Pguess(F ; C).
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The factor � is required as the state ensemble F must be
normalized, i.e., ∑

x1∈X1,...,xm∈Xm

tr[F(x1, . . . ,xm)] = 1. (24)

As mentioned in Sec. II A, it is known that the standard dis-
crimination guessing probability Pguess(F ; C) always attains
the maximum. From the previous connection we can conclude
that the same holds for the postmeasurement information
problem.

The above discussion is summarized in the following result.
Theorem 2. The postmeasurement information guessing

probability P
post
guess(E ; P; C) attains its maximum value when

C is the optimal measurement for the standard discrimination
problem of the state ensemble F in (22). The optimal guessing
probabilities are related via the equation

P post
guess(E ; P) = �(q; n1, . . . ,nm)Pguess(F).

As an illustration, suppose X has 2n elements and it is
partitioned into X1 and X2, both having n elements, and that
the prior probability p is the uniform distribution on X. Then

F(x1,x2) = 1

n2

1

2
(�x1 + �x2 ).

We thus see that the state ensemble F contains all possible
equal mixtures of states from E1 and E2.

B. Optimal guessing probability in the usual state
discrimination problem

We have just seen that it is always possible to transform
the problem of state discrimination with postmeasurement
information to a usual minimum error state discrimination
problem. For this reason, in this section we consider a class of
cases where for a single state ensemble E one can analytically
calculate the optimal guessing probability Pguess(E) as well as
the optimal measurements. This covers the cases that we will
present as examples in Secs. V and VI.

The main result is the following observation.
Proposition 2. Suppose E is a state ensemble with label set

X. For all x ∈ X, denote by λ(x) the largest eigenvalue of E(x),
and by �(x) the orthogonal projection onto the λ(x) eigenspace
of E(x). Define

λE = max
x∈X

λ(x), XE = {x ∈ X : λ(x) = λE }.

Then, if there exists μ ∈ R such that∑
x∈XE

�(x) = μ1, (25)

we have the following consequences:
(a) μ = 1

d

∑
x∈XE

rank �(x);
(b) Pguess(E) = dλE ;
(c) a measurement M0 attaining the maximum guessing

probability Pguess(E) is

M0(x) =
{
μ−1�(x) if x ∈ XE
0 if x /∈ XE ;

(26)

(d) a measurement M attains the maximum guessing prob-
ability Pguess(E) if and only if

(i) M(x) � �(x) for all x ∈ XE ;
(ii) M(x) = 0 for all x /∈ XE .

In the following we provide a simple proof of Proposition 2,
relying on Lemma 1 given after that. We remark that an
alternative longer proof can also be given by making use of the
optimality conditions [10, Eq. (III.29)], [18, Theorem II.2.2],
which follow from a semidefinite programming argument (see
also [19] for a more recent account of these results).

Proof. We assume that (25) holds for some μ ∈ R.
By taking the trace of both sides of (25), we get μ =
1
d

∑
x∈XE

rank �(x). This proves (a).
For any measurement M on X, we have

Pguess(E ; M) =
∑
x∈X

tr[E(x)M(x)] �
∑
x∈X

λ(x)tr[M(x)]

� λE
∑
x∈X

tr[M(x)] = λE tr[1] = dλE .

The first inequality follows from Lemma 1 just below, which
also implies that the equality is attained if and only if M(x) �
�(x) for all x ∈ X. The second inequality is trivial, and it
becomes an equality if and only if M(x) = 0 for all x /∈ XE . In
summary, Pguess(E ; M) � dλE , with equality if and only if the
measurement M satisfies conditions (i) and (ii) of (d).

Since �(x) � μ1 for any x ∈ XE by (25), we must have
μ � 1. Hence, M0(x) � �(x) for all x ∈ XE . Moreover,
M0(x) = 0 for all x /∈ XE by the definition of M0. By the
discussion in the last paragraph, it follows that M0 is optimal,
and Pguess(E) = Pguess(E ; M0) = dλE . This proves (b) and (c).
Since any optimal measurement M must then be such that
Pguess(E ; M) = dλE , also (d) follows. �

Lemma 1 (for Proposition 2). Let A,B ∈ L(H) with A �
0 and 0 � B � 1. Let λ be the largest eigenvalue of A and �

the associated eigenprojection. Then,

tr[AB] � λ tr[B],

and the equality is attained if and only if B � �.
Proof. Since λ1 − A � 0, we have λ tr[B] − tr[AB] =

tr[(λ1 − A)B] � 0, where the inequality follows from [10,
Lemma 2]. By the same result, the equality is attained if and
only if (λ1 − A)B = 0, that is, AB = λB. Note that AB =
λB ⇔ ran B ⊆ ran �. The latter inclusion implies �B =
B = B� and then B = �B� � �1� = �. Conversely, if
B � �, then ker � ⊆ ker B, so that ran B ⊆ ran �. In conclu-
sion, AB = λB if and only if B � �, and this completes the
proof. �

Corollary 1. With the notations of Proposition 2, sup-
pose (25) holds for some μ ∈ R and rank �(x) = 1 for all
x ∈ XE . Then, the following facts are equivalent:

(i) The operators {�(x) : x ∈ XE } are linearly independent.
(ii) The measurement M0 given in (26) is the unique mea-

surement giving the maximum guessing probability Pguess(E).
Proof. Since �(x) is a rank-1 orthogonal projection, any

positive operator A satisfying A � �(x) is a scalar multiple of
�(x). Therefore, by (d) of Proposition 2, a measurement attains
the maximum guessing probability Pguess(E) if and only if it
has the form

Mα(x) =
{
α(x)�(x) if x ∈ XE
0 if x /∈ XE
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for some function α : XE → [0,1]. Since

1 =
∑
x∈X

Mα(x) =
∑
x∈XE

α(x)�(x)

and

1 =
∑
x∈X

M0(x) =
∑
x∈XE

μ−1�(x),

linear independence of the operators {�(x) : x ∈ XE } yields
α(x) = μ−1 for all x ∈ XE , hence Mα = M0. Conversely, if the
operators {�(x) : x ∈ XE } are not linearly independent, then
μ > 1, as otherwise they would be an orthogonal resolution of
the identity, which is a contradiction. Moreover, there exists
some nonzero function β : XE → C such that

0 =
∑
x∈XE

β(x)�(x) =
∑
x∈XE

β(x)�(x).

By possibly replacing β with either β + β or i(β − β), we
can assume that β : XE → R. If ε ∈ R \ {0} is such that |ε|
is small enough, then α(x) = μ−1 + εβ(x) ∈ [0,1] for all x ∈
XE ; hence Mα is an optimal measurement with Mα �= M0. �

We remark that if the rank-1 condition in the statement of
Corollary 1 is dropped, then the equivalence of items (i) and
(ii) is no longer true; a simple example demonstrating this fact
is provided in Appendix A.

Corollary 2. Suppose P = (X�)�∈I is a partition of X into
nonempty disjoint subsets, and define q and E� as in (2)
and (3). If each state ensemble E� satisfies the hypothesis of
Proposition 2 for all � ∈ I , then also E does it, and

Pguess(E) = max
�∈I

q(�)Pguess(E�).

Proof. Using the notations of Proposition 2 for the ensem-
ble E , and denoting by λ�(x) and ��(x) the largest eigenvalue
of E�(x) and the corresponding eigenprojection, we have

λ(x) = q(�)λ�(x) and �(x) = ��(x) for all x ∈ X�.

Setting as usual

λE�
= max

x∈X�

λ�(x), XE�
= {x ∈ X� : λ�(x) = λE�

},

the hypothesis is that∑
x∈XE�

��(x) = μ�1 for some μ� ∈ R and all � ∈ I .

Then,

λE = max
�∈I

q(�)λE�
,

XE =
⋃
�∈I0

XE�
where I0 = {� ∈ I : q(�)λE�

= λE },
∑
x∈XE

�(x) =
∑
�∈I0

∑
x∈XE�

��(x) =
∑
�∈I0

μ�1.

Therefore, the state ensemble E satisfies condition (25). In
paticular, by (b) of Proposition 2,

Pguess(E) = dλE = d max
�∈I

q(�)λE�
= max

�∈I
q(�)Pguess(E�).

�

A situation where Proposition 2 is applicable occurs, for
instance, when a state ensemble E is invariant under an
irreducible projective unitary representation of some symmetry
group. More precisely, suppose G is a finite group, and let U

be a projective unitary representation of G on H. We say that
a state ensemble E is U -invariant if U (g)E(X)U (g)∗ = E(X)
for all g ∈ G, where E(X) = {E(x) : x ∈ X}. The definition of
U -invariance for a state ensemble was first given in [9], where
an action of the group G on the index set X was also required
(see also [20]). Further, we call a state ensemble E injective if
it is injective as a function, i.e., E(x) �= E(y) for x �= y.

Proposition 3. Suppose the projective unitary representa-
tion U is irreducible, and let E be an injective and U -invariant
state ensemble. Then, condition (25) holds for some μ ∈ R.

Proof. Since E is injective and U -invariant, we can
define an action of G on the index set X by set-
ting g · x = E−1(U (g)E(x)U (g)∗) for all g ∈ G and x ∈
X. Then E(g · x) = U (g)E(x)U (g)∗. Hence, with the no-
tations of Proposition 2, we have λ(g · x) = λ(x) and
�(g · x) = U (g)�(x)U (g)∗. It follows that g · XE = XE , and
U (g)[

∑
x∈XE

�(x)] = [
∑

x∈XE
�(x)]U (g). The irreducibility

of U then implies
∑

x∈XE
�(x) = μ1 for some μ ∈ R by

Schur’s lemma. �
If E(X) = {U (g)E(x0)U (g)∗ : g ∈ G} for some (hence for

any) x0 ∈ X, and U (g)E(x0)U (g)∗ �= E(x0) for all g ∈ G \ {1},
Propositions 2 and 3 are [9, Theorem 4.2]. Under the additional
constraint tr[E(x)] = tr[E(y)] for all x,y ∈ X, U -invariant
state ensembles are named compound geometrically uniform
state sets in the terminology of [20].

V. QUBIT STATE ENSEMBLES WITH
DIHEDRAL SYMMETRY

In this section we illustrate the previous general results with
three examples of different qubit state ensembles. The first
one (Sec. V B) has been already treated in [5] according to
the approach explained in Sec. II C. We provide the solution
also for that example, since our method further allows one to
establish when the problem has a unique optimal measurement.

A. Notation

The Hilbert space of the system is H = C2. We denote by

σ = (σ1,σ2,σ3) the vector of three Pauli matrices, and


v · 
σ = v1σ1 + v2σ2 + v2σ3

for all 
v ∈ R3. For any nonzero vector 
v, we write v̂ = 
v/‖
v‖.
Further, we let ê1, ê2, and ê3 be the unit vectors along the three
fixed coordinate axes.

All of the three examples to be presented share a common
symmetry group, i.e., the dihedral group D2, consisting of the
identity element 1, together with the three 180◦ rotations α, β,
and γ along ê1, ê2, and ê3, respectively. This group acts on C2

by means of the projective unitary representation

U (1) = 1, U (α) = σ1, U (β) = σ2, U (γ ) = σ3.

The representation U is irreducible as the operators {U (g) :
g ∈ D2} span the whole space L(C2).

We will use the Bloch representation of qubit states; all
states onC2 are parametrized by vectors 
a ∈ R3 with ‖
a‖ � 1,
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the state corresponding to 
a being

�
a = 1
2 (1 + 
a · 
σ ).

For any nonzero vector 
a, the eigenvalues λ+,λ− of �
a and the
corresponding eigenprojections �+,�− are

λ± = 1
2 (1 ± ‖
a‖), �± = 1

2 (1 ± â · 
σ ).

B. Two equally probable qubit eigenbases

In the first example, the total state ensemble consists of four
pure states �±â and �±b̂, where

â = cos(θ/2) ê1 + sin(θ/2)ê2,

b̂ = cos(θ/2) ê1 − sin(θ/2)ê2,

and θ is an angle in the interval (0,π ). The states �±â and �±b̂

are the eigenstates of the operators â · 
σ and b̂ · 
σ , respectively.
The label set is chosen to be X = {+â,−â,+b̂,−b̂}. We
assume that all states are equally likely; thus the state ensemble
E is

E(x̂) = 1
8 (1 + x̂ · 
σ ), x̂ ∈ X.

We will then consider the partition P = (Xa,Xb), with X� =
{+�̂,−�̂}. As usual, the corresponding state subensembles are
denoted by Ea and Eb, and q(�) = 1/2 is the probability that a
label occurs in X�.

Since E�(±�̂) = 1
4 (1 ± �̂ · 
σ ), we see that each state ensem-

ble E� corresponds to preparing one of the two orthogonal
pure states �+�̂, �−�̂ with equal probability. So, the sharp
measurements

Na(±â) = 1
2 (1 ± â · 
σ ), Nb(±b̂) = 1

2 (1 ± b̂ · 
σ ),

perfectly discriminate Ea and Eb, respectively; in particular,
Pguess(Ea) = Pguess(Eb) = 1, hence P

prior
guess(E ; P) = 1. More-

over, Corollary 2 applies, and we conclude that Pguess(E) =
1/2. The value of Pguess(E) can be obtained in various different
ways (see, e.g., [3]). Interestingly, Pguess(E) does not depend
on the angle θ .

To calculate the postinformation guessing probability
P

post
guess(E ; P), we apply Theorem 2 and calculate Pguess(F),

where the auxiliary state ensemble F on Xa × Xb is given as

F(hâ,kb̂) = 1

8

[
1 + 1

2
(hâ + kb̂) · 
σ

]
, h,k ∈ {+,−}

=
{

1
4�h cos(θ/2) ê1 if h = k
1
4�h sin(θ/2) ê2 otherwise,

and � = 2. This state ensemble is clearly injective, and it is
U -invariant as the set {hâ + kb̂ : h,k = ±} ⊂ R3 is invariant
under the action of the dihedral group D2. Hence, Proposition 2
is applicable by virtue of Proposition 3, and it thus leads us to
find the largest eigenvalue of F(hâ,kb̂) and the corresponding
eigenprojection. We obtain

λ(hâ,kb̂) =
⎧⎨⎩

1
8

(
1 +

√
1+cos θ

2

)
if h = k

1
8

(
1 +

√
1−cos θ

2

)
otherwise,

�(hâ,kb̂) =
{

1
2 (1 + hσ1) if h = k
1
2 (1 + hσ2) otherwise,

0 4 2
3
4

0.85

0.9

0.95

1.

FIG. 5. The red solid curve is the optimal guessing probability
P post

guess(E ; P) as a function of the angle θ between â and b̂, while the
blue dashed curve is the lower bound (28) coming from the optimal
joint measurement of uniformly noisy versions of Na and Nb.

and hence

P post
guess(E ; P) = �dλF = 1

2

(
1 +

√
1 + |cos θ |

2

)
. (27)

As one could have expected, the unique minimum is in θ = π/2
and the guessing probabilities are the same for θ1 and θ2 when
θ2 = π − θ1 (see Fig. 5).

As shown in [21], we have j(Na,Nb) = ju(Na,Nb) =
1/

√
1 + | sin θ |. Therefore, the lower bound for P

post
guess(E ; P)

given in (19) is

P post
guess(E ; P) � 1

2

(
1 + 1√

1 + |sin θ |
)

. (28)

We see that the right-hand side agrees with P
post
guess(E ; P) if and

only if θ = π/2 (see Fig. 5). In particular, this shows that the
noisy versions of the form (17) are optimal only in the case
θ = π/2.

In order to find all optimal measurements, we distinguish
the three cases θ ∈ (0,π/2), θ = π/2, and θ ∈ (π/2,π ).

1. Case θ ∈ (0,π/2)

We have (Xa × Xb)F = {(+â,+b̂),(−â,−b̂)}, and the pro-
jections {�(hâ,kb̂) : (hâ,kb̂) ∈ (Xa × Xb)F } are rank-1 lin-
early independent operators. From Corollary 1 we conclude
that the measurement C+, defined as

C+(hâ,kb̂) =
{

1
2 (1 + hσ1) if h = k

0 otherwise

is the unique measurement on Xa × Xb achieving Pguess(F),
and hence also P

post
guess(E ; P). The two marginals π1∗C+ and

π2∗C+ of C+ are such that π1∗C+(±â) = π2∗C+(±b̂), and
Bob therefore is not using the postmeasurement information
to guess the spin value + or −. Bob can, in fact, choose a
measurement M with outcomes {+,−}, M(h) = 1

2 (1 + hσ1),
and when Alice announces that her choice was from subset
X�, Bob’s guess is h�̂, where h is the outcome of M.

In GW’s approach, this is a situation in which postmea-
surement information is useless [5, Sec. III C], as the diagonal
measurement C′

+(h,k) = δh,kC+(hâ,kb̂) is optimal for the
task of discriminating a string in X = {+,−} even if Alice
announces her encoding a or b after the measurement (see
Sec. II C). In spite of this fact,P post

guess(E ; P) is strictly larger than
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Pguess(E). The reason is that with postmeasurement information
Bob gets the correct index � ∈ {a,b} for free, so he can
optimize his measurement to distinguish between one of the
two alternatives ±�̂, instead of four alternatives ±â,±b̂.

2. Case θ ∈ (π/2,π )

Now (Xa × Xb)F = {(+â,−b̂),(−â,+b̂)}; hence, proceed-
ing as in the previous case, we find that the unique optimal
measurement is

C−(hâ,kb̂) =
{

0 if h = k
1
2 (1 + hσ2) otherwise.

In this case, we have π1∗C−(±â) �= π2∗C−(±b̂), therefore
Bob is actually using postmeasurement information (see [5,
Sec. III C]).

3. Case θ = π/2

In this case, (Xa × Xb)F = Xa × Xb, and the projections
{�(hâ,kb̂) : (hâ,kb̂) ∈ (Xa × Xb)F } are not linearly inde-
pendent. However, they are still rank-1, hence, by (d) of
Proposition 2, any measurement maximizing Pguess(F ; C)
is of the form C(hâ,kb̂) = α(h,k)�(hâ,kb̂) for some
function α : {+,−}2 → [0,1]. The normalization condition∑

h,k C(hâ,kb̂) = 1 imposes

α(+,+) = α(−,−) = t,

α(+,−) = α(−,+) = 1 − t

for some t ∈ [0,1]. Therefore, an optimal measurement is any
convex combination of the two measurements C+ and C−
found earlier. The convex combination C0 = 1

2 C+ + 1
2 C− is

the optimal measurement given in (26), which in this case reads

C0(hâ,kb̂) = 1

4

(
1 + h + k

2
σ1 + h − k

2
σ2

)
.

Its marginals are

π1∗C0(hâ) = 1√
2

Na(hâ) +
(

1 − 1√
2

)
1

2
1,

π2∗C0(kb̂) = 1√
2

Nb(kb̂) +
(

1 − 1√
2

)
1

2
1.

These are noisy versions of the optimal measurements Na and
Nb for the maximization problems maxM Pguess(Ea; M) and
maxM Pguess(Eb; M), respectively. In this case, as we already
observed, one implementation of the optimal strategy is hence
to make an approximate joint measurement of Na and Nb.

C. Two qubit state ensembles with dihedral D2n-symmetry

Let us consider a state ensemble E , labeled by the 2n + 2
labels X = {+,−,0,1, . . . ,2n − 1}, and defined as

E(±) = q1

4
(1 ± σ1),

E(k) = q2

4n

(
1 + âk · 
σ )

, k = 0, . . . ,2n − 1,

where

âk = cos (πk/n)ê2 + sin (πk/n)ê3

and q1,q2 > 0, q1 + q2 = 1.
We consider the partition P = (X�)�∈{1,2} of X, with

X1 = {+,−} and X2 = {0,1, . . . ,2n − 1}. The correspond-
ing subensembles are E1(±) = 1

4 (1 ± σ1) and E2(k) =
1

4n
(1 + âk · 
σ ), and the probability q is q(�) = q�.
Each of the two state ensembles E1,E2 is injective and D2-

invariant. By Proposition 3 (or even by direct inspection), it
follows that E1 and E2 satisfy the hypothesis of Proposition 2.
Then, by Corollary 2 we have

Pguess(E) = max{q1Pguess(E1),q2Pguess(E2)}.
The subensemble E1 consists of two orthogonal pure states,
hence it can be perfectly discriminated with the measurement
N1(±) = 1

2 (1 ± σ1). On the other hand, an optimal measure-
ment to discriminate the states in E2 is N2(k) = 1

2n
(1 + âk · 
σ )

by (c) of Proposition 2, and Pguess(E2) = 1/n by (b) of the same
proposition. It follows that

Pguess(E) = max
{
q1,

q2

n

}
=

{
q1 if q1 > 1

n+1
1−q1

n
if q1 � 1

n+1

and

P prior
guess(E ; P) = q1 + q2

n
= (n − 1)q1 + 1

n
.

To calculate P
post
guess(E ; P), we first form the auxiliary state

ensembleF of Theorem 2. Its label set is the Cartesian product
{+,−} × {0,1, . . . ,2n − 1}, it has � = 2(nq1 + q2), and it is
given by

F(h,k) = 1

8n

(
1 + nq1hê1 + q2âk

nq1 + q2
· 
σ

)
.

The state ensemble F is injective and U -invariant. Although
the symmetry group of F can be extended to the order
4n dihedral group D2n ⊃ D2, Proposition 3 yields that D2-
symmetry is already enough to ensure the applicability of
Proposition 2. The largest eigenvalue of F(h,k) and the
corresponding eigenprojection are found to be

λ(h,k) = 1

8n

⎛⎝1 +
√

n2q2
1 + q2

2

nq1 + q2

⎞⎠,

�(h,k) = 1

2

⎛⎝1 + nq1hê1 + q2âk√
n2q2

1 + q2
2

· 
σ
⎞⎠.

It follows that (X1 × X2)F = X1 × X2. The operators
{�(h,k) : (h,k) ∈ (X1 × X2)F } are rank-1 but they are not
linearly independent. Thus, we do not have uniqueness of
optimal measurements. By Theorem 2 and Proposition 2,

P post
guess(E ; P) = �dλF

= 1

2n

(
nq1 + q2 +

√
n2q2

1 + q2
2

)
= 1

2n

[
(n − 1)q1+1+

√
(n2 + 1)q2

1 − 2q1 + 1

]
.
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This maximum is attained by P
post
guess(E ; P; C) if and only if C

is a measurement of the form

C(h,k) = α(h,k)

2

⎛⎝1 + nq1hê1 + q2âk√
n2q2

1 + q2
2

· 
σ
⎞⎠,

where α : X1 × X2 → [0,1] is such that∑
k

α(+,k) =
∑

k

α(−,k) = 1,

∑
k

[α(+,k) + α(−,k)]âk = 0

by the normalization condition for C.
By choosing the constant function α(h,k) = 1

2n
, we recover

the optimal measurement of (26). The marginals of that mea-
surement are the uniformly noisy versions of the measurements
N1(±) = 1

2 (1 ± σ1) and N2(k) = 1
2n

(1 + âk · 
σ ) optimally dis-
criminating the subensembles E1 and E2.

D. Three orthogonal qubit eigenbases

Next we consider a state ensemble E with six elements,
having the index set X = {+ê1,−ê1,+ê2,−ê2,+ê3,−ê3} and
defined as

E(±ê�) = q�

4
(1 ± σ�), � ∈ {1,2,3},

where q1,q2,q3 > 0 and q1 + q2 + q3 = 1. As the partition of
X, we fix P = (X�)�∈{1,2,3} with X� = {+ê�,−ê�}. The corre-
sponding subensembles are E�(±�̂) = 1

4 (1 ± σ�), and q(�) =
q�.

Each subsensemble E� consists of orthogonal pure states
and hence can be discriminated with probability 1, the
optimal measurement being N�(±�̂) = 1

2 (1 ± σ�). We thus

have P
prior
guess(E ; P) = 1, and from Corollary 2 it follows that

Pguess(E) = max{q1,q2,q3}.
To calculate P

post
guess(E ; P), we again form the auxiliary state

ensemble F , which in this case is

F(k1ê1,k2ê2,k3ê3) = 1

16

(
1 +

3∑
�=1

q�k�σ�

)
.

In the above formula, k� ∈ {+,−}; moreover, we have � = 4.
As in the previous cases, the state ensemble F is injective and
U -invariant, and Proposition 2 then applies. We obtain

λ(k1ê1,k2ê2,k3ê3) = 1

16
(1 + ‖
q‖),

�(k1ê1,k2ê2,k3ê3) = 1

2

(
1 + 1

‖
q‖
3∑

�=1

q�k�σ�

)
,

where we set 
q = ∑3
�=1 q�ê�. Therefore,

P post
guess(E ; P) = �dλF = 1

2

(
1 +

√
q2

1 + q2
2 + q2

3

)
.

In the case q1 = q2 = q3 = 1/3, we have P
post
guess(E ; P) =

(1 + 1/
√

3)/2. As explained in Appendix B, j(N1,N2,N3) =
ju(N1,N2,N3) = 1/

√
3. Therefore, the guessing probability

with postmeasurement information equals with the lower

bound given in (19), and we conclude that one way to imple-
ment the optimal measurement is to make a joint measurement
of uniformly noisy versions of N1,N2,N3.

Since (X1 × X2 × X3)F = X1 × X2 × X3 and all opera-
tors �(k1ê1,k2ê2,k3ê3)’s are rank-1, any optimal measurement
is of the form

C(k1ê1,k2ê2,k3ê3) = α(k1,k2,k3)

2

(
1 + 1

‖
q‖
3∑

�=1

q�k�σ�

)
for some function α : {+,−}3 → [0,1]. The normalization of
C implies that, for every k1,k2,k3 ∈ {+,−},∑

i,j

α(k1,i,j ) =
∑
i,j

α(i,k2,j ) =
∑
i,j

α(i,j,k3) = 1.

One solution is to take the constant function α ≡ 1/4, and that
choice gives the optimal measurement of (26). The marginals
of this measurement are uniformly noisy versions of N1, N2,
and N3. Another possibility is

α(k1,k2,k3) =
{

1 if k1 = k2 = k3

0 otherwise.

In GW’s approach of Sec. II C, the latter choice corresponds
to the diagonal optimal measurement

C′(k1,k2,k3) =
{

1
2

(
1 + kq̂ · 
σ )

if k1 = k2 = k3 ≡ k

0 otherwise.

In particular, we see that from the point of view of GW’s
approach, postmeasurement information is useless in this
example.

VI. TWO FOURIER CONJUGATE MUTUALLY
UNBIASED BASES

In this section, we consider the discrimination problem
with postmeasurement information for two mutually unbiased
bases (MUB) in arbitrary finite dimension d. We restrict to
the case in which the two bases are conjugated by the Fourier
transform of the cyclic group Zd = {0, . . . ,d − 1}, endowed
with the composition law given by addition mod d. Moreover,
we assume that all elements of each basis have equal a priori
probabilities. However, we allow the occurrence probability of
a basis to differ from that of the other one.

In formulas, we fix two orthonormal bases (ϕh)h∈Zd
and

(ψk)k∈Zd
of H, such that

ψk = 1√
d

∑
h∈Zd

ωhkϕh where ω = e2πi/d .

They satisfy the mutual unbiasedness condition

|〈ϕh | ψk 〉| = 1√
d

∀h,k ∈ Zd .

We label the two bases by means of the symbols Xϕ =
{0ϕ, . . . ,(d − 1)ϕ} and Xψ = {0ψ, . . . ,(d − 1)ψ}, respec-
tively, and we let X = Xϕ ∪ Xψ be the overall label set. Notice
that, consistently with the previous examples, the elements of
X are denoted by juxtaposing the index of the vector with the
symbol of the basis which the vector belongs to [for example,
the symbol 0ϕ labels the first vector in the basis (ϕh)h∈Zd

].
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Then, we partition X and use it to construct a state ensemble
E as follows:

P = (X�)�∈{ϕ,ψ}, (29)

E(h�) = q�

d
|�h〉〈�h|, h� ∈ X, (30)

where qϕ,qψ > 0 with qϕ + qψ = 1. The partition P yields
the two subensembles

E�(h�) = 1

d
|�h〉〈�h|, h ∈ Zd ,

with � ∈ {ϕ,ψ}; the probability that a label occurs in the subset
X� is q(�) = q�.

Note that in Sec. V B, the two equally probable qubit
eigenbases with angle θ = π/2 constitute two MUB that are
conjugated by the Fourier transform of the cyclic group Z2.
Indeed, this follows by setting

ϕ0 = 1√
2

(e−i(π/8)η1 + ei(π/8)η2)

ϕ1 = i√
2

(e−i(π/8)η1 − ei(π/8)η2),

where (η1,η2) is the canonical (computational) basis of C2,
choosing qϕ = qψ = 1/2, and relabeling

0ϕ → +â, 1ϕ → −â, 0ψ → +b̂, 1ψ → −b̂.

We define two measurements Nϕ and Nψ with outcomes in
Xϕ and Xψ , respectively, as

N�(h�) = |�h〉〈�h|, h ∈ Zd .

Each of these measurements perfectly discriminates the corre-
sponding subensemble E�. Moreover, once again Corollary 2
can be applied, thus leading to

Pguess(E) = max{qϕ,qψ } = ∣∣qϕ − 1
2

∣∣ + 1
2 .

P prior
guess(E ; P) = 1.

By Theorem 2, optimizing the postinformation guess-
ing probability P

post
guess(E ; P; C) over all measurements C on

Xϕ × Xψ amounts to the same optimization problem for
Pguess(F ; C), where F is the auxiliary state ensemble

F(hϕ,kψ) = 1

d2
(qϕ|ϕh〉〈ϕh| + qψ |ψk〉〈ψk|).

The state ensemble F has the direct product Abelian group
G = Zd × Zd as its natural symmetry group. Indeed, by
defining the generalized Pauli operators

W (r,s) =
∑
z∈Zd

ωsz|ϕr+z〉〈ϕz|,

we obtain a projective unitary representation of Zd × Zd , such
that

W (r1,s1)W (r2,s2) = ωs1r2W (r1 + r2,s1 + s2),

W (r,s)ϕh = ωshϕr+h, W (r,s)ψk = ω−r(s+k)ψs+k

(see, e.g., [22,23]; here, W (r,s) = UrVs in terms of the discrete
position and momentum displacement operators Ur and Vs

defined in [23, Sec. IV A]). Then, the state ensemble F is W -
invariant, as

W (r,s)F(hϕ,kψ)W (r,s)∗ = F((h + r)ϕ,(k + s)ψ) (31)

for all h,k,r,s ∈ Zd . Since the representation W is irre-
ducible [22] and the state ensemble F is clearly injective,
Proposition 2 can be applied to F by Proposition 3. In order
to proceed as usual, we need the next lemma.

Lemma 2. For all h,k ∈ Zd , the largest eigenvalue and the
corresponding eigenprojection of F(hϕ,kψ) are

λ(hϕ,kψ) = 1

2d2

[
1 +

√
(qϕ − qψ )2 + 4

d
qϕqψ

]
, (32a)

�(hϕ,kψ) = |αϕh + βω−hkψk〉〈αϕh + βω−hkψk|
= W (h,k)|αϕ0 + βψ0〉〈αϕ0 + βψ0|W (h,k)∗,

(32b)

where the couple (α,β) is the unique solution to the following
system of equations:

α > 0, β > 0, (33a)

α2 + β2 + 2√
d

αβ = 1, (33b)

α

β
=

√
d

2qψ

[
qϕ − qψ +

√
(qϕ − qψ )2 + 4

d
qϕqψ

]
. (33c)

Equation (33b) describes an ellipse in the αβ plane centered
at (0,0) and having the minor axis along the α = β direction.
The solution of (33) is where this ellipse intersects the half-line
originating at (0,0), lying in the first quadrant (33a) and having
the positive slope given by (33c).

Proof. By means of the covariance condition (31) for F , it
is enough to prove (32) only for h = k = 0. In order to do it,
we preliminarily observe that the operator F(0ϕ,0ψ) leaves
the linear subspace H0 = span(ϕ0,ψ0) invariant, and it is null
on H⊥

0 . Moreover, with respect to the linear (nonorthogonal)
basis (ϕ0,ψ0) of H0, the restriction of F(0ϕ,0ψ) to H0 has the
matrix form

F(0ϕ,0ψ)|H0
= 1

d2

(
qϕ

1√
d
qϕ

1√
d
qψ qψ

)
.

The roots of the characteristic polynomial of the above matrix
are

λ± = 1

2d2

[
1 ±

√
(qϕ − qψ )2 + 4

d
qϕqψ

]
(recall qϕ + qψ = 1), and they are clearly different. This
gives (32). By direct inspection of the previous matrix, the vec-
tor χ = αϕ0 + βψ0 is a nonzero λ+ eigenvector of F(0ϕ,0ψ)
if and only if the ratio α/β is given by (33c). Normalization of
χ gives (33b). Since the ratio α/β is real and positive, (33b)
and (33c) have a unique common solution satisfying (33a). �

Proposition 4. For the state ensemble E of (30) and the
partition P of (29), we have

P post
guess(E ; P) = 1

2

[
1 +

√
(qϕ − qψ )2 + 4

d
qϕqψ

]
. (34)
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Moreover, a measurement on Xϕ × Xψ maximizing the guess-
ing probability P

post
guess(E ; P; C) is

C0(hϕ,kψ) = 1

d
|αϕh + βω−hkψk〉〈αϕh + βω−hkψk|

= 1

d
W (h,k)|αϕ0 + βψ0〉〈αϕ0 + βψ0|W (h,k)∗,

(35)

where (α,β) is the solution to the system of equations (33).
The measurement C0 is the unique measurement maximizing
the guessing probability P

post
guess(E ; P; C) if and only if the

dimension d of H is odd.
Proof. We have already seen that Proposition 2 can be

applied to the state ensemble F . With the notations of that
proposition, we have

λF = 1

2d2

[
1 +

√
(qϕ − qψ )2 + 4

d
qϕqψ

]
,

(Xϕ × Xψ )F = Xϕ × Xψ

by Lemma 2. In particular, the value of λF and Theorem 2 with
� = d imply (34). Moreover, still by Lemma 2, the measure-
ment C0 in (35) is the optimal measurement (26) for the guess-
ing probability Pguess(F ; C), hence also for P

post
guess(E ; P; C).

By Corollary 1, there is no other measurement maximizing
the guessing probability P

post
guess(E ; P; C) if and only if the

operators {�(hϕ,kψ) : h,k ∈ Zd} are linearly independent.
The argument used in the proof of [23, Proposition 9] shows
that this is equivalent to the dimension d of H being odd. �

In the particular case qϕ = qψ = 1
2 , formulas (34) and (35)

simplify as follows:

P post
guess(E ; P) = 1

2

(
1 + 1√

d

)
,

C0(hϕ,kψ) = 1

2(
√

d + d)
W (h,k)|ϕ0+ψ0〉〈ϕ0+ψ0|W (h,k)∗,

which, for d = 2, are easily seen to be consistent with the
results of Sec. V B.

For general qϕ,qψ , the first marginal of C0 is

π1∗C0(hϕ) = 1

d

∑
k∈Zd

[α2|ϕh〉〈ϕh| + β2|ψk〉〈ψk|

+αβ(|ω−hkψk〉〈ϕh| + |ϕh〉〈ω−hkψk|)]

= α2|ϕh〉〈ϕh| + β2

d
1 + 2αβ√

d
|ϕh〉〈ϕh|

= tϕNϕ(hϕ) + (1 − tϕ)
1

d
1, (36)

where tϕ = α2 + 2αβ√
d

. Here, we have used the fact that∑
k∈Zd

ω−hkψk =
√

dϕh, ∀h ∈ Zd .

With a similar calculation,

π2∗C0(kψ) = tψNψ (hψ) + (1 − tψ )
1

d
1, (37)

where tψ = β2 + 2αβ√
d

. We conclude that the marginals of C0

are uniformly noisy versions of Nϕ and Nψ .
We remark that approximate joint measurements of Nϕ and

Nψ were studied in [23]. In particular, by [23, Propositions
5 and 6], noisy measurements of the form (36) and (37) are
jointly measurable if and only if

tϕ + tψ � 1 (38a)

or t2
ϕ + t2

ψ + 2(d − 2)

d
(1 − tϕ)(1 − tψ ) � 1. (38b)

Moreover, regardless of the dimension d ofH, there is a unique
joint measurement when the equality is attained in (38b). One
can confirm that tϕ and tψ with α and β given by (33b)
lead to equality in (38b), hence C0 can be identified as that
unique joint measurement. It also follows by Proposition 4 that
for even dimensions d there are measurements maximizing
P

post
guess(E ; P; C) whose marginals π1∗C and π2∗C are not

uniformly noisy versions of Nϕ and Nψ .
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APPENDIX A: NECESSITY OF THE RANK-1 CONDITION
IN COROLLARY 1

The following state ensemble E : {1,2,3} → L(C2)

E(1) =
⎛⎝1/2 0 0

0 1/2 0
0 0 0

⎞⎠, E(2) =
⎛⎝1/2 0 0

0 0 0
0 0 1/2

⎞⎠,

E(3) =
⎛⎝0 0 0

0 1/2 0
0 0 1/2

⎞⎠
satisfies (25) and item (i) of Corollary 1. However, it does not
fulfill item (ii) of the same corollary, as both the following
measurements

M0(x) = E(x), x ∈ {1,2,3},
and

M1(1) = E(1) + E(2) − E(3),

M1(2) = E(1) − E(2) + E(3),

M1(3) = −E(1) + E(2) + E(3),

attain the maximum guessing probability Pguess(E ; Mi) =
Pguess(E) = 3/2.

APPENDIX B: JOINT MEASURABILITY DEGREE OF
THREE ORTHOGONAL QUBIT MEASUREMENTS

Let N�(±ê�) = 1
2 (1 ± σ�) for � = 1,2,3. We aim to show

that j(N1,N2,N3) = 1/
√

3, which means that we need to find
the largest t such that the noisy versions

Ñ�(±ê�) = tN�(±ê�) + (1 − t)ν�(±ê�)1 (B1)
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are compatible. The probability distributions ν1, ν2, and ν3 can
be chosen freely, meaning that we optimize among all their pos-
sible choices. It has been shown in [24] that ju(N1, . . . ,Nm) =
1/

√
3. Therefore, the remaining point in order to conclude that

j(N1,N2,N3) = 1/
√

3 is provided by the following result.
Proposition 5. If Ñ1,Ñ2,Ñ3 given by (B1) are compatible,

then the observables

Ñ′
�(±ê�) = tN�(±ê�) + (1 − t) 1

21, � = 1,2,3,

are also compatible.

Proof. We assume that Ñ1,Ñ2,Ñ3 defined in (B1) are
compatible, and we let C be any measurement having
marginals Ñ1,Ñ2,Ñ3. We denote by A : C2 → C2 the an-
tiunitary operator satisfying Aσ�A

∗ = −σ� for � = 1,2,3.
Explicitly, A = σ2 J , where J denotes complex conjugation
with respect to the canonical basis of C2. We then define C′ as

C′(k1ê1,k2ê2,k3ê3) = 1
2 [C(k1ê1,k2ê2,k3ê3)

+AC(−k1ê1,−k2ê2,−k3ê3)A∗].

A direct calculation shows that the marginals of C′ are Ñ′
1,

Ñ′
2, Ñ′
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