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1. ABSTRACT 

VINAG (VISION/INS integrated Navigation Assisted by GNSS) is a highly integrated system, 

specifically designed for autonomous on-board navigation in a wide class of space missions, which 

include, along the operational lifetime, proximity among heterogeneous space segments. The system 

VINAG is under development by a team of Italian companies and universities, co-financed by the 

Italian Space Agency.  In particular, thanks to a high level of integration of its subsystems, VINAG, 

is a low mass, low volume and low power device, suitable for small and very small satellites. The 

complete system integrates a Cameras Subsystem (a monocular camera and a Star sensor), an Inertial 

Measurement Unit (IMU) and a GNSS (Global Navigation Satellite System) receiver, in order to 

provide both 1) absolute orbit and attitude determination and 2) relative position and attitude 

determination with respect to an orbiting non-cooperative object. In this paper, we present the whole 

system VINAG, focusing first on its functional architecture, second on the adopted navigation and 

data fusion algorithms and third briefly on its hardware (HW) design. The camera system and the 

GNSS receiver developed for VINAG, respectively by TSD Space and by Space Technology are also 

described in short. In addition, preliminary simulations that assess the potential performance of 

VINAG, in LEO (Low Earth Orbit) and GEO (Geostationary Orbit) are described. 

2. INTRODUCTION  

Navigation is an essential process in all satellite missions, often having a strong impact on their 

success. Over the last decades, several technologies have been adopted for spacecraft navigation. It 

is intuitive that a combination of these that sums their advantages and compensate their limitations, 

can provide the best achievable performance to the resultant integrated system. In space applications 

that require considerable autonomy, precision, robustness, adaptability to several scenarios, as  
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missions of On-Orbit Servicing (OOS), debris removal, or in general in missions where a swarm or 

formation of spacecraft is involved, the integration of more metrology systems (integrated navigation) 

can certainly be more effective than using a single technology individually.  In addition, it is also 

intuitive that “integration” means mass and volume saving, as well as energy saving. If the individual 

subsystems are already designed and conceived to be integrated in one bigger system, it is possible 

to avoid non-efficient replication of hardware (HW) components and basic functionalities, as 

computing, power supply, data interface, etc., with a consequent reduction of the total mass, volume 

and power consumption.   

VINAG (VISION/INS integrated Navigation Assisted by GNSS) is a highly integrated system, 

specifically designed for autonomous on-board navigation in a wide class of space missions, which 

include, along the operational lifetime, proximity among heterogeneous space segments. The 

complete system integrates a Cameras Subsystem (a monocular camera and a Star sensor), an Inertial 

Measurement Unit (IMU) and a GNSS (Global Navigation Satellite System) receiver, in order to 

provide both 1) absolute orbit and attitude determination and 2) relative position and attitude 

determination with respect to an orbiting non-cooperative object. With a modular architecture, 

VINAG can be used in different configurations. The VINAG HW is composed by the VINAG Central 

Unit (VCU), the VINAG Cameras System and the Inertial Navigation System (INS) Module (which 

contains the IMU). The Cameras System includes the CMOS monocular camera and the Star sensor, 

while the central unit of VINAG includes the VISNAV (VISion-based NAVigation) & Data Fusion 

Module (VDFM), the VISNAV HW acceleration module, the GNSS Receiver Module and the Power 

Conditioning & Distribution Module (PCDM). 

Among the state-of-the-art integrated systems for spacecraft navigation, so far adopted in current 

missions or at least proposed in the literature, we can mainly find either systems for absolute 

navigation, based on the GNSS/INS integration with different level of tightness (loose, tight, ultra-

tight, deep) or systems for relative navigation based on the integration of optical sensors. This is also 

confirmed by the “European Space Agency (ESA) technical dossier of AOCS sensors and actuators” 

[1], where mentioned examples of the state of the art GNSS/INS based integrated systems are the 

European Launcher Localization Kit (EL2K), the HiNAV tightly-coupled breadboard [2], the 

Autonomous Localization and Telemetry Sub System (ALTS S/S) [3] and the GPS/INS integrated 

system SIGI [4] of Honeywell. In addition, it is important also to mention that, although originally 

designed for earth users and currently also adopted in LEO, recent studies have demonstrated that 

nowadays GNSS can be used to navigate also in higher earth orbits, as MEO, GEO, HEO and beyond 

up to the Moon altitude [5], [6], [7]. A GPS Space Service Volume has been indeed already defined 

[8]. Instead, most of the optical navigation systems that have been developed or proposed, are 

typically not that versatile, but suitable only for a single application (e.g NAVCAM on Rosetta), since 

they have been one-off custom designed for a specific task and mission. A few multipurpose and 

versatile optical systems can be mentioned, as the generic multi-mission vision-based navigation 

(VisNav) chain architecture [9], the system VIBANASS (VIsion-BAsed NAvigation Sensor System) 

[11] and the vision-based navigation systems of Ball Aerospace for the Orion program.  

To our knowledge, combining GNSS, INS and Vision in the same unit, to provide both absolute and 

relative orbit and attitude determination appears to be a novel solution, aligned with the current trend 

(according to [1]) towards multi-purpose navigation systems, robust, versatile, and adaptable to 

different space scenarios with different navigation requirements. 

The rest of the paper is organized as follows. Section 3 illustrates the high level functional architecture 

of VINAG. Section 4 details the algorithms implemented both for absolute navigation and for relative 

navigation. In Section 5 a summary of the hardware design is also provided. While Section 6 describes 
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preliminary simulations of the navigation performance of VINAG as well as the adopted parametric 

models and assumptions. Finally in Section 7 the conclusions are drawn. 

3. HIGH LEVEL ARCHITECTURE  

The high level functional architecture of VINAG is illustrated in Figure 1.  By means of a nonlinear 

Kalman filter, for absolute orbit determination, GNSS observations are fused with inertial 

measurements and with a model of the absolute dynamics; inertial angular measurements are also 

combined with Star sensor-based attitude estimates for absolute attitude determination. While, in 

relative navigation, images of a target orbiting object are collected by a monocular CMOS camera to 

provide vision-based pose (position and attitude) estimates, then filtered with a model of their relative 

dynamics.  

The proposed architecture also requires further inputs related to the target geometry and to the 

configuration of the navigation algorithms (e.g. selection between absolute or relative navigation 

modes). Moreover, the internal functional status of the navigation system is also outputted (sensor 

diagnostics, validity, estimated accuracies, etc.). 

A more detailed discussion on the algorithms structure is reported in the following sections. 
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Figure 1. High level functional architecture. 

 

4. NAVIGATION AND DATA FUSION IMPLEMENTATION 

In this section, the algorithms implemented for both absolute and relative navigation are described in 

detail.  
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3.1 Absolute Navigation 

The integration of GNSS, IMU and Star sensor observations enables orbit and attitude determination. 

The following sections describe in detail the implementation of a GNSS/INS/Star sensor – based 

orbital filter. 

GNSS/INS/Star sensor-based orbital filter 

The Absolute Navigation algorithm is the result of a detailed trade-off analysis considering several 

criteria such as accuracy, computational complexity, possible numerical issues, flexibility for further 

future upgrades (i.e modularity of the architecture) as well as theoretical results on optimality of the 

solution. However, the following set of constraints was assumed to feed the trade-off and design 

phases.  

 The Absolute Navigation System consists of a Star Tracker, an Inertial Measurement Unit 

(IMU), a Global Navigation Satellite System (GNSS) receiver and a sensor fusion algorithm. 
 The IMU is a tactical grade MEMS unit with an update rate of 100Hz. The Absolute 

Navigation filter will include the estimation of the IMU measurement biases assuming all the 

other systematic sources of errors (i.e. mutual and installation misalignment, temperature 

variations cross-coupling effects, non-linearity and so on) already compensated or negligible. 

This assumption could be summarized considering the following IMU measurement model: 

[
𝜔𝑚

𝑎𝑚
] = [

𝜔𝑡 + 𝜔𝑏

𝑎𝑡 + 𝑎𝑏
] + [

𝜂𝜔
𝜂𝑎
] 

(1) 

 

where: 

- 𝜔𝑚 and 𝑎𝑚 are the gyro and accelerometer measurements respectively 

- 𝜔𝑡  and 𝑎𝑡 are the true angular velocity and acceleration respectively 

- 𝜔𝑏 and 𝑎𝑏 are the gyro and accelerometer biases respectively 

- 𝜂𝜔 and  𝜂𝑎 are the gyro and accelerometer noise respectively  

 The Star sensor provides the unbiased true attitude plus a noise term that will include all the  

Star sensor measurement errors; the update rate is 5Hz 
 The GNSS receiver is a multi-constellation, single-frequency receiver with 30 channels and 

an update rate of 1Hz. The systematic and known errors (i.e relativity errors) of receiver's 

output (pseudoranges and pseudorange rates) are already corrected by using for example a 

tight integration scheme. Furthermore, the GNSS receiver also provides the ephemeris 

information (or equivalently the best received-satellite positions and velocities computed from 

the ephemeris file). 
 Considering the application segment and the related required accuracy performance, the 

gravitational model used in the absolute navigation filter equations assumes a homogenous 

spherical Earth and more precisely it considers the most significant or largest spherical 

harmonic term, which accounts for the Earth oblateness (i.e J2 term). 
 

Moreover, in case of unpowered flight, it is considered that the non-gravitational perturbations are 

essentially due to the atmospheric drag (especially for low orbits), which rapidly decreases for higher 

orbits, albedo, and Solar pressure that becomes the uppermost for GEO and higher orbits [12]. 

The architecture selected after the abovementioned trade-off analysis consists in a single (centralized) 

Square-Root Unscented Kalman Filter [13] running at the maximum available measurement rate 

(100Hz). The standard UKF is a nonlinear filtering technique based on the concept of Unscented 

Transformation (UT), a formal mathematical method for propagating a probability distribution 

through a nonlinear transformation. In more details, the UT allows estimating the output mean and 
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covariance of a nonlinear function by computing the weighted mean and covariance of a discrete set 

of points (named sigma points) deterministically chosen in the domain of the function. Using this 

method, the UKF provides at least second-order accurate evaluations of the first two statistical 

moments of the unknowns, enabling a complete and structured statistical characterization of the 

estimated variables and leading to a reliable evaluation of the uncertainties on the estimations. 

Nevertheless, like all Kalman filters, the UKF performs the estimation in two sequential phases. First, 

a dynamic model, whose state vector is composed of the unknowns, is used for time propagation of 

the estimation (prediction phase). Then, at each time step, the available measurements are compared 

with the prediction (that is, the dynamic model outputs) to refine the estimation (correction phase). 

Furthermore, to mitigate the effects of well-known numerical issues of an unscented Kalman filter 

implementation (i.e. possibility of numerical instability, positive semi-definitiveness of the state 

covariance to apply Cholesky decomposition and so on), a SR-UKF formulation has been preferred 

for the presented application. 

Concerning the orbital filer model, an Earth Centred Integration (ECI) reference frame was assumed, 

with unity vectors given by �̂�, �̂�, �̂�.  A classical Cartesian formulation of the motion equations and 

attitude kinematics is: 

�̇� = 𝑣 

�̇� = 𝑎𝑛𝑔 + 𝑎𝑔 

�̇� =
1

2
Ω(𝜔) 

(2) 

(3) 

(4) 

Where 𝑝 =  [𝑥, 𝑦, 𝑧]𝑇 and 𝑣 are respectively the position and velocity of the VINAG system in the 

ECI reference frame and 𝑞 is the quaternion representing the VINAG system attitude with respect to 

the ECI frame. The matrix Ω(𝜔) is the skew matrix function of the angular velocity 𝜔 =

[𝜔𝑥, 𝜔𝑦, 𝜔𝑧 ]
𝑇
. 

Ω(𝜔) = [

0 −𝜔𝑥

𝜔𝑥 0

−𝜔𝑦 −𝜔𝑧

𝜔𝑧 −𝜔𝑦

𝜔𝑦 −𝜔𝑧

𝜔𝑧 𝜔𝑦

0 𝜔𝑥

−𝜔𝑥 0

] (5)  

The acceleration 𝑎𝑛𝑔 represents the total non-gravitational acceleration, sum of solar pressure, 

aerodynamic friction, and other perturbations, while 𝑎𝑔 is the gravitational acceleration approximated 

to the 2nd order term and given by [14]: 

𝑎𝑔 = −
𝐺𝑀

|𝑝|3

[
 
 
 
 
 
 
 𝑥 −

3𝑥

2
𝐽2 (

𝑅𝑒
|𝑝|

)
2

(5
𝑧2

|𝑝|2
− 1)

𝑦 −
3𝑦

2
𝐽2 (

𝑅𝑒
|𝑝|

)
2

(5
𝑧2

|𝑝|2
− 1)

𝑧 −
3𝑧

2
𝐽2 (

𝑅𝑒
|𝑝|

)
2

(5
𝑧2

|𝑝|2
− 3)

]
 
 
 
 
 
 
 

 
(6) 

 

Where 𝐺𝑀 is the product of the universal gravity constant and the Earth mass (that in the WGS84 

system is equal to 3.9860050e14 m3/s2), 𝑅𝑒 is the equatorial Earth radius (6378137 m) and 𝐽2 is the 

2nd degree harmonic coefficient. 
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In addition, some Gauss-Markov processes model the non-gravitational acceleration, the gyro bias 

𝜔𝑏, the GNSS receiver time delay 𝛿𝑡 and related drift 𝑘𝑡 as reported below: 

𝑎𝑛𝑔̇ =  𝜂𝑛𝑔 

𝜔�̇� = 𝜂𝜔 

𝛿�̇� = 𝑘𝑡 + 𝜂𝛿𝑡 

𝑘�̇� = 𝜂𝑘𝑡  

(7) 

(8) 

(9) 

(10) 

where 𝜂𝑛𝑔, 𝜂𝜔, 𝜂𝛿𝑡 and 𝜂𝑘𝑡  are the respective zero mean white Gaussian noise processes. 

Based on Eq. (2-10), the total number of the process states is 18, but using a minimal attitude 

representation based on the Rodrigues Parameters [15], allows reducing the total internal filter state 

dimension to 17. 

Thanks to the specific SR-UKF architecture, the filter is able to cope with a variable number of 

measurement available step by step, simply propagating and correcting the covariance matrix (and 

the estimated state) using only the available measurements. 

In order to perform the model propagation phase, equations (2), (3), (7)-(10) are discretized using a 

1th and/or 2nd order Taylor series approximation, while equation (4) is discretized adopting a standard 

literature quaternion propagation/integration equation [16]. 

For what concern the correction phase, but also for sigma-points definition and propagation, 

covariance matrix estimation and so on, SR-UKF approach requires different algebraic operations on 

the estimated state. For example, the correction to the current propagated state is added and averaged 

after the sigma-point propagation. Precisely, while state elements other than quaternions (or 

Rodrigues parameters) are defined in a Cartesian space allowing normal algebraic manipulation, the 

quaternion statistical propagation needs a special care, because a normal weighted arithmetic average 

of sigma points yields to a non-unit quaternion estimate [17]. To this end, a specific algorithm 

proposed in [18] has been used that allows averaging on a unit hypersphere manifold in order to 

obtain a unit-norm reference optimal quaternion. 

The measurements of the orbital filter in this study include: i) up to 30 pseudoranges and 30 

pseudorange rate measurement from GNSS receiver related to the current visible satellites, ii) attitude 

measurement from Star sensor, iii) angular velocities from the gyroscopes, iv) acceleration 

measurements from accelerometers used only when VINAG system is subject to manoeuvring 

conditions. In this case, the accelerometer bias is neglected. Finally, in order to obtain a more accurate 

position estimation, also a dedicated masking algorithm was implemented in case of GEO (or higher) 

orbits. Specifically, low elevation satellites’ measurements were not included in the filter, considering 

that for these satellites, the measurement error can be strongly auto-correlated (and however in 

presence of satellite signals which intercept ionosphere) due to relevant atmospheric delays [19]. 

3.2 Relative Navigation 

The absolute state of the spacecraft, obtained by the absolute navigation filter, are the input of the 

relative navigation filter block. The relative state determination algorithm is composed by two main, 

strongly interconnected blocks. 
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A general scheme of the architecture is depicted in Figure 2. The relative pose t,R  (being t the 

translation vector and R the rotation matrix) is estimated by the Monocular Pose Determination block 

and then fed to the filtering block, which is composed of two sections for translational and rotational 

dynamics, respectively. The relative state estimate provided by these filters is provided in feedback 

to the pose determination block each time a new image is available. 

 

 

Figure 2. Relative Navigation Architecture. 

Vision-based relative navigation filter  

A decoupled architecture is chosen for the navigation filter. In fact, by neglecting external 

disturbances and spacecraft flexibility, the relative translational and rotational dynamics are 

decoupled.  

Translational filter 

For the translational part of the filter, an H-∞ Filter is selected. The standard Kalman filter is the 

optimal estimator for linear systems with zero-mean Gaussian process and measurement noise. 

However, if these assumptions do not hold, robust filtering techniques can outperform the Kalman 

filter. This kind of filter is called H-∞ filter or also minimax filter. It minimizes the ∞-norm of the 

estimation error and it does not make any assumptions about the statistics of the process and 

measurement noise [20].  

In the considered case, the measurements are the output of the pose estimation block, i.e. the relative 

position between the two centers of mass. The formulation of the H-∞ Filter constrains the choice to 

linear relative dynamics model. For this reason, in this work, the authors used the formulation by 

Yamanaka and Ankersen [21] as filter dynamical model. In the cited paper, they developed a 

linearized formulation for arbitrary elliptical orbits. Moreover, the derived state transition matrix 

representation is advantageous in the implementation of filtering techniques.  

Rotational filter 

For the rotation part, a second-order minimum energy filter on the Lie group is implemented. The use 

of a minimum energy filter on SO(3) is justified by the fact that, thanks to the Lie group structure of 

SO(3), this class of filters is shown to outperform the classical Multiplicative Extended Kalman Filter 

[22]. 

In this paper, a modification to the second-order minimum energy filter proposed by Saccon [23] is 

introduced without considering the dynamics of the system. In particular, the filter is adapted to be 

used in a relative scenario and without the knowledge of the exact inertia properties of the target.  
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The complete formulation of the second-order filter without the dynamics terms is outlined in Table 

1, where 𝑅 is the relative rotation matrix, 𝜔 is the relative angular velocity vector, 𝐾 is the filter gain, 

𝑟𝑅 and 𝑟𝜔are the filter residuals. For the complete derivation of the filter, please refer to [23]. 

 

Table 1. Second-order minimum energy filter. 

 

 
 

 
 

Monocular pose determination  

The pose determination block (see Figure 1) is a critical component of the architecture designed for 

relative navigation toward a non-cooperative target based on the monocular camera system of 

VINAG. This block includes the implementation of all the techniques and algorithms required to 

estimate the relative position and attitude of the target with respect to the camera (pose) by processing 

raw sensor data (i.e., 2D images). In this respect, it is worth to outline that the pose determination 

block foresees two distinct steps, i.e., acquisition and tracking. Pose acquisition is carried out as soon 

as the first image, acquired by the monocular camera system, is available. Consequently, no a-priori 

information about the relative position and attitude of the target can be exploited to aid the processing 

operations. Once successful pose acquisition is confirmed, the tracking phase can be started, during 
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which the pose parameters are updated (at higher frequency) taking advantage of the navigation 

information at the previous time instants provided by the navigation filter. Considering the mission 

scenarios of interest to VINAG, it is possible to state that the uncooperative target is a known space 

object, i.e., at least a simplified model of its geometry is available, and it can be stored on board. 

Consequently, pose determination is entrusted to model-based algorithms which are designed to look 

for an optimal match between natural features (e.g. corner or edges), extracted from the acquired 

images, and the target model. These model-based approaches require three online steps, as shown in 

Figure 3. 

 

Figure 3. Monocular model-based algorithms: processing steps and output. 

Image processing is needed to extract from the acquired image a set of 2D features, which are 

representative of the target appearance in the camera Field-of-View (FOV). Image to model matching 

is aimed at finding correspondences between these features and the elements of a dataset of similar 

objects obtained from the target model. Finally, once a set of correspondences is available, the pose 

parameters are estimated by implementing a proper solver for the Perspective-n-Point (PnP) problem. 

The specific solutions adopted in VINAG for each of these steps, considering both the acquisition 

and tracking phases, are now presented in detail. Concerning image processing, the same technique 

is adopted for both pose acquisition and tracking. Corners have been selected since the associated 

detectors (e.g., Harris [25], Shi-Tomasi [26]) are characterized by much lower computational burden 

than the one required by more complex feature descriptors (e.g., SIFT [27]). Hence, they are suitable 

for real-time implementation even when limited processing resources are available (which is the case 

for small satellites applications). Once a set of 2D corners has been extracted from the acquired image, 

they must be matched to a set of 3D landmarks, i.e., the target model, which is built offline from the 

knowledge of the target geometry. These landmarks are basically the real 3D corners of the target 

which are highly likely to be extracted by the corner detector. An example of target model in which 

the 3D landmarks are highlighted is shown in Figure 4. 
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Figure 4. 3D landmarks (red circles) composing the simplified model of a potential target (XMM-Newton). 

The remaining processing steps identified in Figure 3 are coupled, meaning that the problem of 

finding correct 2D-3D point correspondences and the subsequent estimation of the pose parameters 

(PnP solution) must be dealt with simultaneously. Two distinct ad-hoc solutions have been selected 

and implemented for acquisition and tracking, respectively. 

With regards to pose acquisition, an original approach is presented. It is based on a customized 

implementation of the Random Sample Consensus method (RANSAC) [28] to carry out image-model 

matching, while it uses the Efficient Perspective-n-Points (EPnP) algorithm [29] as PnP solver. 

RANSAC is a hypothesize-and-test approach meaning that it iteratively generates a set of 2D-3D 

matches by gradually enlarging a relatively small “consensus set”, i.e., a set of hypothesized point-

to-point correspondences. At each iteration, the test consists of applying the selected PnP solver to 

the consensus set to verify the correctness of the correspondences. Once the initial consensus set, S1, 

is created, a tentative pose solution provided by the PnP solver is used to project the 3D landmarks 

on the image plane using the classical equation of the perspective projection based on the pinhole 

camera model, as shown hereunder. 

𝑷𝑟 = 𝑓

[
 
 
 
 
𝑃𝑥
𝑐

𝑃𝑧
𝑐

𝑃𝑦
𝑐

𝑃𝑧
𝑐]
 
 
 
 

 

 

(11) 

 

Where f is the camera focal length, while PC = (Px
C Py

C Pz
C) is a generic 3D landmark converted from 

the Target Reference Frame (T) to the Camera Reference Frame (C) using the equation below. 

𝑷𝑐 = 𝑅𝑇𝐶𝑷 + 𝒕 

 

(12) 

 

And where RTC and t are the relative rotation matrix and position vector, respectively, provided by 

the PnP solver. At this point, the corners extracted from the image and the 3D landmarks of the model 

re-projected on the focal plane are processed by a feature-matching algorithm which aims at enlarging 

the consensus set. Specifically, each of the re-projected corners is tentatively associated to the image 

feature which provides the minimum distance. If the Euclidean distance falls below a threshold, the 

image-model correspondence is confirmed. The output of this process is an enlarged consensus set 

S1*. If the number of 2D-3D matches stored in S1* reaches a pre-defined value (correspondence 
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condition), the algorithm is terminated. Otherwise, a new random consensus set (S2) must be defined 

and the whole procedure has to be repeated. This standard RANSAC implementation is customized 

by exploiting heuristics, i.e., the knowledge of the target shape, to accelerate the search for 2D-to-3D 

corner matches (so that is not based on purely random image-model associations). Indeed, the main 

drawback of RANSAC-based approaches is the significant computational load arising from the fact 

that S1 is chosen randomly. Consequently, an ad-hoc strategy has been conceived which exploits the 

knowledge of the target geometry. In details, S1 is built by considering only a limited number of 3D 

landmarks, i.e. those belonging to spacecraft components which are clearly separated with respect to 

the target center of mass (e.g., solar arrays, telescopes, antennas). This approach derives from the fact 

that if the target is fully visible in the camera FOV, the probability that the above-mentioned elements 

are far from the image centroid on the focal plane is extremely high. Clearly, the restricted set of 3D 

landmarks is selected off-line, depending on the target under consideration. On the other hand, the 

2D corners extracted from the image are classified exploiting an image processing strategy which is 

based on the potential of the Principal Component Analysis (PCA) [30]. The PCA is a technique used 

to analyze multidimensional datasets. Specifically, it aims at deriving their principal directions, i.e. 

the main related information, by studying eigenvectors and eigenvalues of the associated covariance 

matrix. So, when applied to the set of 2D corners extracted from the image, PCA allows classifying 

them into different sub-sets depending on their distribution with respect to the image centroid. Once, 

this classification is accomplished, it is possible to significantly restrain the computational time by 

searching for 2D-3D correspondences considering only these restricted sub-sets of 2D and 3D 

corners. 

With regards to the tracking step, the SoftPOSIT algorithm [31] has been selected due to its capability 

to simultaneously ensure adequate levels of accuracy and update rate. This method integrates an 

iterative pose determination technique (POSIT, i.e., Pose from Orthography and Scaling with 

ITerations) and an iterative correspondence assignment approach (Softassign), into a single operation 

loop. Specifically, unlike EPnP which provides a closed-form solution to estimate the pose 

parameters, the PnP solution provided by softPOSIT is a non-linear optimization of a purposely 

defined cost-function [31]. 

 

5. HARDWARE DESIGN 

In this section, an overview of the hardware design of VINAG is provided. 

4.1 VINAG Central Unit 

Vision-based Navigation & Data Fusion and VISNAV HW acceleration modules 

The VISion based Navigation (VISNAV) & Data Fusion Module (VDFM) is the core of VINAG 

Central Unit; it takes care of the video data acquisition from the Camera System, the image data 

processing and the monocular pose determination, the reception of the data coming from the GNSS 

receiver and the IMU and finally the implementation of the navigation data fusion algorithms. The 

VDFM is based on a Microsemi RTG4 Flash FPGA, whose large logical resources are mainly 

dedicated to the HW implementation of the algorithms, or parts of them, requiring intensive-

computing; in the same RTG4 FPGA is also implemented a SW IP core Processor that is employed 

for the control of the entire VINAG system and to run algorithms or the high level of them, involving 

a computational load compatible with a SW implementation. For the execution, at the required rate, 

of the VISNAV algorithms, representing the most demanding computational load, the VDFM can 
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dispose (when needed) of an HW Acceleration Module that is based on two XQR5VFX130 Xilinx 

FPGAs; thanks to a larger amount of internal memory (w.r.t. the Microsemi RTG4), that Xilinx’s 

RAM based FPGA is able to reach typically higher rate, when implementing image processing 

algorithms. It presents, as drawback, a higher power consumption, but, being used as accelerator, it 

is not always active or it is at low duty cycles. Data transfer between the VDFM and the HW 

Acceleration Module is carried out at very high data rate (up to 1.575Gbit/s) by means of two Channel 

Link SerDes, working in opposite directions. 

IMU  

The Inertial Measurement Unit (IMU) for the VINAG system is a MEMS based equipment, which 

has been considered the best compromise between SWaP (Size, Weight and Power) requirements and 

sensor’s accuracy. Specifically, the state-of-the-art (ITAR free) MEMS technology for this unit’s 

class currently allows having a bias stability on the order of 0.1deg/hr for gyroscopes and 0.015mg 

for accelerometers that has deemed to be sufficient for the applications of interest, as it will be also 

shown in the following sections. 

GNSS receiver 

The Space Borne GNSS Receiver developed by Space Technology is based on a single ZynQ FPGA 

device capable of acquiring and tracking Multi-constellation GALILEO L1 and GPS L1 C/A signals. 

It is the first European GNSS Receiver in single FPGA, or single ASIC form, integrating in a single 

digital chip both a Fast Acquisition Unit (FAU) and a GNSS Tracker up to six PRNs. In VINAG, the 

FAU and Tracking engine are used to estimate the Pseudo Range and the Doppler observables further 

processed by the filter described in Section 3.1. The GNSS Receiver characteristics and measured 

Tracking and Acquisition performances can be summarized in Table 2. 

Table 2. Space Technology LEO GNSS Receiver characteristics and tested performances 

GNSS Receiver Char. Value GNSS Receiver Char. Value 

Doppler Excursion +/-60KHz Doppler rates +/-620Hz/sec 

Supported Constellation GPS L1 C/A and GALILEO 

L1C/L1B 

Number of Correlator 

Channels 

>= 6 

Acquisition Threshold 

@+/-60KHz 

37dB-Hz Acquisition Threshold 

@+/-40KHz 

35dB-Hz 

GPS L1 C/A single PRN 

Acquisition time 

40 ms GALILEO L1 single PRN 

Acquisition time 

95 ms 

Cold Start worst case TTFF 50.5 sec. Warm Start worst case 

TTFF 

9 sec. 

 

4.2 Cameras System 

Monocular camera for pose estimation 

The VINAG Camera System is composed by two CMOS Monocular cameras and one Star Sensor. 

The CMOS Monocular camera is a very compact, low power and high performance CMOS Camera, 

specifically designed, by TSD, for space applications on board small platforms. The camera is based 

on a Microsemi RT3PE3000L Flash FPGA  and a Focal Plane Assembly, that hosts a CMOS APS 

sensor, acquiring color images,  with a frame rate up to @30fps and two possible formats: 

1920x1080(1080p) and 1280x720 (720p).  The image acquisition can be synchronized with an 

external trigger or a self-generated internal one. The CMOS Monocular camera is provided with a 

CAN bus interface for the camera configuration & control and a Channel Link Serializer for the image 

data transmission to the VDFM at 1.2Gbit/s. The camera adopts a very rugged, conduction cooled, 
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thermal- structural design and it is equipped with ±50° FOV lens. A more detailed description of this 

camera can be found in [32]. 

Star sensor 

A compact Star sensor suitable for micro- and nano-satellites has been considered for VINAG, 

characterized by low power consumption (< 1W), low mass (< 1kg), an output rate of 5 Hz and 

sufficient attitude determination accuracy (a bore-sight accuracy of 2.5 arcsec and a roll axis accuracy 

of 5 arcsec). 

6. SIMULATED PERFORMANCE  

The algorithms described in Section 4, were tested and validated preliminarily by carrying out 

numerical simulations, adopting simplified parametric models of the observations. In the next step of 

our project, realistic hardware-in-the-loop tests will be performed to validate the hardware 

implementation as well as both its absolute and the relative navigation capabilities. The following 

sections describe the models and assumptions adopted in the simulations and the obtained results. 

5.1 Models and assumptions  

In the following, the reference scenarios, the model of each observation considered in our simulations 

are detailed. Note that the assumptions of this analysis are not completely representative of the GNSS 

receiver described in Section 4.1 of Space Technology S.r.l., which in this first step of the project is 

only suitable for LEO. 

GNSS observations 

The GPS L1 C/A and Galileo E1 signals were assumed to be transmitted by up to 30 GPS and 30 

Galileo satellites, by modelling their realistic power level at the receiver position, taking into account 

3D receiver and transmitters antenna pattern. A receiver sensitivity of 35 dB-Hz was assumed in 

LEO, while of 28 dB-Hz in GEO. Pseudorange observables are affected by systematic and non-

systematic errors that can be classified into: satellite clock error and broadcast satellite ephemeris 

error, atmospheric delay, multipath effect and receiver error. According to [33], these errors can be 

assumed as white Gaussian noise with a certain standard deviation (although this is not strictly true, 

it is sufficient for the purpose of this study). The overall error that affects pseudoranges can therefore 

be described by the user equivalent range error (𝜎𝑈𝐸𝑅𝐸), defined as the root sum square of the different 

range error contributions. Table 3 reports the ones assumed in our simulations.  In particular, residual 

of broadcast clock and ephemeris as well as multipath (generated by the spacecraft surfaces) were 

modelled according to the values proposed in [33]. While no signal crossing the troposphere is 

considered in the navigation solution, a standard deviation of 10 m was assumed as residual noise due 

to the ionospheric delay only in LEO (when the receiver is orbiting below the upper bound of the 

ionosphere and then, when the received signals cross the ionosphere). In GEO instead, no atmospheric 

delay is taken into account since the few signals crossing the atmosphere are simply discarded. The 

receiver error was modelled as function of the receiver characteristics and of the carrier-to-noise-ratio 

𝐶 𝑁0⁄ , according to the formulation (5.23) of [33]. 

Table 3. Assumed user equivalent range error contributions. 

Error source 𝟏𝝈 𝒆𝒓𝒓𝒐𝒓 (𝒎) 
Broadcast clock 1.1 

Broadcast ephemeris 0.8 

Ionospheric delay 10 𝑖𝑓 ℎ < 1000 𝑘𝑚 

Receiver error  𝑓(𝐶 𝑁0, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)⁄   
Multipath  0.2 
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IMU and Star sensor observations 

The IMU and Star sensor observations were modelled according to the description already provided 

respectively in Section 3.1 and 4.2.  

Monocular camera observations 

In this step of the project, since our purpose was only to validate the vision-based pose determination 

algorithms described in Section 3.2, in our simulations for each acquired image, we directly modelled 

the extracted features on the image frame, corresponding to each considered relative state of the 

camera with respect to the assumed orbiting target, without modelling instead the image acquisition 

and features extraction processes. 

5.2 Simulation Results 

Absolute navigation performance  

The absolute navigation performance was preliminary evaluated by means of simulations in a LEO 

and GEO scenario. Simulation scenarios were defined using a high fidelity simulation tool developed 

by PoliMi, including non‐uniform mass distribution of the Earth, solar radiation pressure, 

atmospheric drag, third body perturbation (sun and moon), gravity gradient and magnetic field 

perturbation. The PoliMi high fidelity astrodynamic tool has been developed to support the Mission 

Analysis and Design for different financed studies such as PlAtiNO and CHRISTMAS (ASI 

supported) and S3Net (H2020 framework study). 

Precisely, in LEO as reference, we assumed the THAS‐I Nimbus platform characterized by a class 

cubic shape, size of [0.8, 0.8, 1.6] m, drag coefficient equal to 2.2 degrees and mass of 100 kg. The 

Keplerian orbital parameters of the reference initial orbit are: semi‐major axis of 7158 km, eccentricity 

null, inclination of 98,5 degrees. 

In GEO we investigate the VINAG system capabilities in an orbit well above the GNSS 

constellations. The reference platform is the THAS‐I PRIMA. In this case the Keplerian orbital 

parameters are: pericenter height of 36000 km, eccentricity and inclination both null. 

The data generated by the high fidelity simulation tool to model the reference orbit (representing the 

“true” one), were processed by using a set of dedicated avionic sensor simulators (i.e IMU, GNSS 

receiver and Star sensor) according to the above defined items. The sensor outputs fed the Absolute 

Navigation filter providing the full state estimation. 

Furthermore, simulations were carried out also including 300ms and 6s/s of respectively receiver 

clock’s bias and drift with the respect to both GPS and Galileo transmitters’ clock. 

Figure 5 and Figure 6 display respectively the positioning and attitude determination errors in the 

considered LEO scenario. Similarly, Figure 7 and Figure 8 show the same errors in the considered 

GEO scenario. In LEO, the positioning error has a standard deviation lower than 3 m on all the axes, 

while in GEO smaller than 6 m on x- and y- axes, and smaller than 1 m on z- axis. A poorer accuracy 

in GEO is expected by accounting for the worsening of the receiver/transmitters relative geometry, 

known as Geometric Dilution Of Precision (GDOP) and also for an higher receiver noise due to lower 

𝐶 𝑁0⁄  levels.   The attitude estimation is always quite accurate with an error smaller than 0.06°in LEO 

and in GEO (except for a higher initial peak). 

Furthermore, Figure 9 and Figure 10 show the number of total satellites effectively used with respect 

to the visible ones as result of the masking algorithm described above. As expected in GEO, due to 
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highest probability of signals coming from the weaker side lobes of the transmitters’ antenna, the 

average availability is lower than in LEO. 

The estimation accuracy obtained demonstrates the effectiveness of VINAG absolute navigation 

algorithm, in different scenarios (LEO and GEO). Further improvements are currently under 

investigation related to a GEO adaptive Kalman Filter tuning algorithm taking into account the 

received satellites signal-to-noise ratio (as done in [34]), as well as possible masking in order to avoid 

noisy pseudorange measurements.  

 

Figure 5. Positioning error in the considered LEO. 

 

Figure 6. Attitude determination error in the considered LEO. 

 



The 4S Symposium 2018 – V Capuano  

 

 

Figure 7. Positioning error in the considered GEO. 

 

Figure 8. Attitude determination error in the considered GEO. 

 

Figure 9. Number of available GNSS satellites in the considered LEO. 

 

Figure 10. Number of available GNSS satellites in the considered GEO. 
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Relative navigation performance 

The relative navigation filter is tested in the aforementioned LEO scenario. The assumed initial 

relative conditions are 𝜌0 = [0, 30, 0] 𝑚 for the position and �̇�0 = [0,−1, 0] ∗ 10−4 𝑚/𝑠 for the 

relative velocity, expressed in the local-vertical, local-horizontal (LVLH) reference frame fixed to 

the chaser spacecraft center of mass. For the relative dynamics, a torque-free motion has been 

imposed to the simulated target spacecraft. The motion has been simulated using the classical Euler 

equation for rigid body, imposing the following initial conditions: 𝜔𝑇 = [1, 0, 0]𝑑𝑒𝑔/𝑠. To 

preliminary assess the performance of the proposed approaches for monocular pose determination, as 

mentioned in Section 5.1, simulated images of the target are generated by projecting the actual 3D 

corners composing a simplified model of the target on the image plane. Potential errors caused by 

image processing are considered by modifying the ideal position of each corner on the image plane 

by adding to its horizontal and vertical coordinates a random Gaussian noise, whose standard 

deviation (𝜎𝑝𝑖𝑥) is expressed in terms of a certain number of pixel. Moreover, a number of false 

corners (𝑛𝑜𝑢𝑡) is randomly located in the region of the image plane occupied by the target (according 

to a uniform distribution) to simulate the presence of outliers in the measurements provided by the 

image processing. Both pose determination and filtering block are assumed to work at 1Hz.  To assess 

the pose estimation performance, the following estimation errors are defined: 𝑒𝜌 =

 √(𝑥𝑖 − �̂�𝑖)2 + (𝑦𝑖 − �̂�𝑖)
2
+ (𝑧𝑖 − �̂�𝑖)2 is the position error, where �̂�𝑖, �̂�𝑖, �̂�𝑖 are the position 

components estimates and 𝑥𝑖, 𝑦𝑖, 𝑧𝑖 are the true position components, obtained by integrating the 

complete nonlinear differential equations of the unperturbed relative motion. Similarly, the velocity 

error is 𝑒�̇� = √(�̇�𝑖 − �̇� 𝑖)
2
+ (�̇�𝑖 − �̇� 𝑖)

2
+ (�̇�𝑖 − �̂̇�𝑖)

2
. Finally, the relative attitude error is computed 

as 𝑒𝑅 = acos (1 −
𝑡𝑟(𝐼−𝑅𝑖

𝑇𝑅 𝑖)

2
), with 𝑅 𝑖 being the estimated rotation matrix at time i. 

In Figure 11, the numerical simulation results of the relative position error are illustrated. The error 

of the pose determination block alone and coupled with the filter are shown.  

Similarly, the performance of the second-order minimum energy filter were analyzed and in Figure 

12, the global relative attitude error and for each single axis are reported.  Also in this case, the 

presence of the filter improves the accuracy of the relative attitude estimation. The error angle is 

always below 3 degrees.  
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Figure 11. Relative Position Error. 

 

Figure 12. Relative Attitude Error. 

 

7. CONCLUSIONS 

In this paper we introduced the system VINAG, currently under development by a team of Italian 

companies and universities, co-financed by the Italian Space Agency. VINAG has been specifically 

designed to provide on board, autonomous absolute and relative spacecraft navigation. In particular, 

in this study, we provided a detailed description of the navigation algorithms of VINAG, implemented 

for orbit and attitude determination as well as for vision-based pose estimation of an orbiting non-

cooperative target. In a first step of our project we carried out preliminary simulations to validate the 

sensor fusion architecture and the implementation of all the adopted algorithms. The obtained results 

of the achievable navigation performance here reported, assessed the correctness of the 

implementation.  In addition, a short overview of the hardware design was also given. In a second 

and final step of the project, following the completion of the hardware implementation and of the 

overall system development, the complete capabilities of VINAG will be also validated by means of 

hardware-in-the-loop tests. 
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