
Contents lists available at ScienceDirect

Advances in Water Resources

journal homepage: www.elsevier.com/locate/advwatres

River networks as ecological corridors: A coherent ecohydrological
perspective

Andrea Rinaldo⁎,a,b, Marino Gattoc, Ignacio Rodriguez-Iturbed

a Laboratory of Ecohydrology ECHO/IIE/ENAC, École Polytechinque Fédérale de Lausanne, Lausanne, CH, Switzerland
bDipartimento ICEA, Università di Padova, Padova, IT, Italy
c Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano IT, Italy
d Department of Ocean Engineering, Department of Civil Engineering and Department of Biological and Agricultural Engineering, Texas A & M University, College Station
(TX), USA

A R T I C L E I N F O

Keywords:
Metapopulation models
Metacommunity models
Spatially explicit ecology
Directional dispersal
Substrate topology

A B S T R A C T

This paper draws together several lines of argument to suggest that an ecohydrological framework, i.e. la-
boratory, field and theoretical approaches focused on hydrologic controls on biota, has contributed substantially
to our understanding of the function of river networks as ecological corridors. Such function proves relevant to:
the spatial ecology of species; population dynamics and biological invasions; the spread of waterborne disease.
As examples, we describe metacommunity predictions of fish diversity patterns in the Mississippi–Missouri
basin, geomorphic controls imposed by the fluvial landscape on elevational gradients of species’ richness, the
zebra mussel invasion of the same Mississippi–Missouri river system, and the spread of proliferative kidney
disease in salmonid fish. We conclude that spatial descriptions of ecological processes in the fluvial landscape,
constrained by their specific hydrologic and ecological dynamics and by the ecosystem matrix for interactions,
i.e. the directional dispersal embedded in fluvial and host/pathogen mobility networks, have already produced a
remarkably broad range of significant results. Notable scientific and practical perspectives are thus open, in the
authors’ view, to future developments in ecohydrologic research.

1. Introduction

1.1. The context

Although natural ecosystems are characterized by striking diversity
of form and functions, they often exhibit symmetries, at times emerging
across scales of space, time and organizational
complexity (Levin, 1992). One angle through which such features could
be looked at is via the necessary linkages among macroecological
‘laws’ (Banavar et al., 2007; Southwood et al., 2006) where scaling
theory offers a powerful tool to make way for coherent, unified de-
scriptions of patterns in species’ numbers and their abundance and size.
Patterns also emerge in relation to broad ecosystem features like the
topology of the substrate for ecological interactions (Bertuzzo et al.,
2007; 2011b; Fagan, 2002; Muneepeerakul et al., 2008). It is remark-
able that we observe some emerging features, like the distribution of
species’ persistence times at observation sites (Bertuzzo et al., 2011b),
that are controlled more by the nature of the landscape where inter-
actions occur than by many features specific to the underlying eco-
system. A large body of empirical (Bertuzzo et al., 2011b; Ricklefs,

1987) and laboratory (Altermatt et al., 2011a; Carrara et al., 2012;
Giometto et al., 2013; Holyoak and Lawler, 2005) evidence was col-
lected to support such a view. This result, a rather far-reaching one, is
well captured by spatially explicit ecological approaches which we in-
troduce below.

Within the above ecohydrological framework, river network struc-
tures and their embedded hydrologic dynamics play an important
role (Rodriguez-Iturbe et al., 2009). In fact, they provide supporting
landscapes for ecological processes, many of which are essential to
human life and societies. To name a few, on which we shall return:
Historically, human settlements followed the river networks for the
necessary water resources (Ammermann and Cavalli-Sforza, 1984);
River networks are home to (and provide hierarchical habitat features
for) freshwater fish (Bertuzzo et al., 2007; Fagan, 2002; Muneepeerakul
et al., 2008) and in general stream ecology (Battin et al., 2008; 2003) as
well as pathways to life-threatening waterborne human
diseases (Rinaldo et al., 2017) and zoonoses, i.e. infections that can be
passed between animals and humans. River networks may be also seen
as meta-ecosystems that affect the metabolism of terrestrial organic
carbon in freshwater ecosystems, an important part of the global carbon
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cycle (Battin et al., 2003; Raymond and Bauer, 2001) and the amount of
nutrients removed from streams and reservoirs, affected by network
structure and stream ecology therein (Alexander et al., 2000; Battin
et al., 2008).

Thus, a broad and scientifically worth field of research exists where
signatures coexist of the hydrologic, ecologic, and geomorphologic
dynamics of river basins. This field has proved its importance e.g. by
furthering our understanding of spatially explicit epidemiology and
ecology (Sections 2–4). Our ultimate goal is a comprehensive theory of
how dendritic structures, their associated features and interactions with
external forcings (chiefly, hydrological stochasticity) shape emergent
properties of various ecosystems. Such a theory would help us address a
wide variety of important questions: from conservation plans for
freshwater ecosystems to optimal control for containing water-borne
disease epidemics to proper inclusion of riparian systems into large-
scale resources management (D’Odorico et al., 2010; Rodriguez-Iturbe
et al., 2009). Understanding and control of biological invasions is also
part of this scheme. While providing what we believe is a useful review,
the novelty of this paper lies in its global vision of a research area where
hydrology, ecology, and geomorphology intersect and where we feel
that important advances and their applications will be made in the near
future. This is by no means a definitive statement of the roles of river
networks as ecological corridors but rather a blueprint for future de-
velopments. Throughout the paper, in fact, we suggest research areas
that look to us as particularly promising.

Including ecological dynamics into riverine systems is not an easy
task, given the variety of the taxa involved, their trophic positions, the
interactions between the different organisms ranging from competition
to predation to parasitism. Very frequently, if the aim is to investigate
population dynamics, the analysis is restricted to one or few species or
functional groups. This is what has been done e.g. when exploring zebra
mussel invasions (Mari et al., 2011) or cholera
dynamics (Bertuzzo et al., 2011a). If instead the aim is to investigate
general patterns of biodiversity, one usually considers specific taxa or
groups, usually sharing the same trophic level, e.g. fish or phyto-
plankton or riparian vegetation. In this case, the main operating eco-
logical interaction is interspecific competition, either indirect (e.g. ex-
ploitation of common food resources or nutrients) or direct (e.g. via
interference). Available data are usually lists of presence/absence of
species, possibly complemented by their relative abundances, the lat-
ter’s being averaged over time or simply measured in a given year. If the
identity of the species is neglected, it is possible to derive species-
abundance distributions, namely the number of species that have a
certain abundance or a certain abundance rank. Static models of spe-
cies-abundance relations have long been proposed to that goal (see
e.g. Pielou, 1977 for an excellent review). Dynamic models, in which
the observed relation is obtained as the long-term equilibrium of a
model containing the basic time-dependent processes that shape com-
munity biodiversity, are more recent. The processes shaping the
maintenance of biodiversity are four (Vellend, 2010): selection, namely
the difference in the species fitnesses and therefore in their competitive
ability - it operates in both ecological and evolutionary time; drift,
namely the inherent stochasticity which brings species to extinction and
operates in ecological time scale only when the size of the community is
rather small; speciation, which counters drift and selection over evo-
lutionary timescales; dispersal, which counters local species extinction
via the movement of organisms across space and acts in ecological
timescales. The seminal paper for the related dynamic
models (Caswell, 1976) borrowed concepts of neutral molecular evo-
lution and applied them to the ecological context. The organic devel-
opment of a neutral theory of biodiversity have been presented in a
unified way only much later (Hubbell, 2001). The main tenet therein
assumes that all species are competitively equivalent at a per capita
level, and that selection (i.e. differences in competitive ability, stated
otherwise) is not operating, while drift is countered by speciation or
dispersal (Chave et al., 2002). Concerning this last point, it is important

to remark that most neutral theories are spatially implicit. Usually, they
consider either an isolated community, whose composition is not lo-
cation-specific and is driven by drift, while community survival is
guaranteed by speciation, or a local non-isolated community, whose
survival is guaranteed by immigration from a ‘background’ meta-
community. A coherent theory that considers all the four processes in a
space-explicit framework distinguishing between ecological and evo-
lutionary time scales is still lacking (but see Chave et al., 2002;
Economo and Keitt, 2008 for notable attempts). The present paper aims
at partially filling such a gap by presenting a series of models that are
always space-explicit and suited to specifically describing the peculiar
structure (and thus connectivity) of river basins. We proceed step by
step, first including the dendritic substrate of river basins into the
neutral paradigm of biodiversity, then breaking perfect neutrality by
adding either space-dependent carrying capacities of local communities
or elevational niche apportionment. Species invasion and disease
spread is subsequently investigated by paying greater attention to
realistic details, though with a species-specific focus and within fluvial
ecological substrates.

To set the context, we start with an example of the simplest dynamic
model of biodiversity, the neutral one (Hubbell, 2001). In fact, inclu-
sion of all factors, no matter how detailed and realistic, seemed hardly a
good starting point for the quest of how biodiversity patterns are in-
fluenced by river network configuration (Rodriguez-Iturbe et al., 2009).
It should be noted that some unrealistic assumptions of the neutral
theory have attracted much criticism (McGill et al., 2006; Nee, 2005;
Purves and Turnbull, 2010) e.g. in terms of timescales, testability and
robustness; also, the neutral theory overlooks much species-specific
ecological information, which is required when studying the dynamics
of the system or of a set of particular species and the interactions among
them (Chave et al., 2002). However, the neutral model has the ad-
vantage of letting us introduce the biodiversity-shaping processes one
by one; in fact, the neutral theory switches off all the differences be-
tween species and all the interactions with the exception of strong
competition for space (both intra- and inter-species), as we shall recall
below. Being focused on competition for space, it is thus particularly
suited to test the fundamental differences between the spatial structure
of river basins and 2D isotropic landscapes. Our first approach thus
focuses on the quantitative assessment of the role of directionality and
network structure on ecological organization, in particular on patterns
of diversity distribution. Here, we show how the implementation of the
neutral theory behaves in 2D lattices or 2D space-filling trees imposing
directional dispersal (Muneepeerakul et al., 2007; Rodriguez-Iturbe
et al., 2009). Two different frameworks, namely an individual-based
contact model and a metacommunity model, will be introduced to that
end. The investigation on the differences between the two substrates
(the common name for the ecosystem landscape where interactions
occur) proved important to later developments, chiefly laboratory ones
(Section 2).

1.2. Neutral individual-based models and beyond

In our neutral individual-based model, a 2D lattice is termed ‘sa-
vanna’ to echo its ecohydrological background, that is, the ecological
substrate is represented simply by a square lattice in which each site, or
pixel, is occupied only by one individual, say, a tree. By contrast, as
river landscapes, we use a space-filling tree (an Optimal Channel
Network (OCN, see Appendix) built in a lattice of the same size of the
savanna. In a space-filling network, all sites are channelized (Fig. 1b).
The dynamics at each time step is defined as follows. A randomly se-
lected individual (i.e., at a randomly picked pixel) dies. With prob-
ability ν, termed diversification rate, this site is occupied by a new
species; with probability − ν1 , the site is colonized by an offspring of
one of the neighbours with equal probability. The two landscapes differ
only in the definition of neighbours. For the savanna, in fact, the off-
spring that colonizes the empty site is chosen among the individuals
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that occupy the four nearest neighbours (boundary effects at the edges
of the lattice are removed by implementing a genetic
algorithm (Bertuzzo et al., 2011b; Muneepeerakul et al., 2007)). For the
networked landscape, the neighbourhood of a pixel is constituted by the
nearest pixels connected to it by the network edges. Thus dispersion is
directional in that physical proximity may not imply connectivity. The
number of drainage directions in or out of the node define the viable
connectivity at any site (pixels physically neighboring the site where
the individual dies do not count for its replacement if unconnected to
the site). Notice that all pixels, except for the outlet, have only one
downstream neighbour; source pixels have no upstream neighbours,
whereas all the others have one or more upstream neighbours.

Patterns are obtained by iterating the process until it reaches a
stationary state. The two upper insets of Fig. 1 illustrate the resulting
spatial biodiversity configuration in the two landscapes: pixels labeled
by the same colour represent individuals belonging to the same species.
The lower panel shows the typical associated rank-abundance curves.
The results are remarkably different. It can be noticed, in particular,
that the configuration of the space and the directionality of the dis-
persal imposed by the network landscape determine a higher species
richness. Moreover, the spatial configuration of the patches of the same
species in the network landscape have sharp boundaries that resemble
the boundaries of subbasins. Differences only arise because of the dif-
ferent connectivity imposed by the two landscapes. Adding another
factor typical of the dispersal in network landscape such as biased
transport (e.g. offsprings colonizing preferably downstream) would
only enhance the observed differences. This proved an important result.

Although the results from this simple neutral individual-based
model are not to be taken as fully representative of reality, they rather

forcefully demonstrate that differences may arise in key biodiversity
features simply because of the presence of the drainage network acting
as ecological substrate. Thus, the potentially fundamental roles played
by the river network warranted more refined modelling schemes to
investigate other important issues. In that light, another set of results
from a more structured neutral model (Muneepeerakul et al., 2008;
2007) proves revealing. In this model, the landscape is organized in
local communities (LC) each of which contains a certain number of
sites; every site contains only one individual. In this way, a genuine
metacommunity model is defined. The dynamic rule is similar to the
one used for the previous unstructured model, and is repeated here for
clarity. At each time step, an individual, randomly selected from all
individuals in the system, dies. With probability ν, the diversification
rate, this will be occupied by a new species; with probability − ν1 , the
empty site will be colonized by an offspring of a species already existing
in the metacommunity. In the latter case, the probability Pij that the
empty site in LC i will be colonized by a species from LC j is determined
as follows (Muneepeerakul et al., 2007):

= −
∑ =

P ν
K H

K H
(1 ) ,ij

ij j

j
N

ij j1 (1)

where Kij is the dispersal kernel, the fraction of offspring produced at LC
j that arrives at LC i after dispersal; Hj is the habitat size of LC j, that is
the number of sites in LC j, and N is the total number of LCs. All in-
dividuals in LC j have the same probability of colonizing the empty unit
in LC i where the death took place. Note that the standard neutral
theory is in a way improved by assuming that different LCs have dif-
ferent habitat size. Neutrality still holds for dispersal, that is, the dis-
persal kernel of every species is assumed to be the same as in the pre-
vious example. In the context of metacommunity models, the dispersal
kernel Kij contains the information on the landscape spatial structure
and how individuals move about. Therefore, the key difference between
savanna and river network metacommunities lies in their respective
dispersal kernels. The dispersal kernels are typically assumed to take
the form of exponential decay. Note that unlike in contact processes
(REF.), an offspring can travel farther than its immediate neighbors in
each time step.

In metacommunities, biodiversity patterns are measured by − −α β,
and γ-diversities (Anderson et al., 2011; Whittaker, 1972).α-diversity is
a local description of biodiversity and γ- a global one, both being in-
ventory measures because they refer to the number of species. β-di-
versity is a differentiation diversity measuring the rate of change in, or
the turnover of, the species, measuring how species compositions in
local communities differ from one another. In the following, γ-diversity
is defined as the total number of species in the entire metacommunity. α
diversity is a number of species in a randomly chosen LC; it is also
useful to consider its mean value averaged across all LCs, denoted by
⟨α⟩. The between-community diversity, or β-diversity, is a conceptual
quantity that can be defined in many ways, all of which share the same
general idea: the higher the β-diversity, the more different the local
communities. Here, it is defined as γ/⟨α⟩ and one is referred to the
original references for related results (Muneepeerakul et al., 2007).

The main result of the structured metacommunity model is that
network structure and dispersal anisotropy affect decisively any bio-
diversity measures. In this case, the dispersal rate is defined as the
fraction of propagules that is dispersed away from their birth
local community and the directionality is defined as the natural loga-
rithm of the ratio between the fractions of propagules at the nearest
neighbors in the preferred and opposite directions of
dispersal (Muneepeerakul et al., 2007). All three diversity measures —
in both types of landscapes shown in Fig. 1 — appear to be quite sen-
sitive to dispersal anisotropy. In particular, river networks result in
metacommunities with higher β diversity, i.e. more localized and het-
erogeneous ecosystems. This is due to a containment effect: in river
basins, cross-subbasin dispersal is hindered by topographical divides,

Fig. 1. Comparison between neutral biodiversity patterns obtained by the neutral model
described in the text within space-filling networks in a square domain: a ‘savanna’ (a two-
dimensional lattice) and a fluvial network where directional dispersal to nearest-neigh-
bours is regulated by an OCN connectivity matrix (Rodriguez-Iturbe and Rinaldo, 2001).
We refer here to 2D landscapes as ‘savannas’ only for easier mental reference to the real
world, as the neutral model used to produce the above plot does not include all ecological
features of real savannas. These results form the basis of our theoretical motivation upon
which additional realistic complications will be built. Species spatial patterns (upper
insets) and their species rank-abundance curves are shown. The simulations are run on a
250-by-250 lattice with = −ν 10 4. (after Muneepeerakul et al., 2007; Rodriguez-Iturbe
et al., 2009).
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resulting in subbasins being more dissimilar from one another, echoing
important field evidence (Fagan, 2002).

1.3. Distribution of persistence times

Another macroecological pattern is relevant to our general tenet.
Specifically, we study the distributions of local species persistence time,
τ, defined as the timespans between its emergence and local extinction
in a given geographic region. Empirical distributions pertaining to
different taxa have been analyzed in the above space-explicit
framework (Bertuzzo et al., 2011b), notably breeding birds and her-
baceous plants. The approach critically accounts for the finiteness of the
observational period of any field data, a problem that is often over-
looked and that may remarkably distort the true features of persistence
times. Their distributions exhibit power-law scaling limited by a cut-off
determined by the rate of emergence of new species (Bertuzzo et al.,
2011b). Note that, although generalizations are possible, the study of
persistence times was conducted on trophically equivalent co-occurring
species.

Theoretical investigations on how the scaling features depend on
the topological structure of the spatial interaction networks proved
worthwhile (Bertuzzo et al., 2011b). At a local scale, τ is largely con-
trolled by ecological processes operating at short timescales (e.g. po-
pulation dynamics, immigration, contractions/expansions of species
geographic ranges) as local extinctions are dynamically balanced by
colonizations (Levins, 1969; MacArthur and Wilson, 1967; Ricklefs,
1987). At a global scale, originations and extinctions are controlled by
mechanisms acting on macroevolutionary timescales (Diamond, 1989;
Jablonski, 2008). From a theoretical viewpoint, the simplest baseline
demographic model is a random walk without drift, according to which
the abundance of a species in a geographic region has the same prob-
ability of increasing or decreasing by one individual at every time step.
According to this scheme, local extinction is equivalent to a random
walker’s first passage to zero, and thus the resulting persistence time
distribution has a power-law decay with exponent 3/2 (Chandrasekhar,
1943; Newman, 2005). A more realistic description can be achieved by
accounting for basic ecological processes like birth, death, migration
and speciation, possibly in neutral mean field schemes (Hubbell, 2001;
Muneepeerakul et al., 2008; Volkov et al., 2003), as described above.
Here, when a randomly selected individual dies and the space or re-
sources are freed up for colonization, with probability ν the site is taken
by an individual of a species not currently present in the system. Thus ν
is equivalent to a diversification rate and accounts for both speciation
and immigration from surrounding communities. With residual prob-
ability − ν1 the died individual is replaced by one offspring of an in-
dividual randomly sampled within the community (Chave et al., 2002;
Durrett and Levin, 1996) (global, scale-independent dispersal). As such,
the probability of colonization by a species depends solely on its re-
lative abundance in the community. The asymptotic behavior (t≫ 1) of
the resulting persistence time distributions (i.e. pτ(t)) exhibits a power-
law scaling limited by an exponential cut-off:

∝ − −p t t e( ) ,τ
α νt (2)

with exponent =α 2 (Pigolotti et al., 2005). In Eq. (4), time is expressed
in generation time units Hubbell (2001), i.e. it has been rescaled in such
a way that the death rate is equal to one. Notably, in the mean field
scheme the probability distribution depends solely on the diversifica-
tion rate which accounts for speciation and migration processes and
imposes a characteristic timescale 1/ν for local extinctions. While
speciation rates are not expected to vary too much with the spatial scale
of analysis, immigration rates decrease as the spatial scale increases. In
fact, the possible sources of migration (chiefly dependent on the geo-
metrical properties of the boundary and the nature of dispersal pro-
cesses) are argued to scale sub-linearly with the community
size (Bertuzzo et al., 2011b), which in turn is linearly proportional to
geographic area (Brown, 1995; MacArthur and Wilson, 1967). As

continental scales are approached, migration processes (almost) vanish
and the diversification rate ultimately reflects only the speciation rate.

We now provide evidence of different, non-trivial exponents ob-
servable as a function of the topology of the substrate. Instead of a
mean-field model, we use a space-explicit scheme in which dispersal
limitation and the actual network of spatial connections are taken into
account. The neutral game described above has been implemented in
regular one-, two- and three-dimensional lattices (Fig. 2) in which every
site represents an individual, whose species is labeled via a specific
color (Bertuzzo et al., 2011b). Key to our reasoning, we explore the
patterns emerging from the application of the model to dendritic
structures mimicking riverine ecosystems where dispersal processes and
ecological organization are constrained by the network structure. To
this end, we use again Optimal Channel Networks (OCNs) (Rinaldo
et al., 2014; 1992; Rodriguez-Iturbe and Rinaldo, 2001; Rodriguez-
Iturbe et al., 1992) (Appendix) as space-filling (within arbitrary do-
mains) mathematical constructs that yield aggregation patterns and
landscape forms statistically indistinguishable from real-life river
networks (Rinaldo et al., 1999). To account for limited dispersal effects,
only the offsprings of the nearest neighbors of the dying individual are
allowed to possibly colonize the empty site. In the networked landscape
the neighbourhood of a site is defined by the closest upstream and
downstream sites. Limited dispersal, in fact, promotes the clumping in
space of species, which enhances their coexistence and survival
probability (Chave et al., 2002; Kerr et al., 2002).

Fig. 2 shows the results of the neutral exercise described above –
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Fig. 2. (A) Persistence time exceedance probabilities Pτ(t) (probability that species’ per-
sistence τ be ≥ t) for the neutral individual-based model (Chave et al., 2002; Durrett and
Levin, 1996; Hubbell, 2001) with nearest-neighbor dispersal implemented on the dif-
ferent topologies shown in the inset (Bertuzzo et al., 2011b). Note that in the power-law
regime if pτ(t) scales as −t ,α ∝ − +P t t( )τ α 1. It is clear that the topology of the substrate
affects macroecological patterns. In fact, the scaling exponent α is equal to 1.5 ± 0.01 for
the one-dimensional lattice (red), = ±α 1.62 0.01 for the networked landscape (yellow),
1.82 ± 0.01 and 1.92 ± 0.01 respectively for the 2D (green) and 3D (blue) lattices.
Errors are estimated through the standard bootstrap method. The distribution Pτ(t) for the
mean field model (global dispersal) reproduces the exact value =α 2 (black
curve) (Bertuzzo et al., 2011b). For all simulations = −ν 10 5 and time is expressed in
generation time units (Hubbell, 2001). The panels in the lower part sketch a color-coded
spatial arrangements of species in a networked landscape (B), in a two-dimensional lattice
with nearest-neighbor dispersal (C), and with global dispersal (D). (after Bertuzzo et al.,
2011b).
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containing a truly remarkable message. In fact, in all the considered
landscapes, persistence time distributions follow a finite-size power-law
behaviour characterized by smaller, highly non-trivial scaling ex-
ponents, with respect to the mean-field model. These power laws too
are inevitably limited by an upper exponential cutoff. Persistence time
distributions deducted from the theoretical models change when dis-
persal kernels more general than dispersal from nearest neighbors are
considered. As expected, as long as the mean dispersal distance remains
small with respect to the system size, the distribution exhibits a longer
transient regime but eventually ends up scaling as the one predicted by
the nearest neighbors dispersal (Bertuzzo et al., 2011b).

Relaxing the neutral assumption (Hubbell, 2001) by implementing
an individual-based competition/survival tradeoff model (Chave et al.,
2002) has also been tested (Bertuzzo et al., 2011b). Specifically, species
with higher mortality rates are assumed to hold more competitive
ability in colonizing empty sites (Brown, 1995; Tilman et al., 1994). It is
important to note that the trade-off model also exhibits power-law
distributions of τ, showing exponents indeed close to those of the
neutral model. By contrast, the mean time to extinction is larger in the
trade-off model and consequently species richness is higher. We thus
conclude that the theoretical results concerning the shape of persistence
time distributions are robust with respect to both change in the dis-
persal range and relaxations of the neutrality assumptions. However,
our results should not be seen as a test for the neutrality
hypothesis (Hubbell, 2001) for empirical distributions, but rather as
tools to reveal emerging universal and macroscopic patterns regardless
of the detailed features of the particular model. Incidentally, a mean-
ingful assessment of species’ local extinction rates is deemed valuable
from a conservation perspective. Species persistence time distributions
are in fact a robust tool to quantify the timespan of the species assembly
currently observed within a given geographic area and, to some extent,
predict the expected amount of future local extinctions. Mathemati-
cally, in fact, τ is defined as the time to local extinction of a species
randomly sampled from the system regardless of its current abundance.
Although these patterns cannot provide information about the behavior
of a specific species or of a particular patch inside the ecosystem con-
sidered (e.g. a biodiversity hotspot) they can effectively describe the
overall dynamical evolution of the ecosystem diversity.

1.4. Testing directional connectivity in the laboratory

The abstract examples discussed above strongly suggest that direc-
tional dispersal has a major impact on the resulting biodiversity dis-
tributions. In other words, the above examples imply that the topology
of the substrate for ecological interactions has a defining role for the
distribution of species richness in space and time regardless of the
ecosystem’s specific features and environmental drivers. Clearly, this
suggestion has had a fundamental importance in the way we now look
at river networks as ecological corridors. For instance, β-diversities
computed separately for headwaters and confluences test the differ-
ences in species composition within the river network structure.
Headwaters exhibit not only a higher variability in α-diversity, but also
a higher β-diversity compared with confluences (see Benda et al., 2004;
Carrara et al., 2012; Fagan, 2002). These results reveal the crucial
importance of headwaters as a source of biodiversity for the whole
landscape. In natural systems, other local environmental factors may
play a role in structuring ecosystems (Brown and Swan, 2010).
Nevertheless, the neutral metacommunity approach sheds light on the
single effect of directional dispersal on biodiversity. Note that the
patterns found in river network geometries are predicted to be even
stronger in the presence of a downstream dispersal, which is typical for
many passively transported riparian and aquatic species in river
basins (Bertuzzo et al., 2007; Morrissey and de Kerckhove, 2009). We
thus suggest that species constrained to disperse within dendritic cor-
ridors are characterized by increased spatial persistence and lower ex-
tinction risks. On the other hand, heterogeneous habitats sustain higher

levels of biodiversity among local communities that can be altered by
modifying the connectivity of the system, with broad implications for
community ecology and conservation biology. For simplified land-
scapes, often described geometrically by linear or lattice structures, a
variety of local environmental factors exist that create and maintain
diversity among habitats (de Aguiar et al., 2009; Hubbell, 2001; Volkov
et al., 2003). Many highly diverse landscapes, however, exhibit hier-
archical spatial structures that are shaped by geomorphological pro-
cesses. They are neither linear nor lattice-like, and therefore environ-
mental substrates for ecological interactions shaped as trees may be
appropriate to describe biodiversity of species living within fluvial
dendritic ecosystems (Benda et al., 2004; Carrara et al., 2012).

The above suggestions are far-reaching. In fact, species or popula-
tions whose ecological dynamics is constrained by directional dispersal
would be inherently more predictable as the effects of other, un-
controllable heterogeneities would be less dominant. However, field
validations cannot prove or disprove such ansatz, for a number of ob-
jective reasons (chiefly, the practical impossibility of replicating all
ecological conditions in diverse topological substrates for the ecological
interactions). We thus resorted to laboratory
experimentation (Altermatt et al., 2011a; 2011b; Holyoak and Lawler,
2005) to explore the extent of the validity of the theoretical prediction.
As the theoretical work suggests that dispersal constrained by the
connectivity of specific habitat structures, such as river networks, can
explain observed features of biodiversity, we designed experiments to
that end. Notice that no direct evidence existed at the time.
Carrara et al. (2012); 2014) experimentally tested whether connectivity
per se is capable of shaping diversity patterns in dendritic microcosm
metacommunities at different levels. Fig. 3 illustrates the general set-
ting of the lab experiments.

The main results produced along the above line of thought are
summarized here. Local dispersal in isotropic lattice landscapes
homogenizes local species richness and leads to pronounced spatial

Fig. 3. Design of the connectivity experiment carried out in the ECHO Lab at EPFL: (a) the
river network (RN) landscape (Lower: red points label the position of LCs, and the black
point is the outlet) derives from a coarse-grained optimal channel network (OCN) that
reflects the 3D structure of a river basin (Upper); (b) to (e): the microcosm experiment
involves 21 protozoan and rotifer species (Carrara et al., 2012; 2014); (e) a subset of the
species employed is shown to scale (for details see SI Materials and Methods
in Carrara et al. (2012); 2014)) (scale bar = 100 µm); (c) communities were grown in 36-
well plates, where the dispersal protocol has been carried out rather accurately and with
an appropriate number of replicas (Altermatt et al., 2011a; 2011b; Holyoak and Lawler,
2005); (d) and (e): dispersal to neighboring communities followed the respective network
structure: blue lines are for RN (d), same network as in A, and black lines are for 2D lattice
with four nearest neighbors (e) (after Carrara et al., 2012).
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persistence (Fig. 4). On the contrary, dispersal along dendritic land-
scapes leads to higher variability in local diversity and among-com-
munity composition, thereby confirming by replicated laboratory ex-
perimentation the theoretical prediction based on abstract
models (Carrara et al., 2012). Although headwaters exhibit relatively
lower species richness, they are crucial for the maintenance of regional
biodiversity. This result echoes prior theoretical evidence (Benda et al.,
2004; Fagan, 2002). Such results establish that spatially constrained
dendritic connectivity is a key factor for community composition and
population persistence (Carrara et al., 2012).

Moreover, further laboratory work experimentally disentangled the
effect of local habitat capacity (i.e., the patch size) and dendritic con-
nectivity on biodiversity in aquatic microcosm metacommunities by
suitably arranging patch sizes within river-like networks (Carrara et al.,
2014). Results are summarized in Fig. 5. Specifically, the individual
effects of connectivity and habitat capacity on microbial diversity was
singled out by using three different configurations of patch sizes (Riv-
erine, Random, and Homogeneous), connected following a river net-
work topological and aggregation template (Fig. 5) suitably derived
from OCNs (Appendix). In Riverine landscapes, local habitat capacity
correlates with position along the network and distance to the outlet
(Fig. 5 A). Larger downstream communities thus consistently receive
more immigrants from upstream communities. In the Homogeneous
and Random landscapes (Fig. 5 B and C respectively), local habitat
capacity (i.e., the patch size) does not preserve any geomorphological

hierarchy embedded in the scaling of total contributing area at any
point in the network scaling as observed in natural river
systems (Leopold et al., 1964; Rodriguez-Iturbe and Rinaldo, 2001).

Overall, more connected communities that occupy a central position
in the network exhibited higher species richness, irrespective of patch
size arrangement. High regional evenness in community composition
was found only in landscapes preserving geomorphological scaling
properties of patch sizes (i.e. a patch volume proportional to the
number of contributing nodes, see Carrara et al., 2014). In these
landscapes, some of the rarer species sustained regionally more abun-
dant populations compared to landscapes with homogeneous patch size
or landscapes with spatially uncorrelated patch size (Carrara et al.,
2014).

The bulk of the experimental replicas (Figs. 4 and 5) suggests that
altering the natural link between dendritic connectivity and patch size
strongly affects community composition and population persistence at
multiple scales, precisely as predicted by the neutral model and by
every (neutral and non-neutral) metacommunity framework applied to
the same topologically diverse matrices. We note that the same applies
to broader classes of networked environments (Benda et al., 2004),
including those artificially created by human or host mobility
networks (Erlander and Stewart, 1990) that are so relevant to the
spread of disease epidemics – on which we shall return later.

2. Species’ dynamics and fluvial landscapes

In what follows we shall not pursue a review of the subject, broad as
it is, but rather a specific choice of topics relevant to the general con-
cepts outlined in Section 1, which will therefore find support and
concrete applications.

2.1. Fish diversity in the Mississippi-Missouri river system

The first example deals with the prediction of fish diversity patterns
in the large Mississippi-Missouri (MMRS) river system. In the specific
case of riverine fish biodiversity, patterns of local and basin-scale dif-
ferences must relate to energy availability, habitat heterogeneity, scale-
dependent environmental conditions and river discharge (Fagan, 2002).
Therefore, the neutral metacommunity models of the type introduced in
Section 1 was made more realistic by better describing the structure of
the local community (Muneepeerakul et al., 2008). In fact, each local
community is endowed with a carrying capacity that depends on its
location (specifically, total contributing catchment area as a proxy for
fluvial habitat size (Rodriguez-Iturbe and Rinaldo, 2001)), and the re-
levant habitat, and each site within the LC does not host a single in-
dividual, rather a small subpopulation of a certain species. The physical
context is described in Fig. 6.

Model simulations proceed largely through a spatially explicit ap-
proach akin to that described in Section 1, with slight modifications
discussed below. Every direct tributary area (DTA, Fig. 6) is assumed to
be always saturated at its capacity i.e. no available resources are left
unexploited. Each DTA hosts a certain number of fish units, that de-
pends on the location. At each time step, a fish unit, randomly selected
from all fish ‘units’ (sensu (Muneepeerakul et al., 2008)) present in the
system, dies and the resources that previously sustained the unit are
freed and available for sustaining a new fish unit. With probability ν,
the analog of the diversification rate in Section 1, the new unit will be
occupied by a new species. Thus here the diversification is to be in-
terpreted as a rate per death due to speciation, to external introduction
of non-native species, or to immigration (and reimmigration) of a new
species from outside the MMRS. With probability − ν1 , the new unit
will belong to a species already existing in the system. In the latter case,
with probability Pij (Eq. (1)) an empty unit in DTA i will be colonized by
a species from DTA j (Muneepeerakul et al., 2008). In this context, with
reference to Eq. (1), Hk is the habitat capacity of the DTA k (defined
below), and N is the total number of DTAs (here, =N 5824, while the

Fig. 4. Experimental and theoretical local species richness in river network (RN) and
lattice (2D) landscapes. (A and B) Mean local species richness (α-diversity, color coded;
every dot represents a LC) for the microcosm experiment averaged over the six replicates.
(C and D) Species richness for each of these replicates individually. (E and F) The sto-
chastic model predicts similar mean α-diversity patterns (note different scales).The effect
of the hierarchical dendritic architecture proves statistically significant – in fact,
decisive Carrara et al. (2014).
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total number of fish units is 436,731). All the fish units in DTA j have
the same probability of colonizing the empty unit in DTA i where the
‘death’ took place. Death must be interpreted as the extinction of the
species subpopulation hosted by the fish unit. The model results that we
outline in the following are the average patterns after the system
reaches a statistically steady state. Specific dispersal kernels are as-
sumed to determine how the fish species move within the river
network (Muneepeerakul et al., 2008) (Kij in this context is the prob-
ability that a randomly selected fish species present in DTA j arrives at
DTA i after dispersal. Here, normalization constants are determined
numerically so that no fish can travel out of the network).

A necessary note pertains to the neutral assumption in this context,
indeed strong because fish species obviously differ in their dispersal
abilities. However, the ‘functional equivalence’ between species is a key
way in which the neutral theory of biodiversity departs from classical
ecological models. We assume the species equivalence to study just how
good a fit the neutral metacommunity model can produce to our data in
the absence of detailed, species-specific information. As such, the model
is engineered to single out the individual role of the dendritic structure
of the topological substrate for ecological interactions. An important
innovation of the metacommunity model with respect to the zero-order
model outlined in Section 1, concerns the imposition of hierarchical
local habitat capacity at any site j, Hj. In fact, habitat capacity of DTA i,
Hi, is determined by a properly normalized relation Hi∝AARPiWAi

where WAi denotes total contributing (watershed) area at site i and
AARPi is the average annual runoff production (Fig. 6c). Total con-
tributing area at any point of a river network can be directly computed
from suitably treated digital elevation maps (Rodriguez-Iturbe and
Rinaldo, 2001).

The map of local species richness shown in Fig. 6b suggests that the
DTA endowed with the maximum α-diversity (156 species) is observed
somewhat mid-way through the MMRS. The sharp decrease empirically
observed in species richness occurring around the 100°W meridian is
known to correspond to sharp gradients of annual precipitation and
runoff production (Muneepeerakul et al., 2008) (Fig. 6c). Although
these gradients may partly explain the semi-arid climate and low fish
diversity in the western half of the MMRS, Muneepeerakul et al. (2008)
argued that the western DTAs are low in fish diversity both because
their climate is dry and because they are upstream portions of the river
network.

The results are displayed in Fig. 7. Fig. 7a illustrates the frequency
distribution of local species richness (LSR), best fit to empirical
data (Muneepeerakul et al., 2008), whose two peaks at low and high
values reflect the difference between the western and eastern halves of
the MMRS. Fig. 7 b,c shows computed and measured LSR as a function
of the topological distance from the network outlet. It is totally re-
markable the fact that the LSR profile shows a significant increase in the
downstream direction, except at the very end where the freshwater fish-
habitat capacities are significantly reduced by salinity, co-occurrence/
intrusion by some freshwater-tolerant estuarine or coastal fish species,
human disturbance and pollution. The overall downstream increase in
richness results from the converging character of the river network and
is steepened by the dry-wet climatic gradient (Muneepeerakul et al.,
2008). The statistically significant, major impact of modulated habitat
capacity is clearly suggested by the comparison of the results from the
modified neutral metacommunity model and those from zero-order
model where habitat capacity is assumed constant (Fig. 7c). Neutral
metacommunity patterns result equally good for rank-abundance
curves and suitable measures of β-diversity (not shown here,
see Muneepeerakul et al., 2008, Fig. 4), where particularly significant is
the resulting long-distance similarity in species composition maintained
by species endowed with extremely large occupancies.

The neutral metacommunity model reproduces surprisingly well the
general spatial biodiversity patterns of the MMRS freshwater fish once
hydrologic controls, like the effects of average annual runoff production
on fish-habitat capacities, are enforced. A wide spectrum of observed
biodiversity patterns are reproduced, as suggested by Figs. 6 and 7. As a
specific example, in addition to the general trend and magnitude, the
model also captures fine-structured fluctuations of the LSR profile
(Fig. 6). Simultaneous fits of diverse patterns (and others, such as the
species-area relationship) make for a very demanding test for any
model, especially one using few parameters as in this
case (Muneepeerakul et al., 2008). The model therefore provides eco-
logical insight despite its simplicity.

One of the ecological meaningful insights obtained from the theo-
retical exercise is that the parameters corresponding to the best fit
imply that the spread of the average fish species is quite symmetrical,
i.e. it is not significantly biased either in the upstream or the down-
stream direction. The model results also suggest that, on average, most
fish disperse locally (that is, to nearby DTAs) but a non-negligible

Fig. 5. Spatial configuration of dendritic networks
and corresponding patch sizes in the microcosm ex-
periment. A, Riverine landscapes (blue) preserved
the observed scaling properties of real river basins; B,
Random landscapes (red) had the exact values of
volumes as in the Riverine landscapes, randomly
distributed across the networks; C, in Homogeneous
landscapes (green) the total volume of the whole
metacommunity was equally distributed to each of
the 36 local communities. Patch size (size of the
circle) is scaled to the actual medium volume. Five
unique river-like (dendritic) networks were set up
(columns); dispersal to neighboring communities
followed the respective network structure, with a
downstream bias in directionality toward the outlet
community (black circled dot). (after
Carrara et al. (2014)).
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fraction travel very long distances. Given the broad range of environ-
mental conditions covered, the demonstration that a simple neutral
metacommunity model coupled with an appropriate habitat capacity
distribution and dispersal kernel can simultaneously reproduce several
major observed biodiversity patterns has far-reaching implications.
These results suggest that only parameters characterizing average fish
behaviour – as opposed to those characterizing biological properties of
all different fish species in the system – and habitat capacities and
connected structure suffice for reasonably accurate predictions of large-
scale biodiversity patterns, namely those patterns that do not include
the identity of species. As we said in the previous section, neutral
models cannot explain all those patterns that are species-specific.
However, the neutral metacommunity model may represent a null
model against which more biologically realistic models ought to be
compared (sensu Akaike (Akaike, 1974; Corani and Gatto, 2007)).
Moreover, furthering our understanding of fluvial ecological corridors
(related to general metapopulation persistence criteria for spatially
explicit models (Casagrandi and Gatto, 2002; Mari et al., 2014b)) will
allow us to improve the alignment of ecological models and data.

2.2. Elevational gradients of biodiversity

The second example, which we deem paradigmatic as well, deals
with geomorphic controls on elevational gradients of species’
richness (Bertuzzo et al., 2005). In this case, the lead role is taken by the
structure of ecological interactions allowed by the available ecological
substrate, the mountain landscape, which controls the gradients of

Fig. 6. (a) River network geometry and localisation in the conterminous USA (Mari et al.,
2011); (b) Local species richness (LSR), or α-diversity, of freshwater fish in each reference
elementary area (or DTA) at the USGS HUC8 scale (Muneepeerakul et al., 2008) of the
Mississippi-Missouri large river system. The biogeographical data on fish used in the
analysis were obtained from the NatureServe (NatureServe, 2004) database of US fresh-
water fish distributions, which summarizes museum records, published literature and
expert opinion about fish species distribution in the United States, and is tabulated at the
USGS HUC8 scale (Seaber et al., 2004); (c) Annual average runoff production (AARP)
(mm) in the same hydrologic system. AARP is the portion of precipitation drained by the
river network at each site, computed from the water balance of precipitation, evapo-
transpiration and infiltration. The map in (c) is estimated from the streamflow data of
small tributaries collected from about 12,000 gauging stations averaged over the period

−1951 1980 (Muneepeerakul et al., 2008).

Fig. 7. Patterns of local species richness (LSR) produced by the neutral metacommunity
model in the MMRS system (Muneepeerakul et al., 2008). (a) Frequency distribution of
LSR; (b) LSR profile as a function of the instream distance measured in DTA units from the
outlet. The squares (average values) with error bars (ranging from the 25th to the 75th
quantile) and bar plots represent empirical data, and the lines represent the average
values of the model results; (c) as in (b) where for comparison a constant habitat capacity
(dashed line) is employed (after Muneepeerakul et al., 2008).
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biodiversity drivers. Key is the fluvial landscape again, this time sui-
tably constructed in three dimensions. The fluvial landscapes we adopt
are real topographies taken from digital elevation models (Rodriguez-
Iturbe and Rinaldo, 2001), and replicated synthetic OCNs within a
given domain through the transformation of a planar aggregation
structure into a topographic landscape, which is made possible by the
use of a slope-area relationship relating total contributing area at a
point to the local topographic gradient (Rodriguez-Iturbe and
Rinaldo, 2001). OCNs (Rinaldo et al., 2014; 1992; Rodriguez-Iturbe and
Rinaldo, 2001; Rodriguez-Iturbe et al., 1992) (Appendix) prove once
more extremely versatile.

The rationale for our choice of examples is simple. How biodiversity
changes with elevation has long attracted the interest of researchers
because it provides key clues to how biota respond to geophysical
drivers. Experimental evidence reveals that biodiversity in ecosystems
significantly affected by the elevational gradients often peaks at inter-
mediate elevations (Colwell et al., 2004; Gaston, 2000; Körner, 2000;
2007; Lomolino, 2001; McCain and Grytnes, 2010; Nogues-Bravo et al.,
2008; Rahbek, 2005). A factor that had been overlooked for a long time
was the fact that mountainous landscapes hold fractal
properties (Mandelbrot, 1983; Rodriguez-Iturbe and Rinaldo, 2001)
with elevational bands forming habitat patches that are characterized
by different areal extent and connectivity, well-known drivers of bio-
diversity. Specifically, the frequency distribution of elevation in real-
life landscapes is distinctly hump-shaped, with the majority of land
situated at midelevations (Mandelbrot, 1983; Rodriguez-Iturbe and
Rinaldo, 2001) (Fig. 8).

Elevational patterns showing a peak in elevational distributions at
mid-elevation are ubiquitous in landscapes shaped by fluvial erosion
when a sufficiently large region rather than a single slope or mountain
is considered. It should be noted that this pattern is altered only if large
areas outside runoff-producing zones (e.g., large plains) are included in
the domain (Rodriguez-Iturbe and Rinaldo, 2001). Mountains are no
cones (nor clouds are spheres or coastlines simple broken lines in the
celebrated words of Mandelbrot, 1983) and therefore simple 1D slopes
are highly misleading as representation of Nature’s topographies.

Mountain landscapes are rather complex self-affine fractal
structures (Rodriguez-Iturbe and Rinaldo, 2001). Within an ecological
context, this fact has seriously misled researchers interested in eleva-
tional trends and in natural experiments conducted along gradients of
elevation, because the mountain-cone analogy suggests a monotonically
decreasing distribution of elevation. The area of available habitat
within a given elevational band may have a direct effect on the di-
versity of the regional community it hosts (γ-diversity (Kraft et al.,
2011; Rahbek, 1995; 2005; Sanders, 2002), as predicted by the species-
area relationship (Rosenzweig, 1995)). The area of available habitat
may also have an indirect effect on the local species richness because
local communities can be assembled from a more diverse regional pool
of species that are fit to live at similar elevation (Romdal and
Grytnes, 2007).

Because there exist two classes of environmental drivers, those al-
titude-specific (such as atmospheric pressure and temperature) and
those that are not (such as moisture, clear-sky turbidity and cloudiness,
sunshine exposure and aspect, wind strength, season length, geology
and human land use) (Körner, 2000; 2007), empirical results may
hardly sort out unambiguously general rules, if at all existing. The
importance of theoretical predictions of expected patterns of species
richness with elevation could therefore hardly be overestimated.
Bertuzzo et al. (2005) moved from this premise by exploiting universal
self-affine features of elevation fields of fluvial landscapes, possibly
obtained by planar aggregation structures where sensible local slope-
area laws, reminiscent of the fluvial landscape, are
enforced (Rodriguez-Iturbe and Rinaldo, 2001). Incidentally, they may
apply equally well by using real topographies where the slope-area laws
breaks down at the drainage density threshold. The nature of fluvial
landscapes and their physical evolution, in fact, provide universal in-
variance of patterns of connected areas at same elevation (Rodriguez-
Iturbe and Rinaldo, 2001).

This second example of biodiversity affected by the fluvial land-
scape structure thus describes how altitude-driven area connectivity
fosters elevational gradients of species richness, and in particular the
origins of empirically observed mid-altitude peaks. The analysis, as we
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Fig. 8. Comparison between (a) an oversimplified, 1D topographic
gradient elevation field, and (b) a real-life elevation field (a fluvial
landscape in the Swiss Alps, 50× 50 km2); (c) hypsometric curve and
(d) frequency distributions of elevation of the two landscapes. It is
clear that 1D gradient experiments are unrealistic regardless of details
on how the replicated real-life topographies are arranged
(after Bertuzzo et al., 2005).
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said in the introduction, moves one further step away from neutrality
by adding niche tradeoffs (for a somewhat similar attempt see
Tilman, 2004). In fact, the model employs an altitude-dependent
adaptive fitness of otherwise equal vital rates of species. Also, as briefly
discussed in what follows, connectivity is based on the altitude-area
relations expected in general by fluvial patterns. In order to investigate
the role of the mountainous landscapes in shaping altitude gradient of
species richness, a zero-sum metacommunity model is anyway
adopted (Hubbell, 2001; Rosindell et al., 2011), namely the system is
always saturated. In this framework, the system comprises N local
communities which are characterized by their position in space and by
their mean altitude. Only communities organized in an equally spaced
two dimensional lattice will be considered; however the model could be
readily adapted to account for other connectivity structures like those
investigated in the previous Section. Each local community assembles n
individuals. Because of the zero-sum assumption, at any time the
system is populated by N · n individuals belonging to S different species.
Each species is characterized by a specific altitude niche which ex-
presses, in this context, how the competitive ability of a species varies
with altitude i.e. ci(z) measures the competitive ability of the in-
dividuals of species i at altitude z. This relationship is modelled as a
Gaussian function:
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where: zopti is the optimal altitude of species i, that is where ci(z) equals
its maximum cmaxi. The parameter σi controls the dispersion of the
Gaussian function, namely the niche width. In this example, the ana-
lysis is limited for simplicity to a ‘neutral’ case where all the species
have the same parameters =σ σi and =c cmax maxi . Fig. 9 illustrates how
the niches of different species are modelled. Edge effects are also
prevented (Bertuzzo et al., 2005). While species differ for their altitu-
dinal niches, all other ecological traits (namely birth, death and dis-
persal rates) are identical like in the classical ecological neutral
dynamics (Hubbell, 2001).

Ecological interactions among individuals are simulated as follows.
At each time step, a randomly selected individual dies and the resources
are freed up and available for colonization. The empty site is occupied
by an offspring of one of the individuals occupying either the local
community of the dead individual or one of the four nearest-neighbour
communities. A key variant of the standard spatially explicit neutral

model follows. The offspring, in fact, is selected randomly with a
probability proportional to ci(z) of all the candidate colonizing in-
dividuals evaluated at the elevation z of the local community of the
dead individual. At each time step, with probability ν an additional
individual, belonging to a species not currently present in the system,
engages in the competition for colonizing the free spot (Bertuzzo et al.,
2005). The optimal altitude zopti of this individual is drawn from a
uniform distribution spanning twice the altitude range of the system as
described before (see also Fig. 9). Needless to say, introduction of new
species is aimed at modelling both speciation and immigration from
external communities. The model has been run also in three other
landscape configurations (Bertuzzo et al., 2005). The alternative land-
scapes studied insure that the planar slope (Fig. 8a), and any linear
slopes of variable gradients, are such that their hypsographic curves
match that of the mountainous landscapes. By analyzing comparatively
them, shape effects can be highlighted. The structure in Fig. 9 has been
obtained by using a real-life elevation map where each pixel subsumes
the mean altitude of a 500×500 m region. The local community size n
is set to 100. The system is initially populated by one single species and
is simulated until a statistically steady state is reached (105 generations,
where a generation is N · n time steps). Periodic boundaries conditions
are prescribed for both landscapes. Notice that model results do not
depend on the actual altitude range [zmin , zmax ], but only on the ratio

−σ z z/( )max min (Bertuzzo et al., 2005). Other pertinent details are re-
ported therein.

Typical results of the metacommunity model are shown in Fig. 10.
All landscapes produce to a different extent hump-shaped α-diversity
curves, yet only the one corresponding to a real landscape produces
realistic variability akin to that produced by field evidence. The values
computed therein depend on specific choices of the niche width σ and
on other parameters. It can be shown, however, that the trends outlined
therein are valid irrespective of parameter values (Fig. 11).

Fluvial landforms show deep similarities across many orders of
magnitude despite great diversity of their drivers and controls (e.g.,
relief, exposed lithology, geology, vegetation, or climate) (Rodriguez-
Iturbe and Rinaldo, 2001). Regardless of the self-affine nature of the
elevation field as a whole, a marked heterogeneity of elevational dis-
tributions, and thus of ecological connectivity, characterizes the parts
and the whole of real landscapes (Fig. 11). Nevertheless, the uni-
versality of the main attributes of the fluvial landscape naturally lends
itself to the quest for general patterns of the ecological dynamics that

Fig. 9. Habitat maps as a function of elevation. (A) A
real fluvial landscape. (B) Fitness of three different
species as a function of elevation. (C–E) Fitness maps
of the three species shown in B. Darker pixels in-
dicate higher fitness. Care is exerted in using land-
scapes holding the same frequency distribution of
site elevation (i.e. the same hypsographic curve) of
the reference mountainous landscape
(after Bertuzzo et al., 2005).
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such landscapes host (Bertuzzo et al., 2011b; Brown and Swan, 2010;
Rodriguez-Iturbe et al., 2009). Thus it is appealing that the α-diversity
maps shown in Fig. 11 reveal such clear spatial patterns, with valleys
and mountain tops characterized by lower species richness. All geo-
morphic factors resulting in self-affine landscapes where peaks or

troughs my occur at any elevation within the range simultaneously
concur to the formation of such a pattern, regardless of other elevation-
independent factors. A factor is also the finiteness of the landscape
elevational range: sites at mid-elevation can potentially be colonized by
species that live at (and are fit for) higher and lower elevations,

Fig. 10. (upper part) Local species richness (LSR) in different subdomains of the same size of the general landscape. The hump-shaped curve is evident although the relative values of α-
diversity are evidently site-dependent. (a–c) Comparative landscape forms, note that (b) is constructed so as to yield the same hypsometric curve of (c); (d–f) maps of local species richness
color-coded by the absolute values of α-diversity; (g–i) general plots relating LSR to elevation in the three domains, inclusive of the whole range of computed values, means and variances.
Note that all the landscapes are constructed by gridding different elevation maps in a regular 100× 100 lattice ( =N 104). (after Bertuzzo et al., 2005).
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whereas sites at the lowest (highest) extreme are only subject to the
colonizing pressure from higher (lower) elevations. In addition to this
boundary effect, the geomorphic structure of fluvial landscapes results
in a mid-elevation peak in both area and connectivity across the land-
scape, both of which promote diversity. Specifically designed simula-
tions have disentangled the role of each of these factors (Bertuzzo et al.,
2005). Results also show that without any of these effects, the model
predicts no gradients of diversity. Each geomorphic factor produces,
independently or in combination with others, a hump-shaped pattern of
species richness. Moreover, the differential elevational connectivity
characteristic of fluvial landscapes results in a marked variability of
diversity for the same elevation. The results reveal that similar mid-
peak elevational gradients of diversity can be observed at different
scales of observation even if the domains span different elevational
ranges. This pattern is thus a direct consequence of the nature of the
substrate for ecological interactions, as in all the examples pursued

here: in particular, of the self-affine fractal structure of fluvial land-
scapes that reproduces statistically similar fluvial landforms across
scales (Rodriguez-Iturbe and Rinaldo, 2001). We thus show that deep
similarities occur across many orders of magnitude despite great di-
versity of their drivers and controls (e.g., relief, exposed lithology,
geology, vegetation, or climate). Results also show that, when the scale
of observation is enlarged, different hump-shaped patterns are blended
together, possibly producing a confounding effect (Bertuzzo et al.,
2005), especially if the analysis is limited to the average diversity as a
function of elevation. This feature might help in understanding why
elevational diversity is often found to be dependent on the scale of
observation (Nogues-Bravo et al., 2008; Rahbek, 1995; 2005).

The above results, as in most of the examples put forward in this
paper, act as a proof of concept. In fact, we have presented results based
on nearest-neighbour dispersal to highlight the role of elevational
connectivity. Indeed the effect of elevational isolation is expected to be

Fig. 11. Elevational diversity patterns for different niche width σ. α-diversity (a,c) and a network connectivity measure based on elevations (LEC – an equivalent of the effective
connectivity of any couple of sites i→ j that accounts for the differences in elevation incurred in each intermediate planar step (Bertuzzo et al., 2005). In such a manner, LEC measures the
likelihood for species to be able to settle in j crossing elevation-dependent unfavourable terrain. For a flat landscape LEC reduces to the distance between the two sites measured along the
planar path) (b,d): spatial distribution (a,b) and elevational gradient (c,d). Symbols as in Fig. 9. Text in panels (d) reports the Pearson correlation coefficient between local values of α-
diversity and the LEC. Different rows show different values of niche width. From top to bottom − =σ z z/( ) 0.1, 0.2, 0.3max min and 1. Simulations are performed over the same landscape
used in Fig. 9. Averages over 500 realizations of the metacommunity model are shown. Other parameters are: =N 104, =n 100, =ν 1 (after Bertuzzo et al., 2005).
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reduced as dispersal limitation decreases because species can overcome
elevational constraints with long-distance dispersal (e.g., dispersing
from one mountain top to another without going through unfavorable
lower elevation habitats). Moreover, we have assumed that the land-
scape can be uniformly colonized, whereas real-life habitats are often
composed by patches with different spatial connectivity and
size (Hanski, 1998). Spatial and elevational connectivities can interact
in complex ways to shape diversity patterns. While the modeling fra-
mework proposed can be easily generalized to accommodate both
fragmented habitats and generic dispersal kernels, the coherent fra-
mework presented here has the potential to effectively describe how
spatial and elevational connectivities shape diversity in complex 3D
landscapes.

The above exploration of metacommunity patterns concludes our
examples on how the ecological substrates affect in a decisive manner
the ensuing biological diversity. It suggests that the specific spatial
arrangement of sites at different elevation in fluvial landscapes suffices
in inducing mid-peak elevational gradients of species richness without
invoking specific assumptions, except that each species is fit for a
specific elevation. In this framework, an elevation-dependent fitness
applied to a real-life landscape translates into a fragmented habitat
map. This conceptualization lends itself to the application of classic
concepts of metacommunity dynamics (Hanski, 1998), according to
which habitat size and connectivity are key drivers of biodiversity. We
thus expect different metacommunity models to produce similar results.
Needless to say, we do not dismiss as negligible other potential drivers
of diversity, including those that often covary with elevation (e.g.,
habitat capacity, productivity, human disturbance). However, we argue
that these drivers may act on top of the unavoidable effects provided by
the geomorphic controls. A general consensus has thus been achieved
on the fact that the analysis of elevational diversity should not seek one
single overriding force but rather understand how different factors
covariate to synergistically shape the observed patterns (Körner, 2007).
Our results strongly suggest, however, that fluvial geomorphology has
an important role, yet thus far overlooked, in driving emergent di-
versity elevational gradients of local species richness – inasmuch as the
topology of the planar substrates dominates the structuring of general
biodiversity patterns.

3. Population dynamics and riverine biological invasions

Biological dispersal is a key driver of many fundamental processes
in nature (Clobert et al., 2001; Elton, 1958; Méndez et al., 2010; Okubo
and Levin, 2002; Shigesada and Kawasaki, 1997). Invasions controls the
distribution of species within an ecosystem and critically affect their
coexistence. In fact, the spread of organisms along ecological substrates

(or corridors) governs not only the dynamics of invasive species, but
also the spread of pathogens and the shifts in species ranges due to
climate or environmental change. Obviously, the subject per se is a
major chapter of ecology and we shall not deal with it here in a com-
prehensive manner. Our narrow perspective here deals rather with river
networks as ecological corridors apt to population invasions. In fact, the
role of the structure of river networks in modeling human-range ex-
pansions, i.e., predicting how populations migrate when settling into
new territories, has been recognized through quantitative models of
diffusion along fractal networks coupled with logistic reaction at their
nodes (Campos et al., 2006). An essential ingredient therein is the fact
that settlers did not occupy all the territory (isotropically, in the lan-
guage of homogeneous continuous models), but rather followed rivers
and lakes and settled near them to exploit water resources. It was thus
interestingly argued in a quantitative manner that landscape hetero-
geneities must have played an essential role in the process of
migration (Ammermann and Cavalli-Sforza, 1984; Campos et al., 2006;
Campos and Mendez, 2005; Méndez et al., 2004).

One interesting by-product of the analysis of migration fronts is the
important role attributed to the structure of the network acting as the
substrate for travelling wave propagations. This calls for specific
structural models to be invoked, possibly including fractals that mimic
natural forms (Rodriguez-Iturbe and Rinaldo, 2001). In the specific
case, basic invariance properties may refer to the (relative) in-
dependence of the outcome of biological invasions from the seeding
point chosen for spreading material and species along the network
where reaction and diffusion occur. This is seen as a corollary of the
type of scaling invariance shown by trees or networks where loops are
observed (Banavar et al., 2000; 2001; Maritan et al., 1996; Rinaldo
et al., 2014; Rodriguez-Iturbe and Rinaldo, 2001). The topological
substrates that we shall consider here, namely OCNs (Rinaldo et al.,
2014; 1992; Rodriguez-Iturbe et al., 1992), are tailored to the topology
and geometry of real rivers (Rodriguez-Iturbe and Rinaldo, 2001). They
allow us to produce replicas of network shapes and thus to seek for a
proper statistic of the resulting biological dispersion processes.

To derive exact results one often resorts (Campos et al., 2006;
Mandelbrot, 1983; Marani et al., 1991) to the Peano network (Fig. 12),
which is a deterministic fractal (Mandelbrot, 1983) whose main topo-
logical and metric features have been sorted out exactly (Marani et al.,
1991). A good starting point is the analysis of Campos et al. (2006)
concerning a reaction random-walk (RRW) process through a Peano
construct and several replicas of OCNs. It is based on the following
model. A particle, at an arbitrary node of the network, jumps, after a
waiting time τ, to one of its z nearest neighboring nodes, with prob-
ability 1/z. During the waiting time τ, the particles ‘react’, i.e. evolve
the scalar property (mass, density) labeling the particle by following the

Fig. 12. (left) A river network thought of as a directed graph where nodes are sites of logistic population growth and edges are river reaches; (right) Invasion front speed as a function of
the growth rate (T−1) of the logistic equation. Solid line is the exact solution of the continuous isotropic Kolmogorov–Fisher model. The dashed line and the dots represent exact and
numerical values for propagation along the backbone of Peano networks (Mandelbrot, 1983; Marani et al., 1991; Rodriguez-Iturbe and Rinaldo, 2001) and OCNs, respectively
(after Bertuzzo et al., 2007; Campos et al., 2006).
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logistic equation. The determination of the wavefront speed that this
process develops along a network path (Campos and Mendez, 2005;
Méndez et al., 2004) is the starting point for the ensuing considerations.
Fig. 12 illustrates the main result of the above premises. It shows that
the isotropic diffusion-reaction front (Fisher’s model (Fisher, 1937))
propagates much faster than the wave forced to choose a treelike
pathway. This proves that geometrical constraints imposed by a fractal
network imply strong corrections on the speed of the fronts. It should be
noted that it is not surprising that Peano networks and OCNs lead to
similar results because the speed of the front depends on topological
features that are indeed quite similar for all tree-like networks (rather
different otherwise) (Rinaldo et al., 2006; Rodriguez-Iturbe and
Rinaldo, 2001). In fact, it can be shown (Campos et al., 2006; Méndez
et al., 2004) that the wave speed is affected mostly by the gross
structure encountered by the front while propagating along the net-
work, chiefly the bifurcations. Hence topology, rather than the fine
structure of the subpaths, dominates the process. It should be noted that
the model proposed by Campos et al. (2006) assumes simple diffusive
transport to describe migration fluxes. This seems indeed reasonable in
the case of human population migrations: the need for water resources
should drive settlers regardless of the direction of the flow. Variations
on the theme, i.e. whether adding a bias to transport properties would
basically alter this interesting picture, was investigated
later (Bertuzzo et al., 2007). This was done on purpose: in fact, any
other ecological agent (be it an aquatic organism or an infective agent
of water-borne disease) would likely be affected by the flow direction to
propagate within the network. Organisms can either move by their own
energy (active dispersal) or be moved by water (passive dispersal). Most
likely, movements along the flow direction would be favored, although
movements against flow direction are completely admissible because of
various ecological or physical mechanisms (Muneepeerakul et al., 2008;
2007). All this is of great interest for the problem of persistence of
species along the ecological corridors that are shaped by the river
network (Bertuzzo et al., 2007; Mari et al., 2014b).

A brief introduction of the theoretical context is perhaps useful. In a
deterministic framework, the Fisher–Kolmogorov equation (Fisher,
1937; Kolmogorov et al., 1937) reads:

∂
∂

=
∂
∂

+ ⎡
⎣

− ⎤
⎦

ρ
t

D
ρ

x
rρ

ρ
K

1 ,
2

2 (4)

where =ρ ρ x t( , ) is the density of organisms, r the species’ growth rate,
D the diffusion coefficient and K the carrying capacity. Eq. (4) is known
to foster the development of undeformed traveling waves of the density
profile (Murray, 2004). Mathematically, this implies that

= −ρ x t ρ x vt( , ) ( ), where v is the speed of the advancing wave.
Fisher (1937) proved that traveling wave solutions can only exist with
speed ≥v rD2 and Kolmogorov et al. (1937) demonstrated that, with
suitable initial conditions, the speed of the wavefront is the lower
bound (Fig. 12). The microscopic movement underlying the Fish-
er–Kolmogorov Eq. (4) is Brownian motion (Méndez et al., 2010).

Despite its relevance for important ecological processes, however, it
was argued (Giometto et al., 2014) that the subject suffers an ac-
knowledged lack of experimentation and current assessments point at
inherent limitations to predictability even in the simplest ecological
settings. Giometto et al. (2014) have instead shown, by combining re-
plicated experimentation on the spread of the ciliate Tetrahymena sp.
with a theoretical approach based on stochastic differential equations,
that information on local unconstrained movement and reproduction of
organisms (including demographic stochasticity) allows to predict re-
liably both the propagation speed and range of variability of invasion
fronts over multiple generations. We shall briefly report their main
findings as they are functional to the main tenet of this paper.

First, one wonders what are the sources of uncertainty and variance
in the spread rates of biological invasions. The search for processes that
affect biological dispersal and sources of variability observed in eco-
logical range expansions, in fact, reveals fundamental insight into the

study of invasive species dynamics, shifts in species ranges due to cli-
mate or environmental change and, in general, the spatial distribution
of species (Andow et al., 1990; Clobert et al., 2001; Elton, 1958;
Grosholz, 1996; Hastings et al., 2005; Okubo and Levin, 2002;
Shigesada and Kawasaki, 1997; Skellam, 1951). Dispersal is the key
agent that brings favorable genotypes or highly competitive species into
new ranges much faster than any other ecological or evolutionary
process (Fisher, 1937). When organisms’ spread occurs on the timescale
of multiple generations, it is the byproduct of active or passive move-
ment and of the reproduction of individuals (Andow et al., 1990;
Hastings et al., 2005). The main difficulty in causally understanding
dispersal is thus to upscale processes that happen at the short-term
individual level to long-term and broad-scale population
patterns (Andow et al., 1990; Levin, 1992). Whether the variability
observed in nature or in experimental ensembles might be accounted
for by systematic differences between landscapes or by demographic
stochasticity affecting basic vital rates of the organisms involved is
key (Giometto et al., 2014; Hastings et al., 2005). Modeling of biolo-
gical dispersal refers to the theoretical framework of reaction-diffusion
processes (Fisher, 1937; Kolmogorov et al., 1937; Méndez et al., 2010;
Murray, 2004; Skellam, 1951; Volpert and Petrovskii, 2009), which
now finds common application in dispersal ecology (Andow et al.,
1990; Hastings et al., 2005; Lubina and Levin, 1988), control of the
dynamics of invasive species (Elton, 1958; Grosholz, 1996; Skellam,
1951) and in related fields (Campos et al., 2006; Murray, 2004). As
noted in the introduction, reaction-diffusion models have also been
applied to model human colonization processes, such as the Neolithic
transition in Europe (Ammermann and Cavalli-Sforza, 1984) or the race
to the West in the 19th century continental US (Campos et al., 2006).
The extensive use of these models and the good fit to observational data
favored their common endorsement as a paradigm for biological dis-
persal (Grosholz, 1996). However, certain assessments (Melbourne and
Hastings, 2009) suggested inherent limitations to the predictability of
the phenomenon, due to its intrinsic stochasticity. Therefore, single
realizations of a dispersal event might deviate significantly from the
mean of the process, making replicated experimentation necessary to
allow hypothesis testing, identification of causal relationships and to
potentially falsify the models’ assumptions. Giometto et al. (2014)
provided instead replicated and controlled experimental support to the
theory of reaction-diffusion processes for modeling biological dispersal
in a generalized context that reproduces the observed fluctuations.
Details on the experiment and on the theoretical analyses are reported
therein.

Giometto et al. (2014) experimentally substantiated the Fish-
er–Kolmogorov mean speed of traveling wavefronts by measuring the
individual components of the process. Stochasticity was included in the
model to reproduce the observed variability in range expansions. In-
vestigation of the movement behavior of Tetrahymena sp. shows that
individuals’ trajectories are consistent with a persistent random walk
with an autocorrelation time = ±τ 3.9 0.4 s. As the autocorrelation
time for the study species is much smaller than the growth rate r
( ∼ −τr 10 4), an excellent approximation was provided (Giometto et al.,
2014). The stochastic model equation reads:

∂
∂

=
∂
∂

+ ⎡
⎣

− ⎤
⎦

+
ρ
t

D
ρ

x
rρ

ρ
K

σ ρ η1 ,
2

2 (5)

where =η η x t( , ) is a Gaussian, zero-mean white noise (i.e., with cor-
relations ′ ′ = − ′ − ′η x t η x t δ x x δ t t( , ) ( , ) ( ) ( ), where δ is the Dirac’s
delta distribution) and σ>0 is constant. The square-root multiplicative
noise term in Eq. (5) is interpreted as describing stochasticity of de-
mographic parameters and needs extra-care in simulations (Giometto
et al., 2014). Data from the growth experiment in isolation were fitted
to the equation
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where =ρ ρ t( ) is the local density, =η η t( ) is a Gaussian, zero-mean
white noise (i.e., with correlations ′ = − ′η t η t δ t t( ) ( ) ( )), σ>0 is
constant and l is the size of the region over which densities were
measured (Giometto et al., 2014). Details are reported therein. In the

experiments, the freshwater ciliate Tetrahymena sp. was employed be-
cause of its short generation time and its history as a model system in
ecology (Carrara et al., 2012; Holyoak and Lawler, 2005). The experi-
mental setup consisted of linear landscapes (Fig. 13), filled with a
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Fig. 13. Schematic representation of the invasion experiments. (A), Linear landscape. (B), Individuals of the ciliate Tetrahymena sp. move and reproduce within the landscape. (C),
Examples of reconstructed trajectories of individuals. (D), Individuals are introduced at one end of a linear landscape and are observed to reproduce and disperse within the landscape
(not to scale). (E), Illustrative representation of density profiles along the landscape at subsequent times. A wavefront is argued to propagate undeformed at a constant speed v according
to the Fisher–Kolmogorov equation (after Giometto et al., 2014).

Fig. 14. (left) Density profiles in the dispersal experiment and in the stochastic model. (A–F) Density profiles of six replicated experimentally measured dispersal events, at different times.
Legends link each color to the corresponding measuring time. Black dots are the estimates of the front position at each time point. Organisms were introduced at the origin and
subsequently colonized the whole landscape in 4 d (≈ 20 generations). (G and H) Two dispersal events simulated according to the generalized model equation, with initial conditions as
at the second experimental time point. Data are binned in 5-cm intervals, typical length scale of the process. (right) Range expansion in the dispersal experiment and in the stochastic
model. (A) Front position of the expanding population in six replicated dispersal events; colors identify replicas as in Fig. 2. The dark and light gray shadings are, respectively, the 95%
and 99% confidence intervals computed by numerically integrating the generalized model equation, with initial conditions as at the second experimental time point, in 1020 iterations.
The black curve is the mean front position in the stochastic integrations. (B) The increase in range variability between replicates in the dispersal experiment (blue diamonds) is well
described by the stochastic model (red line). (C) Mean front speed for different choices of the reference density value at which we estimated the front position in the experiment; error bars
are smaller than symbols. (after Giometto et al., 2014).
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nutrient medium, kept in constant environmental conditions and of
suitable size to meet the assumptions about the relevant dispersal
timescales (see Materials and Methods in Giometto et al., 2014). Re-
plicated dispersal events were conducted by introducing an ensemble of
individuals at one end of the landscape and measuring density profiles
throughout the system at different times. Density profiles are shown in
Fig. 14 for six replicated dispersal events (panels A–F). Organisms in-
troduced at one end of the landscape rapidly formed an advancing front
that propagated at a remarkably constant speed (Fig. 14). The front
position at each time was calculated as the first occurrence, starting
from the end of the landscape, of a fixed value of the density (Fig. 14).
As for traveling waves predicted by the Fisher–Kolmogorov equation,
the mean front speed in the experiment is notably constant for different
choices of the reference density value (Fig. 14). Note that the species’
traits r, K and D were measured in independent experiments. In the
local growth experiment, a low-density population of Tetrahymena sp.
was introduced evenly across the landscape and its density was mea-
sured locally at different times. Recorded density measurements were
fitted to the logistic growth model, which gave the estimates for r and
K (Giometto et al., 2014). In the local unimpeded movement experi-
ment, the mean square displacement (SI) of individuals’ trajectories was
computed to estimate the diffusion coefficient D in density-independent
conditions (Giometto et al., 2014). The growth and movement mea-
surements were performed in the same linear landscape settings as in
the dispersal experiment and therefore are assumed to accurately de-
scribe the dynamics at the front of the traveling wave in the dispersal
events. The comparison of the predicted front speed =v rD2 to the
wavefront speed measured in the dispersal experiment, vo, yields a
compelling agreement. The observed speed in the dispersal experiment
was = ±v 52.0 1.8o cm/day (mean ± SE) (Giometto et al., 2014),
which we compare to the predicted one = ±v 51.9 1.1 cm/day
(mean ± SE). The two velocities are compatible within one standard
error. A t-test between the replicated observed speeds and bootstrap
estimates of =v rD2 gives a p-value of =p 0.96 ( =t 0.05, =df 9).
Thus, the null hypothesis that the mean difference is 0 was not rejected
at the 5% level and there is no indication that the two means are dif-
ferent. As the measurements of r and D were performed independently

at scales that were orders of magnitude smaller than in the dispersal
events, the agreement between the two estimates of the front velocity
was deemed remarkable.

The conclusions of the study are remarkable in that the
Fisher–Kolmogorov equation correctly predicts the mean speed of the
experimentally observed invading wavefront, although its deterministic
formulation prevents it to reproduce the variability that is inherent to
biological dispersal. In particular, it cannot reproduce the fluctuations
in range expansion between different replicates of dispersal experi-
ments. The proposed generalization of the Fisher–Kolmogorov equation
accounting for stochasticity showed that it is able to capture the ob-
served variability in a linear landscape. As local, independent estimates
were used in solving the generalized model equation, the result that the
measured front positions agree with simulations show that one source
of uncertainty in biological invasions can be quantified. Estimates for
the front speed and its variability in the experiment prove in good
agreement with simulations implying that stochasticity in population
parameters can explain variability in range expansions not related to
the topology of the substrate (Giometto et al., 2014). Generalizations to
organisms endowed with different biology (e.g., growth rates and dif-
fusion coefficients, possibly available in the literature) are in sight,
supporting the view that our tenet may possibly provide a general
predictive framework for biological invasions in natural environments.

A hydrologically notable example of biological invasion within the
same Mississippi-Missouri river system (MMRS) investigated in
Section 1 follows Mari et al. (2011). It deals with the zebra mussel,
Dreissena polymorpha, a freshwater bivalve native to Eurasia. Owing to
its adaptability to a wide range of environmental conditions, combined
with dispersal abilities within fluvial systems that are unrivalled by
other freshwater invertebrates, this invasive species managed to diffuse
all over Europe and North America. After establishment, zebra mussel
colonies can rapidly reach population densities in the order of tens (or
even hundreds) of thousands of individuals per square meter and inflict
huge ecological and economic damages. In fact, zebra mussel colonies
may deeply alter invaded ecosystems by filtering large volumes of
water, thus removing phytoplankton and boosting nutrients, and by

Fig. 15. Synoptic view of the zebra mussel invasion
pattern along the MMRS as recorded from field ob-
servations. (a) Spatiotemporal invasion pattern (first
sightings) on the river network. (b) Progression of
the invasion pattern (filled circles) and spatial extent
of the spread (empty circles). Progression is eval-
uated as the distance traveled downstream by D.
polymorpha along the backbone of the MMRS starting
from the injection point (i.e., the distance traveled
along the Illinois and Mississippi Rivers). Spatial
extent is evaluated as the mean Euclidean distance
between invaded sites on the river network and the
injection point. The dotted line represents the length
of the river network backbone. (c) Pervasiveness of
the zebra mussel invasion, evaluated as the total
fraction of invaded hydrologic unit codes (HUCs,
defined in Mari et al. (2011) by a threshold that
roughly corresponds to a colony of some hundreds of
individuals in the reach represented by a node in the
model (i.e. carrying a density larger than 0.01 mus-
sels m2) of the MMRS as a function of time
(after Mari et al., 2011).
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severely impairing the functioning of water works (Mari et al., 2011).
The zebra mussel has thus become a prototypical example of invasive
species, rightly included in the 100 World’s Worst Invasive Alien Species
list drawn up by the International Union for Conservation of Nature.
One of the noteworthy features of zebra mussel invasions is the speed at
which the species can spread over river networks. The example of the
invasion of the Mississippi-Missouri river system (MMRS) is particularly
revealing, see Fig. 15 (data available online at: http://fl.biology.usgs.
gov/Nonindigenous-Species/ZM-Progression/zm-progression.html.

The invasion, in fact, started from the Great Lakes region
(Michigan), where some specimens were first sighted in the late 1980s
after being probably introduced via ballast water sheddings by boats
sailing from Europe. By 1990 D. polymorpha made its way into the
Illinois River and by 1991 the zebra mussel started diffusing into the
Mississippi, reaching Louisiana as soon as 1993. In the meanwhile, the
species showed up also in some of its most important tributaries (Ohio,
Tennessee, and Arkansas Rivers), as well as in other North American
river systems (St. Lawrence, Hudson, and Susquehanna). The rate of
spread of D. polymorpha has decreased remarkably after 1994, primarily
because the species did not expand west of the 100th meridian.
However, the zebra mussel has been steadily infilling and colonizing
new reaches during the last decade. Quite surprisingly, a few connected
river systems (most notably, the Missouri River) have not been invaded
until recently (Stokstad, 2007). Nowadays, the zebra mussel steadily
occupies much of central and eastern North America.

D. polymorpha invasion patterns result from the interplay between
local demographic processes occurring over long time scales and basin-
scale transport phenomena taking place over much shorter time
spans (Mari et al., 2011). This is mainly due to the peculiarity of the
species life cycle, which can be roughly subdivided into two main
periods: a short larval phase, lasting from a few days to a few
weeks (Stoeckel et al., 1997), and a relatively long adult stage, up to
three years in North America (Casagrandi et al., 2007). Adults live
anchored to a solid substratum, while larvae (also known as veligers)
can be transported by the water flow, sometimes traveling for hundreds
(or even thousands) of kilometers before settling (Stoeckel et al., 1997).
Therefore, rivers represent the primary and natural pathway allowing
species spread. However, anthropic activities can often result in extra-
range dispersal, i.e., in the movement of propagules from the current
species range to a new area of habitat, thus in turn remarkably favoring
both the speed and the extent of the biological invasion (Mari et al.,
2011).

In the zebra mussel case this has been known for a long time, as any
human activity that involves the movement of a mass of water can be a
potential vector for the spread of D. polymorpha (Carlton, 1993).
Commercial navigation represents a major driver of mobility for the
zebra mussel (Allen and Ramcharan, 2001; Mari et al., 2011). For in-
stance, large quantities of veligers are often shipped within the ballast
water of commercial vessels. As ports are located even hundreds of

kilometers apart from each other, connections among them allow the
species to disperse over very long distances and to colonize stretches of
the river network that could not have been reached otherwise. Fur-
thermore, empirical evidence suggests that recreational boating may be
an important determinant of medium-range mussel
redistribution (Chase and Bailey, 1999; Stoeckel et al., 2004a; 2004b).
A common mechanism associated with transient recreational boating is
the transport of juveniles and adult mussels via macrophytes entangled
on boat trailers (Carlton, 1993). This mechanism has been proposed as
the most likely cause of D. polymorpha interbasin range expansion due
to touristic boating. Therefore, commercial navigation represents an
efficient vector of long-distance dispersal, while touristic boating can
provide a capillary mechanism for medium-range mussel relocation.

Due to the importance of the zebra mussel as an ecosystem invader,
significant modeling effort has already been devoted to understanding
its demographic dynamics at a local scale (Casagrandi et al., 2007), as
well as to the description of the species spread along rivers (Mari et al.,
2009; Stoeckel et al., 1997), and the analysis of long-distance
dispersal (Wilson et al., 2009). To single out the role of drivers and
controls of the MMRS invasion, spatially explicit, time-hybrid, multi-
layer network models were set up to address the intertwining of hy-
drologic controls, acting through the ecological corridors defined by the
river network, with long- and medium-range dispersal controlled by
anthropogenic factors, which define secondary movement networks.
Integrating multiple dispersal pathways is crucial to understand zebra
mussel invasion patterns and, in particular, the role played by human
activities in promoting the spread. In particular, in this outstanding case
commercial navigation has been the most important determinant of the
early invasion of the Mississippi-Missouri, and recreational boating can
explain the long-term, capillary penetration of the species into the
water system. The spatially explicit ecohydrological model is described
in detail elsewhere (Mari et al., 2011). Suffice here to mention the basic
unity of the approaches with the ones described in greater detail in
Section 2. Of great relevance here is the multiplex network of ecological
interactions adopted (later re-discussed in the context of pathogen/host
mobility in Section 4). In fact, while veligers diffuse and settle along
one-dimensional substrates provided by the fluvial ecological corridors,
hence determining a traditional travelling wave invasion front dy-
namics (sensu (Fisher, 1937; Kolmogorov et al., 1937)), a much faster
and heterogeneous spread can be envisioned and proved (Figs. 16 and
17): the ‘infection’, in fact, can be simply propagated by veligers
trapped in the ballast water of commercial or recreational boats, pos-
sibly moved by land, surviving the trip and re-starting from scratch
their colonization process.

The scale of the modeling attempt and the ecohydrological inter-
actions addressed by Mari et al. (2011) is noteworthy. As noted in
Section 1, landscape heterogeneities, directional dispersal, and hydro-
logic controls shape ecological and epidemiological patterns. A novel
factor, on which we shall elaborate further in the context of the spread

Fig. 16. Drivers of the secondary dispersal of D. polymorpha. (a) The main fluvial ports of the MMRS and the most important connections among them, which are respectively nodes and
edges of the commercial network layer. Letters within green circles refer to the most important fluvial ports. (b) The main lakes, impoundments, and ponds of the MMRS. For
exemplification, the inset shows the connections within the recreational network layer between one closed water body (marked in red) and its neighbors. (after Mari et al., 2011).
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of waterborne disease, concern human-mediated dispersal processes
that prove of great importance as they allow species to disperse beyond
their normal ranges, thus eventually shaping global biogeographical
patterns (see e.g. Wilson et al., 2009). The model thus accounts for the
interplay among a few selected mechanisms, such as density-dependent
larval mortality, basin-scale hydrologic transport, and human-mediated
dispersal due to either port-to-port commercial navigation or recrea-
tional boating, that are deemed of key importance in D. polymorpha
invasions. The model, which succeeds in reproducing the zebra mussel
invasion patterns observed in the MMRS at a regional spatial scale and
over a 20 year time span, offers a hindcasting exercise for the MMRS,
yet the proposed multilayer network approach could be applied to
predict and control other potential invasions of the same or related
alien species in the MMRS or other river systems, provided that a
comprehensive analysis of extant ecological and hydrologic processes,
as well as of relevant human-mediated transport mechanisms, is
available. This seems of particular ecological relevance. In the context
of biological invasions, in fact, taking early actions is difficult, yet ex-
tremely valuable. In the zebra mussel case, in particular, the contain-
ment and/or eradication of established colonies are very difficult and
costly. Prevention should thus be favored over control, but this is
possible only if quantitative tools to predict the development of the
spread are available. To that end, we point out the importance of a fully
dynamical and spatially explicit approach to modeling biological in-
vasions, for it allows combined predictions of both temporal and spatial
patterns of species spread. In addition, we deem our multilayer ap-
proach an effective and general framework to model the spread of
species that are characterized by multiple dispersal pathways.

Biological invasions are inherently complex stochastic processes for
which only a single realization is available for observation. As such,
there exist obvious limits to our ability to actually predict them from
models that necessarily need estimation of parameters from actual data
(see Melbourne and Hastings, 2009 but also Giometto et al., 2014
mentioned above). However, forecasting the main (or mean, in some

ensemble-averaging sense) patterns of spread of alien species is be-
coming increasingly important, though more and more difficult, with
anthropic activities rapidly coming abreast of (or even overwhelming)
natural invasion pathways. For all these reasons, including important
details about the role of ecological corridors and of related anthro-
pogenic drivers, is very valuable. A thorough, quantitative under-
standing of the different processes that boost the spread of alien species
is in fact our only hope to prevent and, to some extent, control biolo-
gical invasions.

4. Ecology of pathogens and the spread of waterborne disease

Here we shall introduce to the modelling rationale, that extends and
specializes the reasoning presented in the previous Sections, with a
view on a particularly important application, i.e. spatial epidemiology.
As we shall see, river networks, and more in general waterways, play a
fundamental role as epidemiological corridors. Waterborne diseases are
infections caused by ingestion of (or, more in general, contact with)
water contaminated by pathogenic organisms, ranging from micro-
(typically viruses, bacteria and protozoans) to macro-parasites (mostly
flat- and roundworms). They still represent a major threat to human
health, especially in low-income countries. Most of the burden of wa-
terborne infections is attributable to unsafe water supply, lack of sa-
nitation and poor hygienic conditions, which either directly or in-
directly affect exposure and transmission rates.

4.1. Of drivers and controls

Hydroclimatological forcings, the mobility of susceptible/infected
individuals, and large-scale treatment are key drivers of waterborne
disease transmission (Gurarie and Seto, 2009; Rinaldo et al., 2012; Tien
and Earn, 2010; Tien et al., 2015). The direct inclusion of these factors
into spatially explicit mathematical models of epidemic cholera, to
quote an example of paramount importance, has improved the

Fig. 17. Zebra mussel invasion of the MMRS as simulated by the network model confined to the hydrologic layer. All plots are labeled as in Fig. 16. Red and blue lower insets refer to field
data and simulation results, respectively (Mari et al., 2011). Parameter values as in Mari et al. (2011).
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understanding of complex disease patterns (Bertuzzo et al., 2008; 2016;
2011a; Chao et al., 2011; Eisenberg et al., 2013; Mari et al., 2015; 2012;
Rinaldo et al., 2012; Tuite et al., 2011). Spatially explicit mathematical
models encapsulate remotely acquired, relevant descriptions of human
settlements, waterways where pathogens and/or intermediate hosts
disperse, movement between human communities, hydrologic and cli-
mate variables, water resources development infrastructure (Finger
et al., 2014; Jutla et al., 2011; 2013b). Objective manipulation of such
information yields characterizations of waterborne and water-based
disease dynamics of unprecedented robustness that provides insight
into the course of ongoing epidemics aiding short-term emergency
management of health care resources and long-term assessments of
alternative interventions (Chao et al., 2011; Rinaldo et al., 2012).

The general structure of spatially explicit models of waterborne
disease is outlined in Fig. 18. The network nodes are animal commu-
nities with population Hi in which the disease can diffuse and grow. In
human diseases the nodes can be identified with cities and villages.
Locally, a generalization of classical SIR (Susceptible, Infected, Re-
covered) models (Heesterbeek and Roberts, 1995) is employed. To the
traditional compartments one further compartment is added, that of
pathogens in water (SIWR emphasizing the role of a water reservoir, W,
determining disease transmission dynamics. For bacterial infections
such models are typically called SIRB). For example, when the pathogen
is a bacterium like in cholera, this amounts to including the con-
centration of bacteria in water. Therefore, the dynamics of the meta-
community model is represented by the evolution in time t of the fol-
lowing variables at each node i: Si(t) the susceptible hosts, Ii(t) the
infected (and infectious), Ri(t) the recovered individuals, Bi(t) the bac-
terial concentration in the ith water reservoir, controlling the force of
infection (Fig. 18). More complicate models may include an inter-
mediate host living in water. For instance, in schistosomiasis humans
host the adult stage of trematode parasites of the genus Schistosoma

which reproduce inside humans releasing eggs via urine or faeces. The
eggs released out of the human body that reach freshwater can hatch
into larvae called miracidia, the parasite larval form that is infectious
for the second host, freshwater snails, belonging to different genera. In
the snail, miracidia undergo asexual replication, then the snail becomes
infective and starts releasing tens of thousands of swimming larval
stages, called cercariae, into the water. Cercariae infect humans pene-
trating their skin when they come into contact with contaminated
freshwater. Inside the human body, cercariae develop into the adult
parasite. Spatially explicit schemes assume that local human settle-
ments undergo SIRB dynamics, whereas networks of connectivity re-
distribute pathogens and/or hosts among communities (Appendix).

The dynamics of disease spread reflects the spatial heterogeneity of
its drivers, among which the most important are (reference is made to
two paradigmatic cases of waterborne disease, one micro-parasitic,
epidemic cholera, and the other macro-parasitic, endemic schistoso-
miasis, taken as examples of very diverse infections sharing the same
hydrological matrix):

• Climate, that affects transmission rates by displaying correlation
with environmental variables like rainfall and air/ water
temperature (Colwell, 1996; Constantin de Magny et al., 2012;
Emch et al., 2008; Hashizume et al., 2008; Jutla et al., 2013a; Koelle
et al., 2005; Lipp et al., 2002; Pascual et al., 2002; 2000; Ramírez
and Grady, 2016; Reiner Jr. et al., 2012; Ruiz-Moreno et al., 2007;
Vezzulli et al., 2016; Rodó et al., 2013). The role of large-scale cli-
matic drivers on cholera dynamics is the subject of a lively debate
especially about potential threats posed by warming temperatures
and increasingly heterogeneous patterns (Baker-Austin et al., 2013;
Cash et al., 2014; 2010; Escobar et al., 2015; Vezzulli et al., 2013;
2015). The links between climate and schistosomiasis are also being
actively investigated (McCreesh and Booth, 2013; Pedersen et al.,

Fig. 18. (Upper left inset) A scheme of a meta-
community epidemiological model of the SIWR
kind: the substrate for disease propagation is
made up by nodes – human settlements or animal
communities where disease can develop – and
edges, in this case describing directional dispersal
and hydrologic transport of waterborne or water-
based pathogens. (Upper right inset) Schematic
representation of the general spatially explicit
modeling framework (the local model is supposed
to be SIRB). Note the co-presence of a hydrologic
connectivity matrix Pij to which a multiplex host
mobility matrix Qij is superposed. For a detailed
conceptual explanation and a full mathematical
description, see Appendix. (Lower inset)
Schematic representation of a local SIRB model at
node i with the three additional compartments for
vaccinated individuals: susceptible vaccinated,
VS, infected vaccinated VI, and recovered vacci-
nated VR. For the mathematical transcription of
the scheme see Appendix (after Bertuzzo et al.,
2016; 2010; Pasetto et al., 2017).
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2014; Stensgaard et al., 2013), in particular because climate change
might hinder progress towards control in endemic countries
(Stensgaard et al., 2016; Wang et al., 2014). Climate may also in-
fluence pathogen ecology and host exposure. Prospective climate
change is speculated to bear fundamental impacts on the geography
of waterborne diseases (Zhou et al., 2008);

• Rainfall, that influences both cholera and schistosomiasis as well as
other macroparasitic waterborne diseases (Bergquist et al., 2015). A
variety of potential mechanisms exist whereby rainfall may alter
infection risk, specifically: through flooding, leading to raw sewage
contamination of water sources (Hashizume et al., 2008; Ruiz-
Moreno et al., 2007) and enhanced exposure to human-to-human
transmission due to crowding (Boelee et al., 2013); increased rain-
fall-driven iron availability in environmental waters that enhances
pathogen survival and expression of toxins (Faruque et al., 2005;
Lipp et al., 2002); dry spells and decreased water levels leading to
increased usage of unsafe water sources (Rebaudet et al., 2013b).
A clear correlation between rainfall and enhanced transmission is
found in regions hit by cholera epidemics (Constantin de Magny
et al., 2008; Jutla et al., 2013b; Rebaudet et al., 2013a; 2013b).
Notably, for the Haiti outbreak, this link has been found empirically
(Gaudart et al., 2013) and justified theoretically (Eisenberg et al.,
2013; Rinaldo et al., 2012) at all spatial scales and locations ex-
amined. Intense rainfall events were significantly correlated with
increased cholera incidence with lags of the order of a few days, and
forcing dynamic models with rainfall data invariably resulted in
improved fits of reported infection cases. One
approach (Rinaldo et al., 2012) suggested that bursts of infections
could be best explained by accounting for increased contamination
rates (flux I→W, see Fig. 18). An alternative
approach Eisenberg et al. (2013) employed a rainfall-dependent
exposure rate (S→ I);
The relationship between precipitation and schistosomiasis is far
from obvious. It has been argued (McCreesh and Booth, 2013), in
fact, that rainfall could not only boost disease transmission (espe-
cially in dry climates where it is a key driver of habitat formation for
the intermediate snail host) but also reduce it, e.g. by increasing
water flow (which in turn decreases habitat suitability for both the
snails and the larval stages of the parasites). Rainfall can also affect
human activities related to water contact, thus potentially altering
exposure and transmission risk (Lai et al., 2015). Also, the temporal
fluctuations of rainfall patterns may be particularly important in
determining the seasonality of transmission (McCreesh et al., 2015).
Several studies in which the ecology of the intermediate snail hosts
has been analyzed through field campaigns and geospatial models
highlight the strength of the link between rainfall and schistoso-
miasis transmission (Hu et al., 2013; Lai et al., 2015; Perez-Saez
et al., 2015; Stensgaard et al., 2016; 2013). A hydrology-driven
assessment of intermediate host habitat suitability thus seems ne-
cessary (Wu et al., 2008). Snail abundance, in fact, may depend
upon density feedbacks that, in turn, can be driven by hydrologic
controls, especially in ephemeral hydrologic regimes like those ty-
pical of sub-Saharan Africa (Perez-Saez et al., 2016). Therefore, a
quantitative link exists between hydrological drivers and snail po-
pulation dynamics, suggesting that statistical methods may
provide reliable snail abundance projections (Perez-Saez et al.,
2016), and that state-of-the-art mechanistic models of
transmission (Gurarie et al., 2016) could be made dependent on
habitat type (e.g. natural vs. man-made) and hydrological char-
acteristics (e.g. ephemeral vs. permanent).

• Water resources development (e.g. damming and irrigation),
playing a significant role in the increase of disease burden owing to
habitat expansion of pathogens and/or hosts, especially for
schistosomiasis (Bergquist et al., 2015; Steinmann et al., 2006).
Habitats are shaped naturally by the hydrology-geomorphology
connections (Rodriguez-Iturbe and Rinaldo, 2001), defining the

suitability of certain intermediate host species key to the closure of
the pathogens’ life cycle, and the survival of pathogens in natural
environments (Gurarie et al., 2016; Perez-Saez et al., 2016). How-
ever, the natural habitats are increasingly altered by humans, thus
making it necessary to include land-use change as one of the most
important drivers not only of biodiversity loss, but also of increased
disease susceptibility. The development of agricultural practices is
certainly one of the main causes of land-use change. Also, the larger
and larger use of herbicides and fertilizers has also been shown to
alter the ecological food-web and favor the proliferation of specific
intermediate hosts (e.g. those of schistosomiasis (Rohr et al., 2008));

• hydrologic transport (Bertuzzo et al., 2008; 2010) and human
mobility (Bertuzzo et al., 2010; Finger et al., 2016; Mari et al., 2015;
2012; Perez-Saez et al., 2015), which regulate, respectively, short-
and long-range circulation of pathogens and hosts (Gurarie and
Seto, 2009; Perez-Saez et al., 2015). They also determine the spatial
and temporal scales relevant to the analysis of epidemiological
processes. Technological innovation provides information for their
description at unprecedented rates (Bengtsson et al., 2015; Ciddio
et al., 2017; Mari et al., 2017b). A significant role, relevant in par-
ticular to this review, emerges for the ecological corridors defined
by waterways and river networks. Such hydrologic control derives
from the transportation and redistribution of the free-living infective
propagules. In particular, because vibrios of cholera can spread
along stream both upstream and downstream with a slightly biased
propagation downstream, the infection patterns prove markedly
anisotropic (Bertuzzo et al., 2008), like all too evident in the early
phases of the 2011 Haiti epidemics where the Artibonite river
functioned as the corridor for the initial phase of the
epidemic (Bertuzzo et al., 2011b; Gaudart et al., 2013);

• ‘social’ drivers, i.e. processes relevant to disease transmission
mediated by human practice, broadly including inapparent
infections (King et al., 2008), water, sanitation, hygiene (WASH)
conditions (Azman et al., 2016; Bi et al., 2016; Freeman et al., 2016;
Grimes et al., 2015; Mari et al., 2012; Sokolow et al., 2016) and the
differential outcomes of large-scale control strategies (Abubakar
et al., 2015; Azman and Lessler, 2014; Lo et al., 2016). Considerable
research exists on the impact of water treatment practices, hand
washing and diet in urban (Dunkle et al., 2011) and
rural (O’ Connor et al., 2011) settings on cholera risks in water and
food sources (Hill et al., 2011). Others have evaluated the effec-
tiveness of intervention efforts like treatment centers, educational
campaigns and latrine building (Beau De Rochars et al., 2011; Ernst
et al., 2011). Two main types of large-scale medical treatments have
been studied so far for cholera: vaccinations and the extended use of
antibiotics (Abubakar et al., 2015; Azman and Lessler, 2014; Ivers
et al., 2010).

Spatially explicit process descriptions and data acquisition proved
increasingly effective to understand the impact of various drivers on
local disease transmission rates, and to realistically simulate large-scale
infection patterns (Bertuzzo et al., 2008; Tien and Earn, 2010). The
robustness of simulations and predictions drawn from network models
is granted by their spatial structure rooted in remotely acquired and
objectively manipulated information, as shown e.g. by applications to
epidemic cholera (Bertuzzo et al., 2008; 2016; 2011a; Chao et al.,
2011; Finger et al., 2016; Gatto et al., 2012; Mari et al., 2012; Rinaldo
et al., 2012; Tuite et al., 2011) and proved formally via model selection
techniques (Mari et al., 2015). Uncertainty analysis, data assimilation
and filtering techniques for these spatially explicit schemes are now
also available (Pasetto et al., 2017). They can reproduce complex
stratifications of disease burden when transmission is heterogeneous, in
part owing to river networks and connected waterways where the pa-
thogen thrives, and in part due to host mobility, a key factor in the
spreading of the pathogen. Although our lines of argument are meant to
apply in general, specific cases (and references thereof) will first focus
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on cholera and schistosomiasis as significant examples of vastly dif-
ferent transmission mechanisms.

4.2. Spatially-explicit modelling of cholera and schistosomiasis

Spatially explicit disease infection models have radically changed
the very concept of basic reproduction number R0. Indeed, challenging
problems arise when observed infection patterns show spatial structure
and/or temporal asynchrony. These features are ironed out by spatially
implicit schemes that ignore spatial effects by assuming a uniform
distribution of susceptible and infected individuals across the domain of
interest. With these simplified assumptions the traditional definition of
R0 applies: the average number of secondary infections produced by
one infected individual introduced in a healthy population, which can
be rather easily calculated from epidemiological parameters and the
size of host population. Because of the current ease of mapping hy-
drology, sanitation and transportation infrastructures, in addition to the
actual population distributions and proxies of their WASH conditions (a
byproduct of remotely acquired and objectively manipulated informa-
tion), the conditions leading to waterborne disease outbreaks can be
studied in a spatially explicit framework. However, the adoption of
spatially explicit schemes is only recent and mainly with reference to
cholera (Gatto et al., 2012; 2013; Mari et al., 2014a) and
schistosomiasis (Gurarie and Seto, 2009; Perez-Saez et al., 2015). We
expect, however, that similar approaches will follow up soon for other
diseases as well, because the underlying mathematical framework is
general (Diekmann and Heesterbeek, 2000; Tien et al., 2015). One
important result that emerges from all the cases studied so far is that the
requirement that all the local reproduction numbers be greater than
one, i.e. the traditional epidemiological tenet mediated from spatially-
implicit approaches, is neither necessary nor sufficient a condition for
outbreaks to occur when spatial heterogeneity and pathogen redis-
tributions are a factor (Fig. 19). This statement is not limited to wa-
terborne diseases; rather, it holds in general whenever local epide-
miological dynamics are coupled together by spatial connectivity. The
basic reproduction number must be replaced by the dominant eigen-
value of the 4n×4n Jacobian matrix (n is the number of nodes), lin-
earized about the disease-free equilibrium. Moreover, the eigenvector
associated with the dominant eigenvalue carries important information
about the geography of waterborne or water-based disease (Gatto et al.,

2012; 2013; Mari et al., 2014a; Perez-Saez et al., 2015).
Human infections occurring through contacts with water con-

taminated with free-living macro-parasite stages pose other challenges
largely mediated by the abundance of intermediate hosts possibly
subject to a complex ecology (Colley et al., 2014). In the case of
schistosomiasis, the disease transmission is controlled by contact with
environmental freshwater infested with parasite larvae endowed with a
complex life cycle and ecology (Perez-Saez et al., 2016; Sokolow et al.,
2014; Swartz et al., 2015). Reinfection after treatment is a problem that
plagues efforts to control parasites with complex transmission path-
ways, such as schistosomiasis. Low-cost, sustainable forms of inter-
mediate host control coupled with drug distribution campaigns could
reduce or locally eliminate the parasite (Grimes et al., 2015; Sokolow
et al., 2015). At regional scales, where the need for spatially explicit
descriptions is particularly compelling, different communities are
characterized by differential infection risks linked to their geographical
and socio-economic context. A recent global assessment of schistoso-
miasis control over the past century has suggested that targeting the
snail intermediate host works best (Sokolow et al., 2016). However,
neither safe water supplies could completely prevent human contact
with environmental freshwater, nor adequate sanitation could guar-
antee its generalized usage (Grimes et al., 2015). Moreover, agri-
cultural, domestic, occupational and recreational tasks may foster
contact with potentially infested water leading to non-negligible risk
factors even in contexts where water provisioning and sanitation are
adequate (Spear, 2012). This, coupled with differences in lifestyles,
leads to complex determinants of transmission
heterogeneity (Mari et al., 2017a). Social groups and ages are also a
matter of concern for macro-parasitic infections, as e.g. people whose
routinary activities bring them in contact with water (say, fishermen
and farmers; or consider cultural settings in which women are more
prone to water contact than men). Water-contact patterns may also vary
over time as a response to seasonal changes in human activities, e.g.
related to agriculture and farming, resulting in temporal heterogeneity
in schistosomiasis transmission. Attempts to incorporate socioeconomic
classes and risk groups into waterborne disease models are quite few in
both applied (Remais et al., 2009) and theoretical studies
(Barbour, 1978). Strong seasonal patterns in the transmission intensity
and infection prevalence in both human and snail hosts still need a
settlement within large-scale spatially explicit modeling frameworks.

Fig. 19. Data and model predictions of cholera epidemic along the Thukela river, South Africa, network (A, Inset). (A) Total incidence data (weekly cases) from October 2000 to July
2001. Dotted lines mark the model calibration window. (B) Normalized spatial distribution of recorded cases cumulated during the epidemic onset phase (gray in A). (C) Spatial
distribution of cases as predicted by the dominant eigenvector. (D) Spatial distribution of local basic reproduction numbers. Locations i in red (blue) are characterized by >R 1i0 ( ≤R 1i0 ).

(E) Cholera cases (as in B). Red (blue) dots indicate communities with more (less) than 10 reported cases during disease onset (Gatto et al., 2012).
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4.3. Spatially-explicit modelling of PKD

One last example, which seems particularly fit to the focus on fluvial
ecological corridors, concerns the spread, possibly rapid and deadly, of
a particular fish disease. Proliferative kidney disease (PKD) is a high-
mortality pathology that critically affects freshwater salmonid popula-
tions. Infection is caused by the endoparasitic myxozoan
Tetracapsuloides bryosalmonae, that cycles between freshwater
bryozoans and salmonids exploiting the former as primary hosts.
Proliferative kidney disease (PKD) is recognized as a major threat to
both wild and farmed salmonid populations in Europe and North
America. Mortality due to PKD in farmed fish ranges from 20 to 100%
(Clifton-Hadley et al., 1986; Feist and Longshaw, 2006; Ferguson and
Ball, 1979; Okamura et al., 2011). The impacts of PKD on wild fish
populations are generally poorly known, although PKD has been linked
to long-term decline of Swiss brown trout populations (Borsuk et al.,
2006). PKD incidence and relevant fish mortality are strongly corre-
lated with water temperature, therefore climate change is feared to
extend the disease range to higher altitude and latitude regions with
major consequences (Hari et al., 2006).

The first dynamical model of PKD epidemiology in local commu-
nities has recently been developed (Carraro et al., 2016). The local
model accounts for local demographic and epidemiological dynamics of
bryozoans and salmonids, explicitly incorporates the role of water
temperature, and couples intra- and inter-seasonal dynamics. Fig. 20
shows that during the warm season (left column), susceptible bryozoans
(BS) become covertly infected (BC) after contact with spores (ZF) re-
leased by infected fish. Infection in bryozoans cycles between covert
and overt (BO) states. BS yield uninfected statoblasts SS (i.e. asexually
produced propagules), while BC release both uninfected and infected
(SI) statoblasts. Infected bryozoans may clear the infection. Susceptible
fish (FS) are exposed to PKD after contact with spores (ZB) released by
BO; after an incubation phase (FE), fish can either become acutely in-
fected (FI) or directly enter an asymptomatic carrier state (FC). FI can
die owing to PKD or become long-term disease carriers. FC may become
susceptible again. Both FI and FC shed spores infective to bryozoans. At

the beginning of a new warm season (central column), BS are comprised
of susceptible colonies that survived during winter and by hatched SS;
similarly, BC consist of survived colonies that were infected at the be-
ginning of winter and of hatched SI. FS are composed by survived sus-
ceptible individuals and newborn fish from all classes. The abundance
of FC is determined by the number of individuals belonging to classes
FE, FI, and FC that survived through winter. Other classes are absent.
The spatially explicit model (Fig. 20c) shows the connectivity of local
models operating at the scale of a river reach of relatively homogeneous
geomorphic features (i.e. a ‘node’) effectively carried out by the river
network, the substrate for host and pathogen interactions (for mathe-
matical details see Carraro et al., 2016).

A stability analysis of this time-hybrid system, performed via
Floquet theory (Bacaër and Ouifki, 2007; Mari et al., 2014a) suggests
that, whenever the epidemiological parameters are set to realistic va-
lues, the introduction of T. bryosalmonae in a previously disease-free
community will most likely trigger a PKD outbreak. A sensitivity ana-
lysis of the system shows that, when the disease becomes endemic, the
impact of PKD on fish population size is mostly controlled by the
(temperature-dependent) rates of disease development in the fish host.
On the other hand, this first model was still a local one with no regard
to the fundamental role played by spatial dynamics. Indeed, under-
standing how different local communities distributed in space interact
with each other is crucial to possibly predict the spreading of a PKD
epidemic and the effect of intervention strategies. From a theoretical
viewpoint, as we said above, the condition that disease-free equilibria
in all local communities be unstable is neither necessary nor sufficient
for the occurrence of outbreaks when such communities are connected
by different layers of connectivity affecting transmission (Gatto et al.,
2012). While the effects of landscape and river network connectivity
have extensively been evaluated for waterborne diseases affecting hu-
mans, the literature focusing on modelling processes of waterborne
animal diseases was scarce if not null in a spatial metacommunity
framework. Yet the issue of pinpointing effective mitigation strategies
for wildlife diseases such as PKD is becoming increasingly critical for
environmental policy makers. A noteworthy example is given by the

Fig. 20. Schematic representation of the proliferative kidney disease model. State variables and parameters are briefly mentioned in the text, and fully detailed in Tables S1 and S2
in Carraro et al. (2016). (a) Local intra-annual dynamics. Natural fish mortality is independent of epidemiological status, therefore it is not displayed for the sake of readability. (b) Local
inter-annual dynamics. (c) Spatially explicit framework, showing the river network as the substrate for ecological iterations and for the spread of the infection. Note that the main symbols
are: B, for the bryozoan submodel; F, for the fish submodel (adapted from Carraro et al., 2017; 2016).
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recent PKD outbreak occurred in the Yellowstone river (Montana,
USA) (Robbins, 2016), where, due to an unprecedented fish kill, the
local wildlife authorities imposed the closure of a 300 km-long river
stretch and related tributaries to all recreational activities, to prevent
farther spread of the parasite. A proper predictive tool for the spatial
dynamics of PKD remains elusive to date, despite its clear importance
for disease control and impact mitigation.

For this reason, Carraro et al. (2017) set out to study the key in-
fluence of network effects on PKD mortality and prevalence patterns,
and on the celerity of disease propagation. Building on the recently
proposed, first local model of PKD transmission (Carraro et al., 2016), a
spatially-explicit metacommunity framework has been developed to
study the spatial effects in the spread of the disease in idealized stream
networks. At the local community scale, the model accounts for de-
mographic and epidemiological dynamics of bryozoan and fish popu-
lations. At the network scale, the model couples the dynamics of each
local community through hydrological transport of parasite spores and
fish movement. The model also explicitly accounts for water tempera-
ture variations that influence epidemiological parameters, for hetero-
geneity in habitat characteristics, and for hydrological conditions along
a river network.

The idealized stream network is obtained as an OCN, which defines
a tree that spans the whole landscape. We consider landscapes formed
by square lattices of Dp

2 pixels whose side has length Lp. In the real
world, however, a drainage path becomes a stream only when certain
hydrological conditions are met. The simplest, and most tested method
assumes that pixels form a channel when their contributing area (a
proxy of landscape-forming discharge) exceeds a certain threshold AC,

T (Carraro et al., 2017). The network is then discretized into stretches,
each of which defined as a sequence T of channelized pixels starting
from one pixel having either zero (river sources) or more than one
channelized upstream pixels (confluences), and containing the down-
stream sequence of channelized pixels until another confluence or the
outlet are reached. The obtained network of stretches is an oriented
graph suitable for the application of the PKD metacommunity model.
The second step in the generation of synthetic river networks consists in
the definition of the geomorphological properties of each river stretch
(NS is the number of stretches). Cross sections are approximated with
rectangular shapes having width w, depth d and average water velocity
v. To account for how these geometric variables change along the
network, we exploit a classical result of river geomorphology
(Rodriguez-Iturbe and Rinaldo, 2001), according to which w∝Q0.5,
d∝Q0.4 and v∝Q0.1 where Q is river discharge. By invoking the pro-
portionality between landscape-forming discharge and contributing
area at-a-site, one has = = =w w A d d A v v A; ; ,k o k k o k k o k

0.5 0.4 0.1

where the subscript k identifies a generic stretch k, and wo, do and vo are
the maximum values (i.e. at the outlet) for width, depth and velocity,
respectively; =A A D/k C i p,

2
k is the normalized contributing area to

stretch k; subscript ik identifies the last downstream pixel of stretch k
(the last element of Tk). The discharge at the outlet of the catchment
reads then =Q w d vo o o o; the water volume in a generic stretch k is

=V w d L ,k k k s k, where the length
T

= ∑ ∈L Ls k i i, k
and =L Li p if the flow

direction along pixel i is parallel to a pixel side or =L L2i p if parallel
to the pixel diagonal. The slope-area relationship allows one to evaluate
the elevation of the network stretches. The elevation drop along a
network pixel can indeed be expressed as = −z s A LΔ ,i o i i

0.5 where so is
the outlet slope. This relationship can be iteratively applied starting
from the outlet pixel (where an arbitrary elevation zo is imposed) to-
wards all upstream paths, in order to reconstruct the elevation of each
channelized pixel. The elevation of a stretch can be defined as the
average elevation among all constituting pixels. Examples of OCNs
obtained by changing only the location of the output pixel are shown in
Fig. 21. Scale parameters that define the metric of the river network
were chosen to be representative of a prealpine catchment of around
1000 km2.

The seasonal cycle of stream water temperature typically follows
that of air temperature, albeit being damped and possibly delayed.
However, notable deviations can be observed in streams with large
impoundments or lakes upstream, or when the thermal regime is
dominated by ice/snow melting. For this exercise, we assume that
water temperature at the outlet reach To(τ) follows a sinusoidal function
with period equal to one year. To derive time series of water tem-
perature for all network stretches, we further assume that water tem-
perature mirrors the environmental lapse rate of air temperature. Water
temperature in a generic stretch k is then = +T τ T τ z( ) ( ) Γ Δ ,k o w k where
Γw is the lapse rate and Δzk the difference in elevation with respect to
the outlet. Lapse rates for air temperature can range from about −9.8 oC
km−1 for dry air (dry adiabatic lapse rate - DALR) to about−4.0 oC km−1

for hot saturated air (saturated adiabatic lapse rate). We assume Γw

equal to −6.5 oC km− ,1 a typical value that is used as global mean en-
vironmental lapse rate for air temperature (Carraro et al., 2017).

The fish mobility rate li can be thought of as the inverse of the
population-average residence time within stretch i. In general, stretches
may have different geometric and physical characteristics (e.g. length,
water volume and depth, velocity, fish carrying capacity) and thus li is
expected to change across the river network. li is computed in such a
way that the stationary state of the underlying diffusion process is a
specific spatial distribution of fish abundances Fi. The underlying idea is
that, in order to apply the model, first a distribution of fish abundance
at carrying capacity is assigned according to the characteristics of each
stretch, then a set of mobility rates li is derived so that fish movement
leads, at steady state, to the desired abundance distribution. Once
movements rules are determined (diffusion matrix P), the values of li
such that a distribution of fish abundances Fi is an equilibrium state are
obtained by solving the following linear system:

= ∀ ≤ ≤p l F p l F i N j N, .ij i i ji j j s s (7)

Note that only −N 1s of the above equations are nontrivial identities: in
fact, pij≠ 0 only if stretches i and j are directly connected, and every
stretch has one downstream connection, with the exception of the
outlet stretch. The system has ∞1 solutions; indeed if a set of li is a
solution, also the same set multiplied by a scalar is a solution. It is thus
possible to focus on a single solution by specifying the average mobility
rate across the network (lavg).

The model has been applied to several replicas of OCN landscapes
(see Appendix) (Fig. 21). Results show how network connectivity and
hydrological conditions critically control the spatial distribution of the
prevalence of PKD and the celerity of invasion fronts in the upstream
and downstream directions. Fig. 22 shows how connectivity and fish
mobility affect the distribution of disease prevalence (i.e. the fraction of
infected fish). Two main types of pattern arise: when mobility rates are
considerably high, prevalence decreases as the distance from the outlet
increases (Fig. 22a, d); when instead fish mobility is negligible, the sites
with higher prevalence are those whose contributing area is higher
(Fig. 22b,c). Contributing area is indeed a proxy of the abundance of
parasite spores that enter a given stretch, which is the main driver of
infection in the absence of fish movement. In this case, small headwater
stretches in the proximity of the outlet are not invaded by the parasite
(see magenta arrows in Fig. 22b). Conversely, high mobility rates en-
hance the mixing process among local communities, with the result that
the variability in prevalence among neighbouring stretches is low and
the average network prevalence increases. When mobility rates are
tuned to more realistic values (i.e., by assuming the distribution of
mean residence times of Fig. 21b), the distribution of prevalence shows
an intermediate behaviour (blue lines in Fig. 22c, d). Patterns of fish
loss exhibit an analogous trend.

The inclusion of an elevation gradient has a minor impact on the
distribution of prevalence (Fig. 22e); of course, this depends on the
lapse rate chosen. As a consequence of diminished temperature, a de-
crease of prevalence in upstream stretches is observed, which is not
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compensated for by a corresponding increment in lower altitude stret-
ches. This causes a small reduction in the average network prevalence
(about −1.5% regardless of fish mobility). As for the distribution of fish
loss (Fig. 22f), the effects of non-uniform temperature are slightly ac-
centuated. At the outlet, fish loss is generally higher (+4.3% when lavg
is null) but the fish loss does not change substantially with respect to
the flat landscape case. Also, a sensitivity analysis of disease propaga-
tion celerity with respect to the contamination rates (pathogen spores
produced by both fish and bryozoans) and the fish mobility rate lavg has
been conducted. Downstream propagation generally occurs after one to
three seasons, much faster than upstream propagation (which reaches a
steady state after around 100 seasons), as a consequence of the bias in
the hydrological transport of spores and of its fast dynamics. Ex-
pectedly, both the fish mobility and the contamination rates are posi-
tively correlated with propagation celerity in both directions, although
the role of lavg in downstream propagation is minor. When both con-
tamination and mobility are small, rather obviously PKD might not
establish in the network. Note that, while the absence of PKD at the
outlet stretch implies that the whole network is disease-free, this is not

necessarily true with regards to the headwaters. Similar effects are
produced by variations of fish or variations of bryozoan contamination
rates.

Fish movement and hydrological transport within a river network
can thus produce a heterogeneous distribution of PKD prevalence and
fish loss even in the absence of spatial gradients of fish and bryozoan
densities, or of transmission rates (Carraro et al., 2017). The typical
lifetime of PKD spores (around 1 day) allow them to travel along with
the flow, and possibly infect fish, tens of kilometers downstream of the
point where they are released. Stretches further downstream thus col-
lect spores from the whole (or a large portion of the) upstream area and
are therefore more likely to exhibit higher PKD prevalence and fish loss.
Conversely, headwaters and low-order streams are subject only to the
spore load that is locally released and thus tend to be relatively less
affected by PKD. Therefore, hydrological transport of spores tends to
produce spatial patterns of disease prevalence correlated to the up-
stream drainage area. This dominant pattern can partially be affected
by fish mobility. Indeed, a headwater connected directly to a high-order
stream is subject to immigration of likely-infected fish that foster local

Fig. 21. (a) Example of an Optimal Channel Network. The elevation map has been obtained by extrapolating a deterministic slope-area law to unchanneled pixels as well; while this
hypothesis is not generally valid in real landscapes, it has no implication for this work (Appendix). (b) Distribution of mean fish residence times for the OCN presented in panel (a). Mean
residence times are computed by assuming reasonable parameters and spatially uniform fish density (Carraro et al., 2017). (c) A replica of OCN in the same domain with a different
localization of the output pixel. (d) Tridimensional landscape generated by the OCN depicted in panel (c) Carraro et al. (2017).
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prevalence. Overall, fish mobility promotes the mixing between low-
and high-order streams resulting in a net increase of overall prevalence
at the network scale.

Elevation of river stretches is intimately related to the structure of
the underlying river network. Indeed, the well-established and ob-
served slope-drainage area relationship dictates that a network con-
figuration is uniquely associated to a relative elevation distribution of
river sites. Thus network structure controls, as a byproduct, also the
distribution of elevations, a proxy of mean water temperature and in
turn of PKD prevalence (Carraro et al., 2016). Indeed, water tempera-
ture generally decreases with elevation and thus with the distance to
the outlet. Temperature gradients tend thus to produce distributions of
PKD prevalence akin to those discussed above driven by hydrological
transport and fish mobility. However, results report that, at least for the
above example, the effect of temperature might be minor compared to
that produced by spatial coupling mechanisms. The river network
analyzed herein spans an elevation relief of about 1000m, which
translates in about 6.5 oC difference in mean water temperature. Larger
network with more pronounced elevation relief can possibly lead to
more important effect of temperature gradients.

The invasion celerity of PKD in the downstream direction is mostly
controlled by hydrological transport of spores, whereas fish mobility
has only a marginal effect. For transmission parameters leading to high
PKD prevalence (above 90%, a value sometimes observed in affected
river systems (Wahli et al., 2007; 2002)), the disease can invade from
tens to hundreds of kilometers of river within a single proliferation

season, provided that all sites are equally suitable for fish and
bryozoans. Upstream invasion of PKD from a region of the network
close to the outlet can occur only via fish swimming against the flow
direction. The corresponding celerity is much slower than the down-
stream one. With realistic values of fish mobility (e.g. =l 0.02avg d−1),
PKD can travel upstream only few kilometers per season.

Modelling fish mobility as a diffusion process implicitly assumes
that fish engage in trips with a thin-tailed distribution of
distance (Carraro et al., 2017). As discussed above, this is a useful
working hypothesis. One might assume, on the contrary, different dif-
fusion processes within the river network like e.g. a heavy-tailed dis-
tribution of reachable distances. This could lead to anomalous diffusion
and enhanced celerity of propagation of disease fronts into disease-free
regions. Other factors not included in this analysis, e.g. detailed de-
scriptions of the transport of spores, or infection of bryozoans or sta-
toblasts through ballast water or by waterfowl (Okamura et al., 2011),
can boost the propagation in both directions via long-distance dispersal
as well.

We conclude that spatial coupling mechanisms, i.e. hydrological
transport of spores and fish mobility, matter only during the bryozoan
proliferation season in which PKD can actually be transmitted (typically
from April to November). While this hypothesis is reasonable for
parasite spores, whose survival time-scale is much shorter than the
duration of the winter season, it might be questionable as concerns fish.
Indeed, fish movement in the cold season, even if it cannot spread the
disease, can enhance the redistribution of PKD carriers. It is known that

Fig. 22. Left and central columns: effect of the magnitude of fish mobility rates on PKD prevalence. Simulations are run for 50 years, the prevalence at the end of the 50th season is shown.
A flat landscape is assumed. (a) Prevalence map for a given OCN and standard parameters (Carraro et al., 2017). (b) Prevalence map in absence of fish mobility. (c) Prevalence as a
function of contributing area. For ten different OCNs, prevalence at each stretch is evaluated. Solid lines represent mean trends; shaded areas identify 25th–75th percentiles of the
distribution. (d) Prevalence as a function of relative distance to the outlet. Right column: effect of elevation gradient on prevalence (e) and fish loss (f) when fish mobility is set to zero.
Symbols are as in panel c. Epidemiological parameters are set to their reference value (Carraro et al., 2017).
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salmonids may move by several kilometers upstream in late summer or
autumn for spawning, and an analogous distance is covered down-
stream in early spring. However, brown trout are usually subject to
natal homing (Frank et al., 2012) and so they tend to return to the same
place. Moreover, PKD is not vertically transmitted to newborn fish.
Hence, we argue that neglecting winter fish mobility does not frustrate
our model’s ability to capture the effect of this crucial process on the
patterns of PKD prevalence.

The above results further our understanding of the drivers of fish
distribution in riverine ecosystems and provide the basis for the de-
velopment of intervention and management tools, which is one of the
main tenets of this paper.

5. Concluding remarks

General lessons that can be drawn from our perspective pertain a
twofold advance that we consider acquired. On the one hand, the role
of directional dispersal embedded in the topology and metrics of river
networks as the substrate for ecological interactions proves funda-
mental, theoretically and experimentally. Its remarkable effects are
relevant to unfolding or declining biodiversity, population dynamics
including biological invasions, the spread of waterborne disease. This is
far from generally acknowledged to date, yet particularly clear in our
view. On the other hand, spatially explicit metacommunity models (of
biodiversity, of population dynamics as well as of waterborne and
water-based disease transmissions) are fast learners from any source of
distributed information. Dynamic models of this kind may be particu-
larly effective in understanding patterns of biodiversity and of biolo-
gical invasions, as well as in planning containment efforts of emerging
infectious diseases – all of them being decisively affected by the to-
pology and metrics of the river network, and the embedded directional
dispersal allowed by their form and function. Despite differences in
methods that will be tested through model-guided field validations,
mathematical modeling of large-scale water controls on biota i.e. the
core business of ecohydrology, offer a broad perspective on a range of
biological processes, only briefly examined in this paper though fol-
lowing a coherent conceptual thread. We believe that neglecting op-
portunities to develop this path, or simply fostering a common cultural
bias against modelling approaches especially in public health assess-
ment, will contribute to keep the world’s social inequalities and in-
justice in the statu quo.

Several open issues remain in a number of areas relevant to this
review. For example, the use of estimated hydrologic controls as a
metric for model/study comparisons could parallel current practice as
data on the biota, say related to waterborne disease, are often of limited
quality such that it is often difficult to distinguish between models on
the grounds of better or worse performance. Progress in data assim-
ilation and model validation is also needed, in particular in view of the
nature of available field data. The different datasets to be utilised, in
fact, have rather different quality, because uncertainty on topographic,
hydrologic or ecological data tends to be radically different. This con-
strains our ability to validate integrated models to some extent, and is
keen to have an impact on the acceptance of spatial models in other

communities, e.g. in the public health area. It is the authors’ belief,
however, that these approach will become mainstream soon enough
owing to their intrinsic advantages. Optimal control of intervention
measures, possibly in emergency management, is a natural develop-
ment of the current tools. It will naturally follow from the solid es-
tablishment of the field of spatially explicit ecohydrology of species,
populations and pathogens of waterborne disease. Missing steps for
advancing this area concern the availability of model-guided field va-
lidations and suitable data to be assimilated into the model. We expect
significant steps forward in this area to come from remote sensing and
digital image processing, and from other technological advances – like
the widespread availability of human mobility fluxes tracked by cell
phones, currently arbitrarily managed, at times in rather untransparent
ways, by providers and monopolists. Environmental DNA fingerprinting
is also a technique that will increasingly provide large amounts of field
data of great ecological importance.

What limits the widespread uptake of models for decision making at
the interface of hydrology and ecology is a serious matter of current
debate. In the field of hydrology, it is widely accepted that modelling
tools are needed to overcome the limitation of extrapolating from data
in a nonstationary world. Therein, model-based decisions are the norm
to investigate possible interventions under what-if scenarios. In biodi-
versity preservation, protection from unfolding biological invasions or
public health control of waterborne disease transmission, such a tran-
sition has not yet happened. Perhaps what is missing to prompt a ra-
dical attitude change in these areas is a massive set of visible applica-
tions – the Haiti cholera epidemic (2011-) seems to have represented an
important testbed to that end – or perhaps visible joint initiatives where
direct comparisons between data-based strategies and modelling-aided
scenarios are made. What we are about to pursue next is a generalized
use of assimilated models of the spatially explicit type to assess optimal
control of interventions strategies for the containment of waterborne
disease spread (say, where to best allocate finite batch of vaccines in
space and time). In epidemiology, this is way beyond current public
health management of emergences. The road traced by hydrologists,
and by oceanographers and meteorologists before them, will be even-
tually followed in the future by ecologists and public health officials in
our (not so unbiased perhaps) view.
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Appendix

Optimal Channel Networks (OCNs) and their landscapes
Moving from the exact result that drainage network configurations minimizing total energy dissipation are stationary solutions of the general

equation describing landscape evolution (Banavar et al., 2000), it was argued (Rinaldo et al., 2014; 1999; 1992; Rodriguez-Iturbe and Rinaldo, 2001;
Rodriguez-Iturbe et al., 1992) that, at least in the fluvial landscape, nature works through imperfect searches for dynamically accessible optimal
configurations and that purely random or deterministic constructs are unsuitable to properly describe natural network forms. Here, we review the
model of river networks known as Optimal Channel Network (OCN) (Rodriguez-Iturbe et al., 1992). The OCN model was originally based on the
ansatz that configurations occurring in Nature minimize a functional describing total energy dissipation and on the derivation of an explicit form for
such a functional. The latter uses, locally, landscape-forming flowrates Qi and the drop in potential energy to define energy dissipation QiΔzi i.e.
approximated by Qi∼Ai (where Ai is total contributing area at i) and by the drop in elevation ∼ −z AΔ ,i i

γ 1 with γ∼ 1/2 (Rodriguez-Iturbe and
Rinaldo, 2001). Spanning, loopless network configurations characterized by minimum energy dissipation are obtained by selecting the
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configuration, say s, that minimizes the functional:

∑ ∑= ∝
= =

H s Q z A( ) Δγ
i

N

i i
i

N

i
γ

1 1 (A.1)

where i spans the lattice, say of N sites. The configuration s determines uniquely, on a spanning tree, the values of Ai (see below) and it proves
crucial (Banavar et al., 2000; Rinaldo et al., 2014; 1992; Rodriguez-Iturbe and Rinaldo, 2001; Rodriguez-Iturbe et al., 1992) that one has a concave
functional (i.e. γ<1) directly from the physics of the problem subsumed by the slope-area relation.

The global minimum (i.e. the ground state) of the functional in Eq. (A.1) is exactly characterized by known mean field exponents (Rodriguez-
Iturbe and Rinaldo, 2001), and one might expect to approach the mean field behavior by reaching a stable local minima upon careful annealing of
the system. This is in fact the case. The proof of the above is not trivial: any stationary solution of the landscape evolution equation must locally
satisfy the relationship ∇

→
∝ −z Ai i

1/2 between flux/area and the topographic gradient at any point i and gradients are approximated by Δzi, the largest
drop in elevation at i. One can thus uniquely associate any landscapes with an oriented (spanning and loopless) graph on a lattice, and reconstruct
the field of cumulative areas {Ai} corresponding to a given oriented spanning graph. Note also that we wish to emphasize the dependence on the
configuration = …s A A A{ , , , }N1 2 that the system assumes on the features of the oriented spanning graph associated with the landscape topography z
through its gradients ∇z that uniquely defines total contributing areas =A i N, 1,i in a N-site lattice. What is totally surprising is that empirically
observed scaling features are only reproduced by myopic searches of dynamically accessible configurations, that cannot get rid of the inheritance of
extant constraints. The scaling structure (topological and metric) of configurations characterized by suboptimal energy dissipation matches perfectly
those observed in Nature, and differs significantly from ground states (Rinaldo et al., 2006; 2014; 1999).

Optimal arrangements of network structures and branching patterns thus result from the direct minimization of the functional in Eq. (A.1). The
basic operational problem to obtain OCNs for a given domain is to find the connected path draining it that minimizes Hγ(s) without postulating
predefined features, e.g. the number of sources or the link lengths. One key problem is the assessment of the robustness of OCN configurations
selected by any minimum procedure. This has been studied (Rodriguez-Iturbe and Rinaldo, 2001) with respect to: the strategy for minimum search;
the role of initial conditions; the robustness of the functional dependence on γ; the role of lattice anisotropies; the effects of ‘quenched’
randomness (Rinaldo et al., 1992). The basic optimization strategies are similar to algorithms developed in the context of non-numerable (NP-
complete) problems where the exponential growth of possible configurations prevents complete enumeration. Iterated random searches work best in
that context (Rodriguez-Iturbe and Rinaldo, 2001). The basic algorithm proceeds as follows. An initial network configuration, s, is chosen as a
spanning tree on the grid to drain an overall area made up by N sites. This defines an orientation and a connection for each pixel stating to which of
the eight neighboring pixels its area is draining, neighbors being assumed at unit distance from the centroid. This in turn needed both preliminary
and a posteriori speculations on whether a triangular lattice - with six neighboring nodes - or an anisotropic scheme in which diagonal connections
were weighted by a 2 factor would be a better model of local interactions (Rodriguez-Iturbe and Rinaldo, 2001). A scalar state variable, Ai(t),
denotes the total area at a point i at stage t of the optimization process, = ∑ +A t W t A t( ) ( ) ( ) 1,i j ij j where Wij is the (now dynamic) functional
operator that has the connectivity matrix as its static counterpart by:

= ⎧
⎨⎩

W t
i j

( )
1, if , are connected
0, otherwiseij

(that is Wij(t) implies that j→ i is a drainage direction). Note that j spans the 8 neighboring pixels of the arbitrary ith site. The unit mass added refers
to the area representative of the actual site as a proxy of the distributed injection term. From the initial configuration (stage =t 0), the basic strategy
consists of drawing a site at random and perturbing the system by assigning a change δWij i.e. by modifying at random its connection to the former
receiving pixel. Hence + = +W t W t δW( 1) ( ) .ij ij ij This corresponds to perturbing the configuration s (s→ s′). Adjusting to such a local modification, all
aggregated areas Ai are modified in the downstream region until the original and the modified path reconvene. The change is accepted if the
modified value of Hγ(s′) is lowered by the random change (Hγ(s′)<Hγ(s)) and no loops are formed. Loops are excluded on a rigorous basis, as it was
shown exactly that they lead to energetically unfavorable configurations (for the functional in Eq. with γ<1 every tree is a local minimum of total
energy expenditure (Rinaldo et al., 2006)). As the new configuration is adopted as a base configuration, the process is iterated. Otherwise, the change
is discarded (if Hγ(s′)≥Hγ(s)), and the t-stage configuration s is perturbed again. The procedure leads to a configuration for which no improvement
on total energy expenditure appears after a fixed (and large) number of iterations i.e. an OCN. The whole process may or may not be then reset and
restarted from the same initial configuration. This is done several times at times to allow the random process a fair chance to capture nonlocal
minima – should they be of interest. The configuration attaining the lowest energy dissipation amongst the trials described before is chosen as the
OCN. Instructive visual schemes of the progress of the basic selection algorithm is illustrated elsewhere (Briggs and Krishnamoorthy, 2013;
Rodriguez-Iturbe and Rinaldo, 2001).

This basic procedure, at times termed the Lin (or the greedy) approach because of the similarities with the N-city traveling salesman
algorithm (Rodriguez-Iturbe and Rinaldo, 2001), respects the rules of a fair search for approximate solutions but is apt to yield trapping in local
minimum energy. Variants of the basic algorithm, implemented to test the importance of choice of strategy for minimum search, include the
Metropolis algorithm – multiple simultaneous perturbations and simulated annealing schemes are engineered to avoid trapping of the configuration
into unsuitable local minima. This is done by accepting perturbations of the current configuration (s→ s′) even if they yield Hγ(s′)≥Hγ(s) with a
probability depending on a state parameter T. In practice, the probability of acceptance of the perturbation is given by the Metropolis rule, i.e. it is 1
if the resulting change corresponds to Hγ(s′)<Hγ(s)) or, if = ′ − ≥H H s H sΔ ( ) ( ) 0γ γ and >−e R,H TΔ / and 0 otherwise, where R is a random number
(R∈ (0, 1)). To carry out proper annealing one makes changes in the parameter T from relatively high values at the start to low values towards the
end of the analysis. Clearly for high values of T the likelihood of accepting unfavorable changes is high, whereas for T→ 0 the rule is equal to that of
the basic algorithm. A ‘cooling’ schedule for decreasing values of T as the procedure evolves is thus required (Rodriguez-Iturbe and Rinaldo, 2001).

Optimal arrangements of network structures and branching patterns thus result from the direct minimization of the functional in Eq. (A.1). The
basic operational problem to obtain OCNs for a given domain is to find the connected path s draining it that minimizes Hγ(s) without postulating
predefined features, e.g. the number of sources or the link lengths. Random perturbations of an initial structure imply disconnecting and reorienting
a single link at a time (Rodriguez-Iturbe and Rinaldo, 2001). They lead to new configurations that are accepted, details aside, if they lower total
energy expenditure – i.e. the functional in Eq. (A.1) – iterated until many perturbations are unable to prompt change by finding better configurations.
Loops possibly generated by the random configuration search in the fitness landscape were excluded at first without a rigorous basis. Only later it
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was shown exactly that they lead to energetically unfavorable configurations (Banavar et al., 2000; 2001; Rinaldo et al., 2006) for realistic values of
γ derived from slope-area empirical evidence. Boundary conditions are required for the evolving optimal trees, as outlet(s) must be imposed (single
or multiple outlets along drainage lines) as well as no-flux or periodic boundary conditions (Briggs and Krishnamoorthy, 2013; Rodriguez-Iturbe and
Rinaldo, 2001).

Interesting issues emerge on the statics, dynamics and complexity of OCNs (Rinaldo et al., 2014). Exact results (reviewed in Rinaldo et al., 2014)
exist on: the existence of many dynamically accessible stable states; the practical impossibility of pointing out a priori the most stable feasible state
among all metastable states without an evolutionary account of the history of the current configuration of the system; the hierarchical structure and
the universality class of dynamically accessible states. Although the above are features that river networks share with other natural complex systems,
the extent of observations and comparative analyses, the exact relation to the general evolution equations and the broad range of scales involved
suggest their interest as a general model system of how Nature works (Bak, 1996). Thus, one recurrent self-organized mechanism for the dynamic
origin of fractal forms is the robust strive for imperfect optimality that we see embedded in many natural patterns, especially hydrologic ones.

Example of spatially explicit SIWR model.
A spatially explicit SIWR model of epidemic cholera is presented here as an Appendix to the main text. All spatially explicit epidemiological

models follow from the same scheme, as they belong in a special class of metacommunity models (Section 2).
The basic epidemiological model derives from the spatially-distributed SIWR model (termed SIRB for bacterial diseases like cholera) (Bertuzzo

et al., 2005; Pasetto et al., 2017). The population is subdivided into n communities. Each community is represented by a node of the model (Fig. 18).
The individuals in each node i are subdivided into three separate categories, susceptible, symptomatic infected and recovered, whose number at time
t are denoted with Si(t), Ii(t) and Ri(t), respectively. The concentration of V. cholerae in the local environment corresponding to node i is indicated
with Bi(t). The following set of coupled ordinary differential equations describes the cholera transmission dynamics:

= − + +dI
dt

σF t S γ μ α I( ) ( )i
i i i (A.2)

= − + − +dR
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where the population Hi of each node is assumed to be at demographic equilibrium, if =α 0. Thus, the equation for susceptibles, in this case, reduces
to = − −S t H I t R t( ) ( ) ( )i i i i . The term Fi(t) is called force of infection and represents the rate at which susceptible individuals are exposed to
contaminated water, expressed as:
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Parameter β denotes the maximum exposure rate, which, in this application, is assumed to differ among the nodes. The fraction +B K B/( )i i is the
probability of becoming infected due to the exposure to a concentration Bi of V. cholerae, K being the half-saturation constant (Codeço, 2001). The
force of infection takes into account the possible disease propagation due to human mobility, with the idea that a fraction m of susceptible in-
dividuals daily commute between nodes and can thus be exposed to pathogens at the destination. Two options have been used to compute the
probability Qij that an individual living at node i commutes to j: one is the gravity model (Erlander and Stewart, 1990) i.e. ∝ −Q H e ,ij j

d D/ij where the
attractiveness of node j depends on its population size Hj, while the deterrence factor is assumed to be dependent on the distance dij between the two
communities via an exponential kernel with shape factor D (alternatively, a radiation model may be implemented in uniformly dense
contexts (Simini et al., 2012)). The second option has been to derive mobility fluxes Qij directly from the tracking of mobile phone records, a tool that
proves essential in the case of non-routine gatherings (like religious pilgrimages in Senegal) that ignite infection spreads (Finger et al., 2016). A
fraction σ of the infected individuals develops symptoms, thus entering class Ii. The remaining fraction − σ(1 ) is asymptomatic and therefore does
not contribute to the disease transmission and enters the recovered compartment directly. Symptomatically infected individuals recover at a rate γ or
die due to cholera or other causes at rates α or μ, respectively. Note that here α is set to zero to maintain the demographic equilibrium. In fact, a value
of α different from zero under the assumption of constant population would imply that the birth rate increases to overcome the deaths due to cholera,
which is inconsistent. Recovered individuals lose their immunity and return to the susceptible compartment at a rate ρ or die at a rate μ. Symptomatic
individuals contribute to the environmental concentration of V. cholerae at a rate p/Wi, where p is the rate at which bacteria excreted by an infected
individual reach and contaminate an imaginary environmental water reservoir of volume Wi (assumed to be proportional to population size, i.e.,

=W cHi i as in Rinaldo et al., 2012). Environmental V. cholerae are assumed to decay at a rate μB. The hydrologic dispersal of bacteria if embedded in
the last term of Eq. (A.4) . Bacteria undergo hydrologic dispersal at a rate ℓ: pathogens can travel from node i to j with probability Pij. We assume the

=P 1ij if j is the downstream nearest neighbor of node i and zero otherwise.
The mobility of infected individuals are not considered here (Bertuzzo et al., 2016; Pasetto et al., 2017). While bacterial dispersal along the

hydrological network is typically an important transmission process at the first stages of a cholera epidemics, subsequent current reported epide-
miological data, as notably observed for the Haitian (2010-) epidemics are uncorrelated to the channel network. For what concern the mobility of
infected individuals, most of them require urgent hydration treatment at healthcare points, thus the hypothesis that a relevant fraction of infect
individuals commutes among the nodes is unconvincing. In order to express the deterioration of sanitary conditions caused by rainfall, the con-
tamination rate p is increased by the rainfall intensity Ji(t) via a coefficient ϕ (Rinaldo et al., 2012). By introducing the dimensionless bacterial
concentrations =B B K* / ,i i it is possible to group three model parameters into a single ratio =θ p cK/( ) (Bertuzzo et al., 2008). The weekly cholera
cases are computed by integrating the number of new cases in every commune, i.e. σFiSi. The equations are usually been solved by Runge–Kutta
methods (Bertuzzo et al., 2016; Pasetto et al., 2017). To assess the impact of vaccination campaigns, the model needs be adapted to consider
vaccinated individuals. We assume that vaccination targets individuals independently of their cholera infection history, i.e. both susceptible (S) and
already immune individuals (R) are eligible with the same probability. Vaccinated individuals already immune are assumed to remain completely
immune, while vaccinated susceptibles benefit from a leaky immunity with vaccine efficacy 0< η<1, thus reducing the susceptibility by η. Oral
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vaccination is assume to provide immunity with a delay of one week after administration of a single dose. Due to the short time horizon of the
forecast, at this stage no assumption is made for the duration of the vaccine-induced immunity and individuals remain immune for the duration of
this study. At each node i the number of vaccinated individuals at a time t is subdivided into three separate categories in addition to Si, Ii and Ri,
denoted as vaccinated susceptible individuals, V ,i

S vaccinated individuals that become infected, V ,i
I and vaccinated recovered which have a complete

immunity, Vi
R. The equations are modified accordingly (Pasetto et al., 2017) as shown schematically in the scheme of Fig. 18d where the number of

susceptible individuals is computed as = − − − − −S H I R V V Vi i i i i
S

i
I

i
R. The model assumes a linear ramp-up of vaccine uptake, meaning that daily

number of OCV doses distributed in each community, νi, is computed by equally deploying the available doses during the days of the campaign.
Normally, vaccines are evenly distributed among susceptible and recovered individuals. The delay of one week in the vaccine-derived immunity is
modelled by starting the OCV campaign with a delay of one week. To model the leaky immunity of vaccinated susceptible individuals, the force of
infection Fi is decreased of a factor − η1 , as depicted in Fig. 18.
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