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Abstract—The paper analyzes stability conditions and design 
requirements for the control parameters in droop-controlled 
inverters. The analysis focusses on a single inverter unit with AC 
(output) filters and interface transformer, as this may be 
regarded as the elementary component of a distributed 
generation system. Through a process of thought simplifications 
and manipulations, the linearized full state-space model is 
transformed into a unique single-input, single-output system 
comprising several nested loops. The resulting analytical model 
in terms of transfer functions has enough “structure” to 
represent interactions between the different actors of the overall 
control, such as droop linear and derivative terms, virtual 
impedance and voltage controllers. Stability conditions for the 
corresponding parameters are then derived analytically. 
Experimental tests are carried out on the complete system to 
check the reliability of the proposed model.  
 

Index Terms—Microgrids, droop control, virtual impedance, 
system stability, modal analysis.  

I. NOMENCLATURE 
m, n (md, nd), mrest, nrest: linear (derivative) droop coefficients 
of the inverter under study, of the rest of the network [p.u.]; 
Hi: grid-current compensation gain in the voltage loop; 
kpV, kiV, TiV= kpV / kiV: parameters of the voltage PI controller; 
p=d/dt: time derivative operator; 
po, (Po), qo, (Qo): instant. (average) real, reactive power; 
Rf, Lf, Cf: filter resistance / inductance / capacitance [p.u.]; 
Rt, Lt (Rv, Lv): line (virtual) resistance, inductance [p.u.]; 
Tt= Lt / (Rt ωb): time constant of the line impedance [s]; 
Tp: time constant of the filter for the power po, qo; 
tdm= md / (m+ mrest); tdn= nd /  (n+ nrest);  
ω: inverter angular frequency [p.u.]; 
ωb, ωpcc, ωn, ωs: base, point of common connection (pcc), rated 
and generic angular frequency; 
ω*, V*, ωrest

*, Vrest
*: no-load angular frequency and voltage in 

the droop control of the inverter and of the rest of the grid; 
ωcI, (ωcIn): cut-off frequency (rated value) of the current loop. 

II. INTRODUCTION 
IN dispersed generation systems when there is no 
communication between the sources [1], stable operation of 
paralleled inverters and scheduled power sharing may be 
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achieved through droop control [2]. Either linear or piecewise 
droop characteristics are usually implemented [3], but non-
linear curves have also been proposed [4]. As for the linear 
case, two additional terms proportional to power derivatives 
are often introduced in order to improve stability [5], [6]. 
Low voltage microgrids are characterized by line reactance to 
resistance ratio less than one [7] or around one if the 
decoupling transformer is taken into account. This implies that 
active and reactive powers are not inherently decoupled [8]. 
Several methods have been proposed to solve this problem. In 
[9] a reference frame rotation is proposed, so that transformed 
active and reactive powers in the new reference frame only 
depend on load angle and voltage respectively. In [10] a 
technique based on inverted droop equations is proposed for 
highly resistive networks.  In [11] the virtual impedance is 
introduced for a single phase network. For three–phase 
systems, a steady-state formulation of the virtual impedance is 
usually considered [12]. This is because the power decoupling 
is considered not important during transients. As discussed in 
[13], the concept can be extended to non-linear loads by 
introducing several steady-state virtual impedances in multiple 
reference frames, each for a given harmonic component. 
Transient virtual impedance formulations, namely involving 
time derivatives of currents, have also been proposed [14]. 

The virtual impedance changes the magnitude and the phase 
of the reference voltages due to the droop control. In [15] a 
virtual angle applied to the reference voltage is introduced, so 
as not to change the magnitude of the reference voltage. 
As for the design of the virtual impedance, [12] proposes a 
method based on some decoupling coefficients: they report the 
sensitivity of the real power to the load angle and to the 
voltage referred to the sensitivity of the reactive power to the 
same quantities. The design approach proposed in [11] derives 
the virtual impedance value starting from the inverter output 
impedance, which is a function of the LC filter, voltage and 
current control parameters. 
Small-signal analysis is a well-established tool for studying 
stability of different configurations of microgrids [16]-[19]. In 
all these schemes, however, stability is generally assessed by 
numerical eigenvalue computation using detailed state-space 
models, which do not give direct analytical insight into the 
stability conditions for the control parameters.  

To the best authors’ knowledge, no comprehensive models 
on transfer functions have been proposed to analytically show 
the impact of the control parameters on stability and to tune 
the virtual impedance gains. Simplified models described in 
literature (e.g. [6]) are usually of low order, and inevitably 
neglect multiple interactions between different control blocks. 

Such a lack is addressed in this paper, where closed-form 
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transfer functions are derived with the aim to analytically 
show the effect of the main control parameters on stability. 
Conversely to extremely simplified approaches which 
enucleate the droop from the system, the proposed reduced 
model has enough “structure” to represent interactions 
between different elements across the overall control, such as 
droop linear and derivative terms, virtual impedance and 
voltage controllers. Stability conditions for the corresponding 
parameters are then derived analytically. The analysis 
considers an inverter in parallel with other units and working 
in a quasi-no-load operating condition, as this is the critical 
condition for stability. The paper aims at giving some 
guidelines for the design of control parameters and for the 
stability analysis. Though the on-line estimation of the grid 
impedance is beyond the scope of this paper, the suggested 
design criteria may also be applied in the adaptive tuning of 
the virtual impedance to ensure stability under large grid-
impedance variations. 

The paper is divided as follows. In Sec. III a mathematical 
description of the basic model is given, taking into account the 
voltage and current controllers and the steady-state virtual 
impedance. In Sec. IV, a representative model in terms of 
transfer functions is derived together with closed-loop block 
diagrams. These are used in Sec. V, to study the stability from 
an analytical viewpoint, discussing the impact of control 
parameters and deriving stability conditions and design 
criteria. Sec VI compares the analytically-predicted dominant 
poles with some experimental tests. 

III. SYSTEM DESCRIPTION AND FULL ORDER MODEL 

A. Hypotheses and limitations. 
The system under study is a microgrid supplied by several 

droop-controlled inverters (Fig. 1). The analysis is performed 
just on one inverter unit, comprising the output filter and 
connection transformer. A damping resistor may be connected 
in series to the filter capacitor, to avoid parallel resonance. 
The inductor Lt-Rt represents the interface transformer and the 
line. All the other inverters are represented as a simple voltage 
source whose amplitude Vpcc and angular frequency ωpcc 
change according to the droop control. 
 

 
 
Fig. 1. Scheme of the analyzed system. An inverter is connected in parallel to 
other inverters in a microgrid. All inverters are droop controlled. 
 

The equations of the whole system are expressed in per unit 
(p.u.) and referred to a dq frame, where the d-axis is aligned to 
the reference voltage ref

ov and  p=d/dt is the time derivative 
operator. Only time t is not in p.u.: this is why the derivative 

operator p is divided by the reference angular frequency ωb. 
Equations (1) ÷ (8) deal with the inverter under study. Vector 
equations (1), (2) and (3) refer to the LCL filter. Equations (4) 
and (5) refer to the droop control system, where the angular 
frequency ω and the reference voltage ref

ov  depend on the 
average output real Po and imaginary Qo powers and their 
derivatives, respectively, through the droop coefficients m, md, 
n, nd. Both Po and Qo are averaged with a first order filter with 
time constant Tp (cut off frequency Tp

-1). V* and ω* are the no-
load voltage and angular frequency. Equations (6) and (7) 
report the current and voltage PI control models, respectively. 
The coefficient Hi is positive and less than unity: its purpose is 
to compensate for the output current in the real system. In 
particular, (7) includes the term due to the virtual impedance 
(Rv, Lv) in steady state. Equation (8) represents the dynamic of 
the load angle δ, defined as the angle between the PCC voltage 

δ= j
pccpcc eVv   and the voltage vector ref

ov   (see (3)): ωpcc 

and ω are the point of common connection (PCC) and inverter 
angular frequency in p.u., respectively. Equations (9) represent 
the droop laws for the rest of the sources, and (10) come from 
the power balance. 

( ) iLjipLiRvv fbffo ω+ω+=−        (1) 

( ) ( )oofobf iivCjvpC −≅ω+ω       (2) 

( ) otobtot
j

pcco iLjipLiReVv ω+ω++= δ      (3) 

( ) ( )( )
pT

ivivpmm
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oqoqododd
od +

++
−ω=+−ω=ω

1
**  (4) 
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ivivpnn
VQpnnVv

p

oqododoqd
od

ref
od +

−+
−=+−=

1
** (5) 

( )( ) iLjviipkkv fo
ref

iIpI
ref ω++−+=  (6) 

( ) ( )( )ovvo
ref
o

iV
pVoi

ref iLjRvv
p

kkiHi ω+−−







++= (7) 

( )ω−ωω=δ pccbp             (8) 

restrestpcc Pmrest −ω=ω *   restrestpcc QnVV rest −= *   (9) 

loadorest PPP ≅+    loadorest QQQ ≅+     (10) 

A scheme of the adopted control system is shown in Fig. 2 . 

B. Main data. 
Reference will be made to an inverter source whose data are 

reported in p.u. in Table I. The base quantities are the apparent 
power Ab=An , the voltage Vb=Vn and the angular frequency 
ωb=ωn.  
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TABLE I 

MAIN DATA OF THE INVERTER SOURCE UNDER STUDY. 

Rated Vn [V], In [A], An [kVA], ωn [rad/s] 200; 7; 2.4; 2π 50 
Inverter max real Pmax and reactive Qmax 

power 
An;   0.6 An 

Rf, Lf, Cf [p.u.] 0.0073; 0.045; 0.052 
Rt; Lt [p.u.] 0.049; 0.024 

Current loop ωcI, voltage loop ωcV cross – 
over frequency [rad/s]  

2π 350 ;  2π 35 
 

Hi, kpV, kiV  [p.u.], [p.u.], [p.u./s] 0.90; 1.41; 733 
Time constant Tp droop power filter [s] 0.10 

 

 
Fig. 2. Structure of the proposed cascaded control system: an internal current 

controller and an external voltage one; then the droop control. 
 
The parameters in Table I may be considered of general 

validity. In fact, a reasonable criterion has been used to design 
the LC filter, namely: 4.5% series voltage drop, 5% capacitive 
reactive power due to the capacitors [20].  

Also the assumed ratio Lt/Rt ≈ 0.5 is reasonable for a low 
voltage line including a decoupling transformer. The virtual 
impedance is chosen as a guess value so as to decouple real 
and reactive powers, increasing the ratio L/R. According to 
[12], by introducing virtual impedance Lv≈Lt, Rv =–0.75Rt, the 
reported decoupling coefficients (∂Po/∂δ)/(∂Qo/∂δ) and 
(∂Qo/∂vod 

ref)/(∂Po/∂vod 
ref) pass from 0.5 to 4. Pros and cons of 

a negative Rv will be illustrated in Sec. V . 
The compensating term 0iHi  can only reduce the excursion of 
the voltage controller, but of course it does not affect the 
inverter ratings. Usual values of Hi are within the range 
0.70÷0.90 [5], [21]. 
The cross–over frequency ωcI of the current loop has been 
assumed equal to ωcI = 2π⋅350 rad/s . The design of the 
voltage controllers in the d- and q-axis is carried out by Bode 
diagrams, considering a SISO (Single Input, Single Output) 
system, i.e. without mutual coupling. Let the cross-over 
frequency ωcV of the external voltage loop range from 0.05 ωcI 
up to 0.15 ωcI; the design of the PI voltage controller implies 
that the range of the integral term kiV  is 600÷1160 p.u./s, 
while the range of the integral time ( )iVpViV kkT =  is 5.0÷2.0 

ms. These values will be used in the following considerations, 

together with  rated values reported in Table I. 
The time constant Tp of the droop power system is usually 
quite high, equal to some periods of the line frequency. 

IV. SIMPLIFIED MODEL 

A. Simplified model equations. 
The current loop (equations (1), (6)) has a large cut-off 
frequency. Thus, it is represented by a first order time delay, 
ωcI

–1, in order to study only the dominant poles of the system, 
simplify the analysis and derive manageable expressions: 

( )[ ]cIcIref sii ω+ω=  .       (11) 

Introducing (7) into (11) and then into (2) yields (12), where 
some approximations can be invoked to simplify the 
coefficients, limiting the frequency analysis within a few 
multiples of the voltage cut–off frequency ωcV, so as to include 
the dominant poles: 

( ) ( ) ( ) ( ) ocobo
ref
oo ipjHvpjHipHvpGv ω−ω−−= 2221  (12) 

Transfer functions in (12) are 

( ) 11 ≈pG ,  ( ) 02 ≈pH b ,  ( ) vc LpH ≈2    (13) 

( )

( )

( )pT

kR
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Rk
HTR
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iV

cIiVvviV

i
iVv

+












ω
+







 −
++

≈
1

11
2

2    (14) 

A linearization of (12), (3)-(5) and (8)-(10) around a stable 
condition is performed: the stable condition is expressed by 
capital letters or superscript (0), and the small variations are 
analyzed. In steady state conditions, the vector ov  lies on the 
d-axis and power flows from the inverter to the PCC: thus    
Vod ≈1 p.u.; Voq= 0; δ0<0. Then: 

( ) ( )oovo
ref
oo IijLipHvv ω∆+∆ω−∆−∆=∆ 0

2   (15) 

( ) ( )ω∆+∆ω+∆+=

=δ∆−∆−∆ δδ

ootott

j
pcc

j
pcco

IiLjipTR

ejVeVv
0

0

1

00

        (16) 

where:  ( )tbtt RLT ω= , ( ) ( )[ ] 1
2 1 −+= tt pTRpG    (17) 

( ) ( ) ( )[ ]pTpmmp pdo ++∆−ω∆=ω∆ 1*      
 
 (18) 

 
( )oqoqododododo IviVIvp ∆+∆+∆=∆     (19) 

( ) ( ) ( )[ ]pTpnnqVv pdo
ref
od ++∆−∆=∆ 1*       (20) 

( )oqodoqododoqo iVIvIvq ∆−∆−∆=∆     (21) 

( ) ( )ω∆−ω∆ω=δ∆ pccbp             (22) 

restrestpcc Pm ∆−=ω∆   restrestpcc QnV ∆−=∆    (23) 
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loadorest PPP ∆≅∆+∆   loadorest QQQ ∆≅∆+∆    (24) 

These equations can be represented by the diagram in Fig. 3, 
which includes some feedback loops. In order to help the 
understanding, the block diagram highlights the fictitious 
input ∆voq

ref =0 forcing the orientation. The approach proposed 
in this paper allows the whole system to be transformed into a 
series of simpler subsystems of a Single-Input Single-Output 
(SISO) type with no interlaced connections, so that a stability 
analysis can be analytically carried out providing design 
criteria. 

B. Closed loops for the stability analysis. 
From now on, the complex frequency s will replace the 
derivative operator p and the generic angular frequency will be 
ωs.  
The analysis is bounded to the dominant poles: thus only the 
low frequency range is studied. Some simplifications can be 
adopted in a quasi-no-load condition by considering Vod≈1 
p.u., Voq≈0, Ioq≈0, δ0<0 but small, Lv≈ Lt, yielding the diagram 
in Fig. 4. 
An approximation of the transfer function F2 representing the 
closed loop G2 and H2 in Fig. 3 is: 

( ) ( )
( ) ( )

( ) ( )
( )( )ba

iVtv
TsTs
TsRR

sHsG
sGsF

22

1

22

2
2 11

1
1 ++

++
≈

+
=

−
   (25)  

where T2a > T2b; 
( )

( ) ( ) iVibttviV

tv
a kHLRRT

RRT
−+ω++

+
≈−

1
1

2   (26) 

( ) ( )
( ) tiVcIiV

iVibtiVtv
b

LTk
kHLTRRT

+ω

−+ω++
≈

−
−

1
1

2
1

  (27) 

 
T2a and T2b do not depend on the load operating condition, but 
only on the parameters of the line (Rt, Lt), of the controllers

 (TiV, KiV, ωcI), on the virtual resistance Rv, but not on the 
virtual inductance Lv. 
Finally, some independent SISO closed loops have been 
derived. They link inputs ∆voq

ref, ∆V* and ∆ω* to ∆vod
ref and 

∆ω. This block diagram (Fig. 4) is the starting point to 
analytically find the stability conditions of the system. It will 
be used hereafter to analyze the influence of line and control 
parameters on the stability.  

V. STABILITY ANALYSIS AND DESIGN CRITERIA. 

A. Stability analysis 
Fig. 3 contains a first closed loop including G2(s) and H2(s). 
The open loop transfer function at low frequencies is: 

( ) ( ) ( ) ( )( )iVtt

viVcIviV

i
iVv

TsTsR

Rk
s

Rk
H

TsR

sHsGsL
++












ω
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 −
++

==
11

1
1

2

222  (28) 

Since Rv is negative, the Nyquist criterion must be adopted to 
find the stability conditions: the Nyquist diagram shows that 
the ratio |Rv|/Rt must be less than one (Fig. 5). The virtual 
resistance Rv must be chosen so as to get a gain margin GM 
high enough: for instance higher than two. 
A second loop is F5(s) in Fig. 4, where the feedback H4(s) is 
quite negligible (sinδ0≈0); thus this closed loop can be 
considered an open loop, which is stable if all its composing 
transfer functions are stable. 
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Fig. 3. Complete block diagram of the linearized system, assuming current loops with a bandwidth equal to ωcI.  
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Fig. 4. Modification of the block diagram of Fig. 3, necessary to find the closed loop transfer functions F5(s) and F6(s). 
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Fig.5. Nyquist diagram of L2(s) open loop transfer function: Rv/ Rt =–0.75. 

GM is the gain margin. 

A third loop is the subsystem F6(s) in Fig. 4: its feedback is 
depicted with a dotted line. By assuming: 
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where:           ( )restddn nnn +=t       (30) 
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the subsystem changes as in Fig. 6. The open loop transfer 
function is: 
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Fig. 6. Inner loop (F6) of the control system of Fig. 4. 
 

This loop refers to the interaction between quantities on the d 
and q axes and does not exist in the decoupled SISO system 
used to design the controllers. The open loop transfer function 
L6(s) shows the main parameters which influence stability. 
  An increase of Lv or a decrease of Rv improves the 
decoupling between Po and Qo (Sect. III-B), but augments the 
gain of L6(s). This may lead the system to instability (Fig. 7a), 
because the phase margin PM is quite low.  
 Being kpV, kiV constant, an increase of the current loop cut-
off frequency ωcI moves poles at T2b

–1 to higher frequencies 
(see (27) ), thus improving stability (Fig. 7b) because the 
phase margin PM increases; 
 Changing tdn from positive (Fig. 7c) to negative (Fig. 7d) 
values moves the zero tG3b

–1 (32) to higher frequencies, close 
to the poles T2a

–1; this improves stability, due to a rise of the 
phase margin PM; 
 An increase of TiV, i.e. of the bandwidth of the voltage loop, 
moves the zeroes TiV

–1 leftwards (Fig. 7e), raising the phase 
margin PM and improving stability. This can be achieved by 
increasing kpV or decreasing kiV. Nevertheless this adjustment 
implies that the pole T2a

–1 moves leftwards (see (26)), lightly 
reducing the positive effect of the decrease of TiV

–1. 
 
In order to analyze the external loop in Fig. 4, the transfer 
functions F5(s) between ∆vy and ∆ω as well as F6(s) between 
∆ev0q and ∆vy must be calculated. The open loop transfer 
function is: 

( ) ( ) ( ) ( )sHsFsFsL 7657 =    .    (34) 

An approximation formula of L7(s), valid for ωs > Tp
–1, is: 
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where: 
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The approximated open loop transfer function L7(s) and its 
bode diagram in Fig. 8 show that: 
 an increase of the gain of L7 may lead to instability because 
the phase margin PM becomes low; such a gain depends on 
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the squared voltage V0d≈Vpcc, on the droop coefficients of both 
the line under study and the rest of the microgrid sources, m 
and mrest, and is inversely proportional to the inductance 
Lt+Lv;  
 the damping ξ0F6 should be large (>1/√2) to avoid a 
resonant peak, that may intersect the 0dB axis leading to 
instability; 
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Fig. 7. Bode diagrams of the open loop transfer function L6(s). Description in 
the text. x: poles; o: zeroes.  PM: phase margin. 

 in order to ensure stability, tdm should be chosen more than 
zero (intersection with the 0dB axis with slope –1) and less 
than Tp (tdm

–1 > Tp
–1): in fact, this choice (unlike tdm

–1 < Tp
–1) 

would reduce the risk of a double intersection with the 0dB 
axis due to the resonant poles ω0F6. 

B. Design guidelines 
The design of the voltage control parameters of an inverter to 
be connected to a microgrid in a droop-controlled mode starts 
from the basic transfer function of the voltage plant, neglecting 
mutual couplings between d and q axes. This is not enough to 
ensure stability, particularly when some virtual impedance is 
added.  In a second step of the design, virtual impedance and 
derivative droop parameters must be taken into account and 
appropriate adjustments on the control parameters must be 
carried out. Some guidelines come from the previous analysis.  
 Real time measurement of the line resistance Rt and 
inductance Lt; 
 The values of the linear droop parameters m and n are 
chosen according to the well-known rules to get a correct 
power sharing with the other droop-controlled sources; 
 The virtual resistance Rv and inductance Lv should be 
chosen to get a sufficient decoupling of real and reactive 
powers: 
o The virtual resistance Rv should approach –Rt, keeping a 

good gain margin (Fig. 5): |Rv|<0.75 Rt. 
o The virtual inductance Lv must be chosen in connection to 

Rv, because the gain of L6(s) cannot increase too much to 
avoid a low phase margin (Fig. 7a); 

o Additionally, a high Lv would imply a higher voltage drop 
and a higher rated voltage of the converter: this is why it is 
preferable to use both the degrees of freedom Rv and Lv to 
ensure stability. 

 the integral time TiV of the voltage controller has to be 
corrected, so as to move the pole TiV

–1 between T2a
–1 and T2b

–1 
(Fig. 7e); this implies a change in the bandwidth of the voltage 
loop;  
 the negative derivative droop coefficient nd applied to the 
reactive power affects time constant tG3b (32) through the 
parameter tdn=nd/(n+nrest): tG3b is to be chosen so that tG3b

–1 > 
Tp

–1 and tG3b ≈ T2a (Fig. 7d); 
  the derivative droop coefficient md applied to the active 
power is chosen so that tdm

–1 > Tp
–1 (Fig. 8). 
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Fig. 8. Bode diagram of the open loop transfer function L7(s) when tdm=0 
(continuous line) and tdm≠0 (dashed line). The case with tdm>0 results in a 
more stable system. The saw-tooth in the continuous line is a resonant peak.  
 
In case of large variations of the line impedance, these criteria 
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can be adopted to implement an adaptive virtual impedance 
integrated with the real-time estimation of the line impedance 
seen from the capacitor terminals.  

VI. NUMERICAL AND EXPERIMENTAL VALIDATION. 
A comparison between the proposed reduced model and 
experimental tests is now carried out. From the analysis of 
L6(s), L7(s), the dominant poles and their damping factor ξd of 
the related closed loop functions can be derived (Table II). 
These results are compared with the waveforms from the 
experimental tests.  

A. Setup parameters. 
As the experiments aim at validating the reduced-order model 
and design guidelines, and the real-time estimation of line 
impedance is beyond the scope of this paper, the system has 
been tested with different values of key design parameters, 
line impedance and constant virtual resistance and inductance. 
For these reasons, tests are carried out on a single inverter unit 
connected to the grid of the Lab: in other words, the droop 
coefficients of the other inverters are negligible mrest << m and 
nrest << n (Fig. 9). The grid stiffness is however adjusted by 
using different values of the line impedance to test a variety of 
conditions. The test perturbation used to assess stability is a 
sudden change in the real or reactive load powers ∆Pload - 
∆Qload and this is practically achieved by varying the no-load 
voltage V* and angular frequency ω* of the droop control (see 
inputs ∆V*  and ∆ω* in Fig. 4). 
The validation of the model is carried out by analyzing the 
output power Po, Qo response to an input step change in ω* or 
V*. In this case, it has been chosen to apply small positive 
steps starting from a no-load condition. The low value of the 
step amplitude avoids the saturation of the reference current 
(due to a limitation in the inverter’s rating) and allows the 
validity conditions of the small signal analysis to be met. 
The experimental system is characterized by: 
Tt

–1 = 625rad/s, Rv= –0.75Rt; Lv=Lt; m=0.01 p.u.; n=0.017 p.u.; 
µL6=15.9p.u.=24.0dB, µL7 =65.2p.u. = 36.3dB (gains of L6, L7). 

B. Discussion of results. 
The effect of a step in ∆V* on the real and reactive powers is 
reported in Figs. 10 to 17, starting from V*=1.0025 p.u., 
applying ∆V*=0.01p.u. and using different control parameters 
as detailed below. Moreover, with a step in ∆ω*, the system 
shows a low damping and wide oscillations, in case of no 
virtual impedance and no droop derivative parameters. 
 

 ω

)(a

P

)(b

**, restωω V

)(a

Q

)(b

**, restVV

 
 

Fig. 9. Droop characteristics for the inverter under study (a) (described by (4), 
(5) ) and for the rest of the grid (b) (described by (9) ). 

 
Case 1: with tdm=tdn=0, ωcI=ωcIn, TiV=TiVn, the results obtained 
by the reduced model show a very low damping ratio ξd 
(3.3%), which corresponds to a very low phase margin of L6(s) 
(as predicted in Fig. 7a).  
The experimental test is reported in Fig. 10. The main 
parameters are: Vpcc=1.0p.u.; V*=1.0025p.u.≈Vpcc; ω*≈1.0008 
p.u.; I0d≈0.08p.u.; I0q≈-0.04 p.u.. Rv= –0.75Rt, Lv=Lt. Before 
applying the ∆V* step, an oscillation with a frequency close to 
the imaginary part of poles p1,2 occurs (see Table II). After the 
step, another oscillation occurs, with a higher frequency but 
less than that exhibited by poles p4,5. This situation 
corresponds to the case reported in Figs. 7a - 8. The real and 
reactive power Po, Qo are well decoupled, as foreseen by the 
introduction of the virtual impedance (Sect. III). Anyway, 
power transients are characterized by significant oscillatory 
terms. 
 
Case 2: like case 1, but with an increase in the cut off 
frequency ωcI of the current loop (ωcI =1.5ωcIn); the reduced 
model shows a small improvement toward stability because 
poles p1,2 move leftwards (as indicated in Fig. 7b). The 
experimental step-response is illustrated in Fig. 11 and shows 
a reduction in the oscillations.  
 
Case 3: like case 1, but tdn= 2Tp; the reduced system shows 
instability: poles p1,2 are in the right half plane as predicted in 
Fig. 7c. The experimental test shows an unstable behavior. 
 
Case 4: like case 1, but tdn= –2.2Tp;  tdn is chosen so that the 
zero tG3b

–1 of L6(s) is close to the pole T2a
–1. In this case, the 

reduced model is stable, but two poles p4,5 are still located 
close to the imaginary axis (i.e. with a low damping 
coefficient). They are introduced by L7(s) (Fig. 8). The 
experimental test (Fig. 12) shows the reduction of high 
frequency oscillations but not a reduction of low frequency 
ones. 
 
Case 5: like case 1, but tdn= –2.Tp and TiV = 2.5TiVn (increase 
of the bandwidth of the voltage loop, by increasing TiV) ; in the 
open loop transfer function L6(s), the two zeroes TiV

–1 move 
leftwards (Fig. 7d), improving the phase margin. The poles p1,2 
of the closed loop function move leftwards (Table II); but not 
poles p4,5 (again introduced by L7(s) ).  
The corresponding test is shown in Fig. 13 and reveals 
oscillations at low frequency, close to the imaginary part of 
poles p4,5; with respect to Fig. 10, however, high frequency 
oscillations have disappeared. 
 
Case 6: the same as case 5 plus tdm =0.4Tp; all the poles in 
table II are quite stable as the transfer function L7(s) states out 
(see Figs. 7e - 8). Figs. 14(a) and 14(b) show the experimental 
response to a step in ∆V* and in ∆ω* respectively: the system 
behaves quite fairly as predicted in Table II by the reduced 
model, and the oscillations are more bounded. This 
corresponds to the best condition for the parameters design, 
coherently to the proposed simplified model. 
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A further comparison between complete and reduced models 
is done considering the eigenvalues of the simplified model 
derived from transfer function analysis and those obtained 
from the complete set of equations (1)-(10) when tdn  is 
changed in the range [-2.2Tp, 2Tp]. This includes by the way 
cases 4, 3 and 1 in Table II. Dots in Fig. 15 are the dominant 
eigenvalues p1,2 and p3 of the reduced model, whereas stars 
represents the corresponding eigenvalues of the full model (1)-
(10). The comparison is shown in Fig. 15 and reveals that the 
proposed model and design technique can predict the dynamic 
properties of the system. 
 
Another test has been carried out with tripled line impedance 
Rt, Lt. Obviously, the voltage control parameters must be 
changed in order to get the stability and this should be carried 
out with an adaptive control. Nevertheless the criteria 
described in Sect. V.B turn out to be still valid, as shown in 
Figs. 16-17. 
 

TABLE II 
DOMINANT POLES p1,2 , p3, p4,5 AND DAMPING COEFFICIENT ξd FROM THE 
REDUCED MODEL (FIG. 3), IN A QUASI-NO-LOAD CONDITION AND WITH 
DIFFERENT CONTROL AND LINE PARAMETERS. IN BOLD THE PARAMETERS AND 
DOMINANT POLES, WHICH HAVE CHANGED FROM THE PRECEDING CASE. 
 

case Figure Poles and zeroes of L6, 
L7  [rad/s] 

p1,2 – p3 – p4,5 

[rad/s] 
ξd 

[%] 
1 7a  

10 
Tp

–1 = 10;  
tG3b

–1 = 13 (→tdn = 0); 
T2a

–1 = 65; T2b
–1 = 242; 

TiV 
–1 = 500; 

tdm
–1 = ∞ 

-6.0 ± j181(1) 

-13.3(1) 
-1.72 ± j256(2) 
  

3.3 
100 
0.66 
 

2 7b T2b
–1 = 359 -30 ± j193(1) 

-13.3(1) 
-2.1 ± j258(2) 

15 
 

3 7c tG3b
–1 = 8.0  

(→tdn = 2.Tp); 
+6.5 ± j221(1) 
-8.0(1) 
-1.7 ± j256(2) 

-2.9 
 

4 7d tG3b
–1 = 56 

(→tdn = -2.2Tp); 
-18 ± j99(1) 
-57(1) 
-1.7 ± j256(2) 

18 
100 
 

5 7e T2a
–1 = 55; T2b

–1 = 217; 
TiV 

–1 = 200; 
-44 ± j103(1) 
-43.3(1) 
-2.5 ± j26(2) 

39 
 

6 7e, 
8 

as above but 
tdm

–1 = (0.4.Tp) –1 
-44 ± j103(1) 
-43.3(1)  
-20 ± j19(2) 

 
 
72 

(1), (2) refer to the closed loop transfer functions (t.f.) F6, F7 obtained by the 
open loop t.f.s L6, L7 respectively. 
 

 
Fig. 10. Case 1): real Po and reactive Qo power waveforms as a response to a 
step in the vodref–Qo droop curve. The step is obtained by changing V* by 1E-2 
p.u. . 

 

 
Fig. 11. Case 2): step perturbation as in Fig. 10.  
 

 
Fig. 12. Case 4): step perturbation as in Fig. 10.  
 

 
Fig. 13. Case 5): step perturbation as in Fig. 10.   
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Fig. 14. Case 6). Real Po and reactive Qo power waveforms as a response to a 
step in the vodref–Qo droop (a) and in the ω–P one (b) , respectively. As for the 
latter, the step is obtained by changing ω* by  1E-3 p.u..  
 
 
 
 
 

 
 
Fig. 15. Eigenvalues comparison of the reduced model with the complete one, 
when the parameter tdn  is changed in the range [-2.2 Tp ; 2 Tp ]: dots = reduced 
model eigenvalues (p1,2 – p3) stars = full model (1)-(10). The proposed reduced 
model is able to effectively keep track of the dominant dynamics in the 
system. The reduced-model eigenvalues p4,5 as well as the corresponding 
dynamics of the complete model are not influenced by the parameter tdn; thus 
they are not included in the graph. 
 

 
Fig. 16. As Fig. 10, but with tripled line impedance. tdm= 0.4Tp. tdn= 0. The 
comparison with the case in the next figure shows the importance to choose a 
negative derivative reactive droop parameter tdn. Here are reported the 
transients associated respectively to a step changes of V* by 1E-2 p.u. and ω* 
by  1E-3 p.u.  
 

 
 
Fig. 17. As Fig. 16 (tripled line impedance) but with tdm= 0.4Tp. tdn= –2 Tp. It 
corresponds to case 6). As before, the two transients correspond to step 
change of V* by 1E-2 p.u. and ω* by  1E-3 p.u. 
 

VII. CONCLUSIONS 
The paper has derived a comprehensive transfer-function 
model for a droop-controlled VSI with filter and interface 
transformer operating in parallel to a microgrid comprising 
other units and loads.  This structure can be regarded as the 
elementary unit in a microgrid. The equations of the full state-
space model have been simplified and manipulated in order to 
represent the model as a series of single-input, single-output 
sub-systems with no interlaced connections. In spite of the 
simplifications, the derived model has still enough “structure” 
to represent interactions between control loops, droop and 
virtual impedance. Furthermore, the model lends itself to an 
explicit analytical stability analysis. The impact of the main 
control, droop and virtual impedance parameters on stability 
has been investigated and criteria for a coordinated choice of 
these parameters have been derived. In particular, it is 
recommended to adopt both the resistive and inductive 
components in the virtual impedance, in such a way as to 
preserve stability with minimum voltage drop and VSI ratings. 
Furthermore, the integral time TiV of the voltage controller 
designed according to the traditional decoupled, nested-loop 
plant-scheme has to be corrected in relation to the virtual 
impedance values, and delimitations are found for the optimal 
derivative droop time-constants tdm and tdn as a function of 
virtual impedance, power filter time-constant and cut-off 
frequency of current loops. 
Based on the comparison of the predicted dominant poles to 
the experimental behavior of a 2.4 kVA setup, the model 
proves to be fairly accurate in evaluating stability margins in 
different scenarios and can be proposed as an effective design 
and analysis tool. 
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