
  

 

Abstract— Radiomics extracts a large number of features 

from medical images to perform a quantitative characterization. 

Aim of this study was to assess radiomic features stability and 

relevance. Apparent diffusion coefficient (ADC) maps were 

computed from diffusion-weighted magnetic resonance images 

(DW-MRI) of 18 patients diagnosed with soft-tissue sarcomas 

(STSs). Thirty-seven intensity-based features were computed on 

the regions of interest (ROIs). First, ROIs of the images were 

subjected to translations and rotations in specific ranges. The 37 

features computed on the original and transformed ROIs were 

compared in terms of percentage of variations. The intra-class 

correlation coefficient (ICC) was computed. To be accepted, a 

feature should satisfy the following conditions: the ICC after a 

minimum entity transformation is > 0.6 and the ICC after a 

maximum entity translation is < 0.4. In total, 31 features out of 

37 were accepted by the algorithm. This stability analysis can be 

used as a first step in the features selection process. 

I. INTRODUCTION 

The advances in medical and computational sciences have 
led to significant improvements in oncology and cancer 
treatment in the last years. A goal of modern oncology is 
“personalized medicine”, i.e., the use of a treatment tailored to 
the characteristics of the single patient. In oncology, 
information about the tumor tissue are required to perform 
personalized cure. Tumor characteristics can be obtained 
through biopsies, which are invasive, expensive and localized 
to a small portion of the tumor. Therefore, biopsies cannot 
provide complete information in case of highly heterogeneous 
tissues [1]. 

Medical imaging can be a useful tool to provide a non-
invasive tissue characterization. Starting from this latter 
assumption, the field of “radiomics” has emerged. Radiomics 
focuses on extracting and mining a large number of image 
characteristics (features). Radiomic features are non-
invasively computed from images obtained in clinical routine, 
such as computed tomography, magnetic resonance imaging 
(MRI) and positron emission tomography [2,3]. The 
hypothesis is that image features can quantify information 
regarding intra-tumor heterogeneity, highlighting tumor 
phenotype [3,4]. It has been shown that this heterogeneity 
could have profound implications on tumor prognosis [4].  

Radiomics can extract hundreds of features and not all of 
them should be used: some may be redundant, or may be too 
sensitive to the parameters of the acquisition. The assessment 
of features that are informative and stable is a first step in the 
features selection process [2]. There are several techniques 
used to test feature stability: test-retest [5,6], comparison of 
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features extracted with different machines, reconstruction 
methods or parameters [6–8], comparison of features 
computed on slightly different regions of interest (ROIs) [5,9]. 
Relevance and non-redundancy of the features is usually 
defined using specific features extraction algorithms.  

Among the medical imaging techniques, diffusion 
weighted MRI (DW-MRI) can capture changes at the cellular 
level of the tissue thanks to differences in movement of water 
protons. The apparent diffusion coefficient (ADC) map, 
derived from several DW-MRIs has been shown to be very 
useful for tumor detection and characterization [10], 
evaluation of treatment response [11] and tumor staging 
[4,12]. 

The aim of this study was to develop a method to assess 
stability and relevance of radiomic features extracted from 
DW-MRI of soft-tissue sarcomas (STSs), by analyzing how 
the features vary when geometric transformations are applied 
on the ROIs. Although studies regarding features stability 
already exist in literature, to the knowledge of the authors, this 
is the first work in which geometric transformation of the ROIs 
are used to analyze features relevance. 

II. MATERIALS AND METHODS 

A. Study population 

The dataset for this study consisted of 18 patients, who had a 
histological diagnosis of STS of intermediate (4 patients) or 
high (14 patients) malignancy grade according to the 
FNCLCC (French Fédération Nationale des Centres de Lutte 
Contre le Cancer) system. The FNCLCC system is based on 
tumor differentiation, mitotic rate and amount of tumor 
necrosis. A score is attributed independently to each parameter 
and the grade is obtained by adding the three attributed scores. 
Patient characteristics were homogeneous between the two 
groups. All patients underwent a DW-MRI acquisition. The 
study was approved by the ethical committee of Fondazione 
IRCCS-Istituto Nazionale dei Tumori of Milan, Italy, and all 
patients gave their written informed consent. All patients’ data 
were anonymized prior to the analysis. 

B. Image acquisition 

DW-MRI images were acquired using Achieva 1.5 T 
system (Philips Medical system Achieva, Nederlands) or a 
Magnetom Avanto 1.5 T system (Siemens Medical Solutions, 
Erlangen, Germany) - 13 patients -, both with a body-matrix 
coil and spine array coil for signal reception. The data were 
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acquired axially by means of echo planar imaging. DWI were 
acquired using four b-values (50, 400, 800 and 1000 s/mm2). 

C. Image processing 

For each acquisition, the ADC was computed as the slope 
of the linear regression of the logarithm of the DWI 
exponential signal decay on the b-values [13]. The calculation 
was performed pixel-wise using ITK 4.8 [4]. The 
segmentation of the gross tumor volume was performed by an 
expert radiologist on the DW-MRI computed with the lowest 
b-value (50 s/mm2), on which the anatomical details are 
maintained and the heterogeneity of the tumor is more visible 
[15]. The segmentation was performed using 3D Slicer [16]. 

D. Radiomic features extraction 

In this study, 37 intensity-based radiomic features where 
computed. Those features included statistical information 
about the signal intensity and histogram distribution of the 
pixels in the ROI. The histogram was evaluated between 0 and 
4000*10-6 mm2/s using N bins. In this study, three different 
values of N were tested (16, 32 and 64 bins) to evaluate 
whether the bin number affects the stability of the features. 
Thus, the total number of computed features was 87 (12 
features are bin-independent and the other 25 are bin-
dependent and thus they are counted three times).The 
algorithm used to compute all the features was implemented in 
ITK 4.8 [4,16]. 

Features extraction was performed on the ADC maps for 
each patient first by using the original ROIs as masks and then 
by using the transformed ROIs (see II.E). The results were 
grouped per type and entity of the transformation.  

E. Stability/relevance analysis 

To assess the stability and the relevance of the radiomic 
features, modifications to the ROIs were performed. We 
assessed the variation of the features after the application of a 
series of geometric transformations to the original ROI: i) 
translations along x (medial-lateral direction) in a range of ± 
100% of the length of the bounding box in the x direction, with 
a step ST = 10%, for a total of 21 ROIs (20 transformed plus 
the original one); ii) same as i) along y (anterior-posterior) 
direction; iii) rotations around z axis (longitudinal axis of the 
body) in a range of ±180° with a step SR=18°. 

For each ROI, transformation type (translation along x or 
y, and rotation around z) and entity, a comparison between the 
features computed for all the patients on the original ROIs and 
those computed on the transformed ones was made. For each 
comparison, the percentage variation with respect to the 
reference was computed as: 


𝑫𝒊𝒇𝒇% =

𝑭𝑻𝒓𝒂𝒏𝒔𝒇 − 𝑭𝑶𝒓𝒊𝒈𝒊𝒏𝒂𝒍

𝑭𝑶𝒓𝒊𝒈𝒊𝒏𝒂𝒍
· 100 

being 𝑭𝑻𝒓𝒂𝒏𝒔𝒇 and 𝑭𝑶𝒓𝒊𝒈𝒊𝒏𝒂𝒍 the features computed on the 

transformed and original ROIs, respectively. Moreover, the 
intra-class correlation coefficient (ICC) was computed 
[17,18]. Briefly, the ICC measures the bivariate relation of 
variables representing different measurement classes, and can 
be used to assess the agreement of data. In this study, a two-
way mixed effect model was used [18]. The maximum value 
of ICC is 1, when all the elements of each group are the same. 

The lower the ICC, the lower the similarity among the 
elements of the group. 

The ICC values were used to assess the stability of the 
features and their ability to discriminate between healthy and 
tumor tissue. To perform this task, two hypotheses were made: 
a) when a transformation (translation of rotation) of minimum 
entity (translation = ± ST or rotation= ± SR, see Fig.1 A for a 
schematization and Fig.1 C for an example with a real image) 
is applied, the features computed on the original and 
transformed ROIs should be similar; b) when a translation of 
maximum entity (schematization in Fig.1 B, real example in 
Fig.1 D) is applied, the features computed on the original and 
transformed ROIs should be different. These two hypotheses 
mean that a small movement of the ROI should not change the 
computed feature as well as the feature should be different 
when computed on healthy tissue. The two hypotheses are 
translated into the following two conditions: 1) Let ICC10 be 
an ICC obtained by comparing the features computed on the 
original ROIs and the ones computed on the ROIs after a 
minimum entity transformation; hypothesis a) is satisfied if 
ICC10>0.6 [9]. 2) Let ICC100 be an ICC obtained comparing 
the features computed on the original ROIs and the ones 
computed on the ROIs after a maximum entity translation; 
hypothesis b) is satisfied if ICC100<0.4 [19]. A graphical 
representation of the range of acceptability of the ICC values 
for the possible transformations (rotations and translations) is 
shown in Fig.1 E. 

 
Figure 1 A) Schematization of minimum entity transformations: translation 
along x (green); translation along y (yellow); rotation around z (red). B) 

Schematization of maximum entity translation along x (green) and y (yellow). 

C) ROI in an ADC map (blue contour) and its minimum translation along y 
(yellow contour). D) ROI in an ADC map (blue contour) and its maximum 

translation along x (green contour). E) Ranges of acceptability of ICC for the 

transformations of maximum and minimum entity; Tx, Ty are translation 
along x and y respectively and Rz is rotation around z. 



  

III. RESULTS AND DISCUSSION 

According to two conditions for stability, 31 out of 37 
radiomic features were accepted. All the features that were 
accepted were accepted independently on the number of bins 
used for histogram discretization. In Table I, all the features 
analyzed are listed, divided by result obtained for the stability 
analysis. It can be noted that 31 over 37 features are stable. 
Fig.3 shows a heat map of the ICC values measured for all the 
features and bin numbers. 

Fig.2 A and B show the variation of two features (signal 

mean and quantile 0.01) when a translation along x-axis is 

applied. In particular, in Fig.2 A the average percentage 

variation shows a gradual but clear decreasing trend when the 

ROI is translated from its original position. The average 

percentage variation of the feature in Fig.2 B shows a 

decreasing trend but with a high variation even for small 

transformations. Their corresponding ICCs are shown in Fig. 

2 C and D, respectively. ICC in Fig. 2 C satisfies the two 

conditions for stability: ICC10 is large for small 

transformations, and it is very small for the maximum 

translations. ICC in Fig. 2 D rapidly decreases below 0.6 for 

minimum entity translations and thus the feature is considered 

unstable. Fig. 3 shows a heat map with all the ICC values for 

all the features (computed with 32 bins discretization) when a 

translation along x is applied to the ROIs. As it can be noted, 

all the accepted features have a similar trend: the ICC is above 

0.6 when the translation is between ±20% of the bounding box 

and usually goes below the value 0.4 for translation greater 

than ±50% of the bounding box. The unstable and the 

irrelevant features do not have this trend. As a matter of fact 

the rows related to unstable features (signal min, quantiles 

0.01 and 0.1) appear as low intensity rows with an high 

intensity value in the middle. Irrelevant features (histogram 

total frequency, mean and min) present rows with high 

intensity values for each entity of translation, because the 

values measured for those features are always very similar. 

 

Figure 2 A) Percentage variation of an accepted feature (signal mean) as function of the applied translation along x. B) Percentage variation of a not accepted 
feature (quantile 0.01) as function of the applied translation along x. C-D) ICC plots corresponding to the transformations reported in A) and B). In A) and B) 
the thin grey lines represent the errors for each patient, while the black thick lines represents mean value. 

 

TABLE I.  ACCEPTED AND NON-ACCEPTED FEATURES  

Accepted Features 

Signal Energy, Signal Kurtosis, Signal Mad, Signal Max, Signal Mean, Signal Median, Signal Range, 

Signal RMS, Signal Skewness, Signal SD, Signal Variance, Quantile 0.2, Quantile 0.3, Quantile 0.4, 

Quantile 0.5, Quantile 0.6, Quantile 0.7, Quantile 0.8, Quantile 0.9, Quantile 0.99, Histogram Entropy, 

Histogram Kurtosis, Histogram Mad, Histogram Max, Histogram Median, Histogram Range, 

Histogram RMS, Histogram Skewness, Histogram SD, Histogram Variance, Histogram Uniformity 

Non-accepted Features 
Signal Min, Quantile 0.01, Quantile 0.1, Histogram Mean, Histogram Min, Histogram Total Frequency 

 



  

 
Figure 3 Heat map representing the variation of the ICC of the radiomic 
features with respect to the translation along x. The non-accepted features 

(unstable and not relevant) are marked with an asterisk. The features 

presented in the heat map are computed with a 32 bins discretization. 

IV. CONCLUSIONS 

A new method to evaluate radiomic features stability 

computed on ADC maps of soft tissues sarcomas has been 

proposed. The stability of the features was assessed through 

translations of the ROIs along the two main axes of the image 

and rotations around an axis perpendicular to the image plane.  

This analysis allows to retain only the features that will not 

be affected by small differences in manual tumor 

segmentation (which are a combination of the analyzed 

geometric transformations). In addition, this kind of analysis 

can provide a first selection criterion for the radiomic features 

to be used for tumor characterization, by removing the 

features that do not give useful information about the ROI. 
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