
Towards Approximate Fair Bandwidth
Sharing via Dynamic Priority Queuing

Carmelo Cascone*+, Nicola Bonelli t, Luca Bianchi*, Antonio Capone*, Brunilde Sanso +
* Politecnico di Milano, Italy

{carmelo.cascone, antonio.capone}@polimi.it, lucaI4.bianchi@mail.polimi.it
t Universita di Pisa, Italy
nicola.bonelli@fof.unipi.it

+ Ecole Poly technique de Montreal, Canada
brunilde.sanso@polymtl.ca

Abstract-We tackle the problem of a network switch enforcing
fair bandwidth sharing of the same link among many TCP
like senders. Most of the mechanisms to solve this problem
are based on complex scheduling algorithms, whose feasibility
becomes very expensive with today's line rate requirements,
i.e. 10-100 Gbitls per port. We propose a new scheme called
FDPA in which we do not modify the scheduler, but instead
we use an array of rate estimators to dynamically assign traffic
flows to an existing strict priority scheduler serving only few
queues. FDPA is inspired by recent advances in programmable
stateful data planes. We propose a design that uses primitives
common in data plane abstractions such as P4 and OpenFlow.
We conducted experiments on a physical 10 Gbitls testbed, we
present preliminary results showing that FDPA produces fairness
comparable to approaches based on scheduling.

I. INTRODUCTION

It has been reported that TCP traffic represents 80-90% of
the packets and bytes flowing today through the Internet [6].
It follows that most of the traffic sources adapt their sending
rate according to the perceived available bandwidth. Indeed,
TCP is the instantiation of an important design choice that
contributed to the success of the Internet: to leave congestion
control to the end-systems, thus permitting a relatively sim
pler implementation of the interconnection devices. TCP rate
control algorithms, such as Additive-Increase-Multiplicative
Decrease (AIMD), help maintain a fair allocation of network
resources on a per-flow basis. In the simplest case of multiple
TCP streams, all experiencing the same RTT and sharing the
same FIFO queue, each flow tends to occupy the same portion
of the link bandwidth [19].

However, relying only on end-systems to guarantee fairness
is not enough due to ill-behaving users and issues intrinsic
to TCP-like algorithms. Examples of cases of unfairness are:
(i) applications that open a large number of parallel TCP
connections, e.g. peer-to-peer, or that tweak TCP to get better
performances; (ii) non-TCP-like protocols, i.e. protocols that
do not respond to congestion signals such as drops, and (iii)
the dependence of standard TCP to the round-trip times (RTT)
[19].

For these reasons, most Internet service providers (ISPs)
tend throttle customer traffic at the network edge, limiting

978-1-5386-0728-2/17/$31.00 © 2017 IEEE

the maximum bandwidth of each user to a feasible, but static
network allocation. This approach allows ISPs to leave their
core and interconnections with other ISPs uncongested at all
the time. The downside is that the excess bandwidth remains
unused, even in common situations of low usage, such at night.

Researchers have proposed solutions to enforce a more
dynamic bandwidth allocation in the network interconnection
devices. In these approaches, instead of capping the max
imum sending rate at all times, network devices are able
to redistribute the unused capacity (if any) to those users
asking for more. The trick here is to design a bandwidth
enforcement scheme that (i) guarantees that all users can
obtain at least the level of service they paid for, i.e. minimum
rate guarantees, and (ii) when unused capacity is available,
that is shared by all users, with no one prevailing on others.
Ideally, such mechanism should be introduced in the network
without compromising today 's line rate requirements, i.e. 10-
100 Gbitls per port.

Fair Queuing (FQ) scheduling [9], [16] is the textbook
approach to enforce almost perfect fairness among different
traffic sources, independently of the behavior of the end
hosts. A switch implementing FQ works by assigning users
to different queues, where a "user" is an arbitrary aggregate
of packets, e.g. with the same IP source address or the same
TCPfUDP 5-tuple. FQ provides high precision of bandwidth
partitioning, but unfortunately, such precision comes at a
considerable expense: (i) the time to process a packet depends
on the number N of active users, precisely O(log(N)); and
(ii) N per-user queues are required.

The first limitation is important with today's throughput re
quirements which drastically reduce the maximum processing
time allowed for a packet, e.g. a switching chip with aggregate
throughput of 1 Tb/s has a time budget of 1 ns to process a
minimum size packet. The second limitation affects switching
hardware implementations. Here the number of queues impacts
both the memory requirements and the combinatorial logic
necessary to implement the scheduler circuitry. Indeed, for a
scheduler to be work-conserving, i.e. to serve a packet if at
least one can be served, all N queues must be examined at
the same time. Thus, the number of wires to implement such a
structure depends on N. As a consequence, it is hard to scale

FQ implementations to hundreds, thousands or more users.
For this reason the number of queues available in commercial
hardware switches is usually bounded to less than 10 [1]. This
consideration is also at the base of legacy quality of service
(QoS) approaches such as DiffServ, where traffic is aggregated
into few classes.

In this work, our focus is to devise a design for a bandwidth
enforcing scheme in which both time and implementation
complexity do not depend on the number of active users N.

This work is inspired by recent advances in Software
Defined Networking (SDN) and data plane progranunability.
Emerging abstractions such as P4 [5], OpenState [2], OPP [3],
FAST [15], and Domino [22] allow network operators to
perform flexible stateful packet processing inside the network.
The statefulness of the aforementioned approaches, lays in the
ability to program forwarding rules that read and modify data
plane's forwarding state. Based on this capability, a number
of studies have been published, showing how to implement
existing and new forwarding functions using programmable
data planes [8], [12], [20], [24].

We follow this path and design a scheme to enforce fair
bandwidth sharing that is amenable with prograrmnable data
plane abstractions. To this purpose we do not modify the
scheduler, we use instead a widely-deployed strict priority
scheduler with only few queues. Fairness is enforced by
dynamically assigning priorities to users according to their
sending rate history. We call our design FDPA (Fair Dynamic
Priority Assignment). In FDPA, packets belonging to a user
whose arrival bitrate is equal or less than its fair share are
given priority over those users generating traffic at higher
rates. FDPA does not provide precise bit-level or packet-level
fairness, but it approximates a fair repartitioning over longer
timescales, in the order of few RTTs.

The scalability of FDPA does not depend on the number of
queues, but instead on the state available for the rate estimator.
Precisely, while the circuitry to implement a rate estimator
can be shared among many flows, the switch is required to
maintain per-user state, i.e. the measured rate. Hence, the only
limit of FDPA is the memory available in a switching chip.

In this work we address the applicability of the FDPA
approach by performing experiments on a 10 Gbitls testbed
using a software prototype implementation. Results show that
FDPA produces fairness comparable to other schemes based
on scheduling. However, we find that FDPA introduces a trade
off between fairness and throughput, in which one or the other
are penalized.

To summarize, the contributions of this paper are:

• Design of FDPA, a scheme to enforce approximate fair
bandwidth sharing among many users. Switch require
ments to support FDPA are a (i) strict priority scheduler
and (ii) the ability to manage data plane's state to measure
the arrival bitrate of each user.

• Evaluation of FDPA and other Linux 's traffic manage
ment schemes using a 10 Gbitls testbed with real TCP
traffic.

We begin by reviewing the related work in Section II, we
then introduce the FDPA design in Section III and discuss
its implementation options with programmable data planes. In
Section IV we present the experimental results from the 10
Gbitls testbed, before concluding with a discussion on open
questions and future work in Section V.

II . R ELATED WORK

To reduce implementation and time complexity of FQ, a
number of algorithms have been proposed in the literature.
Deficit Round Robin (DRR) [21] is probably the most known
and widely-deployed one. DRR was proposed to address the
time complexity of FQ. Indeed, DRR achieves 0(1) execution
time per packet. However, DRR still requires per-user queues,
greatly limiting the maximum number of distinct users that
can be served by the scheduler.

To overcome DRR's limitations, further approximations
have been proposed. Stochastic Fair Queuing (SFQ) [13] is
a probabilistic variant of FQ. Here traffic streams are hashed
onto a smaller number of queues, and the hash function is
periodically perturbed to minimize the time where 2 users
collide onto the same queue. Here the quality of the approx
imations depends on the number of queues, and the pertur
bation interval. Finally, Approximate Fair Dropping (AFD)
[17] employs a form of active queue management (AQM) by
dropping packets before being stored on a simple FIFO queue.
Dropping decisions are based on the recent history of packet
arrivals, with higher probability of drop for users sending at
higher rates. AFD has been used in several switch and router
platforms at Cisco Systems [18].

Our approach shares the same design principles of AFD:
(i) avoid using per-user queues in favor of per-user soft state,
and (ii) achieve bandwidth partitioning by opportunistically
dropping or delaying packets rather than enforcing rate by
using scheduling. However, while the AFD design allows for
an efficient implementation in a fixed-function ASIC, its real
ization with progranunable data plane primitives might not be
straightforward. Specifically, AFD requires the implementation
of a shadow buffer in which packets are removed at random.
We are not aware of any data plane abstraction providing
native support for such data structure. Its behavior could be ap
proximated using other primitives, however this would require
a dedicated study. Instead, we prefer to explore the feasibility
of FDPA which, as will be discussed in Section III-B, requires
much simpler primitives exposed already by current data plane
abstractions.

Finally, a more recent approach named PIFO has been
proposed to address the need of a programmable scheduler
[23]. However, similarly to fixed-function schedulers, in PIFO
the number of distinct flows that can be served with a fair
queuing discipline is bounded by the number of queues. In
their proposed design, such bound is 2048 in total or 32 per
port in a 64 port switch. While one could imagine dedicating
all 2048 queues to a port, the authors do not provide any
evaluation of their scheduler with realistic traffic traces.

n: User ID
a: Arrival rate
Wq: Rate thresholds

Queues

wQ_I",a

Fig. 1. FDPA forwarding pipeline.

[bills]

o
Arrival bitrate

r;;-] Lowest
L.3..J priority

Queue 2 I

I Highest
Queue 1 priority

Ll [bytes]

Fig. 2. Rate bands and queue size in FDPA

III. FDPA DESIGN

In this section we describe the design of a packet forwarding
pipeline implementing FDPA. To simplify the exposition and
without loss of generality, we assume a switch with rate
controlled only on one egress port.

Figure 1 depicts the design of the pipeline. Packets are
first classified per user and then processed by a rate estimator
which measures the arrival bitrate of the specific user. Packets
are then stored in one of the Q priority queues such that the
higher is the arrival rate, the lower will be the priority. A strict
priority scheduler (SP) serves queues in priority order: packets
of priority q are dequeued only if all other queues with higher
priority are empty, where q = 1 is the highest priority.

The measured arrival rate for a given user at a given point in
time, determines an active band for that user. Packets arrived
in band Bq will be assigned with priority q (Figure 2). The
first band Bl represents the minimum guaranteed portion of
the link capacity allocated to each user, for this reason B l
should be dimensioned such that N x Bl :s; LinkCapacity .
Moreover, to further penalize ill-behaving users, each queue
has a different size L q , with smaller values for low priority
queues.

A. Rationale

To discuss the rationale behind this design, we begin with
the case of a scheduler with only 2 queues (Q = 2), high
priority and low priority; we then explain the need for more
queues.

Two priorities. When congestion occurs, users sending
below their fair share are prioritized against others sending
at higher rates. Packets with low priority are delayed and in
the worst case of a full buffer, dropped upon arrival. Such an
event signals the TCP source to reduce the transmit rate. With
FDPA, this reduction is expected to continue until the transmit
rate hits the first band, in which case the user is prioritized
again. Assuming that all sources are TCP-like and produce
long-lived flows, under severe congestion we expect traffic
sources to shape their transmit rate around their fair share, i.e.
the upper threshold of B 1 .

Q)

TCP timeout due to
lower priority queue

§ ~~~---------------
iii Bl

Time

Fig. 3. Example of 2 TCP sources competing for the excess bandwidth when
using more than 2 priorities.

Unfortunately, swapping queues frequently can cause packet
reordering at the receiver, confusing TCP congestion control
and affecting throughput. The problematic part is when users
are prioritized again, i.e. their assigned queue is changed to
the one with high priority. Here the same burst of consecutive
packets might be stored first in the low priority queue and then
in the high priority one, with the effect of having subsequent
packets being transmitted before those arrived earlier. We are
interested in measuring this effect when using FDPA.

In the case of non-elastic sources, e.g. constant bitrate, Bl
represents the maximum rate that a source can send with
guarantees of bounded latency and minimum drop probability.
Indeed when a user hits the first band, packets are always
served by the same, maximum priority queue, hence prevent
ing disruption from other TCP sources aiming to transmit at
higher rates.

However, if some sources are using less than their fair share
or because not all the link capacity has been reserved, i.e.
N x B l < LinkCapacity, using only two priorities does not
enforce equal distribution of the excess bandwidth. Indeed, if
we assume that capacity has been allocated for many users,
but only few of them are active and sending TCP traffic, we
can expect that those users will be competing in the same low
priority FIFO queue, without any guarantee of fairness.

More priorities. To enforce equal distribution of the excess
bandwidth, we need to introduce more priorities, such that the
more a source increase its sending rate, the lower will be the
priority compared to other users. When all sources are TCP
like, following the same rationale of the previous case, we
expect the transmit rate of each user to converge to a fair share
that considers the excess bandwidth. Such fair share will lay
in a rate band other than Bl

Figure 3 illustrates the expected behavior of 2 TCP-like
sources competing for the excess bandwidth. In this example,
one source (1) is ill-behaving as it uses a more aggressive
rate control algorithm (similar to the case of a user opening
multiple TCP streams); the other source (2) is well behaving,
as for each congestion signal it halves its transmit rate. At
steady state, both sources tend to share the same queue with
priority 3, however the different rate-control behavior that they
implement causes them to oscillate around different average
values. Indeed, (1) always tends to increase its rate until it
falls in the 4th band, which cause its packets to timeout as the
scheduler will spend as much time as needed to serve packets
of higher priority; (2) instead has higher drop probability when

Client Switch Server

Fairness!
throughput

TCP
endpoint

Fig. 4. Software-based processing pipeline used in experiments.

it falls in band B 3 , as here the queue is monopolized by
packets of (1). However, by always assuring an higher priority
for lower rates, increase of (2) are always guaranteed at least
until the lower threshold of band B 3 . Intuitively, we expect
that the difference between the average transmit rate (flrate)
will be smaller with narrower bands, hence producing a more
fair allocation.

Unfortunately, as in the case with only 2 priorities, we
expect that multiple narrower bands will increase the risk of
packet reordering, affecting the overall throughput. We are
interested in measuring such a trade-off between fairness and
throughput.

B. Implementation with programmable data planes

Classifying packets per user is easy and can be done using
a match-action table as defined by OpenFlow [14] or P4 [5].
Using such tables one can match on specific header fields and
write the corresponding user ID n on the packet's metadata.

Estimating the bitrate of a flow might be tricky at line
rate. In the simplest case, the switch needs to maintain
for each user a byte counter and a timestamp of the last
time the rate estimation was updated. Updates of the rate
values are triggered by packets arrival if the timestamp of
the packet exceeds a predefined interval, i.e. the minimum
interval over which the average bitrate is evaluated. The rate
is then computed dividing the number of bytes by the interval
between the packet's timestamp and the stored timestamp.
While division is an operation that might be hard to perform
in a line rate switch, in [20] it is shown how this operation
can be approximated with good precision using lookup tables
available in programmable data planes. A second match-action
table can then be used to direct packets to the different queues
according to the estimated rate band, written in the packet's
metadata.

Along with programmable data planes, FDPA can be im
plemented in switches supporting OpenFlow v1.3+. Indeed,
OpenFlow define "meters" that can be configured with dif
ferent bands as defined by FDPA, such that packets hitting a
given rate can be marked using the DSCP field.

Finally, priority schedulers are a conunon component avail
able in today's switching hardware.

IV. EXPERIMENTAL RESULTS

We now evaluate the feasibility and performance of FDPA
using a software-based prototype implementation. We are in
terested in measuring the effects of different band assignment
on both fairness and throughput. We also compare FDPA with
other approaches such as DRR.

A. Testbed

We used 3 desktop machines with 8-core Intel Xeon
E51660V3 CPUs (3.0GHz), equipped with multiple Intel
82599 10GbE NICs. One machine acts as a switch with 4
10 Gbits/s ports, another machine is used to generate traffic
from 2 ports, while the last is used to both generate and receive
traffic from different ports. Each machine runs a Debian 9.0
Stretch based on a Linux Kernel v4.9.16.

Figure 4 shows the processing pipeline used to emulate
FDPA. We use iper f to generate TCP traffic, Linux 's
iptables to estimate the rate and tag packets accordingly.
In our design, rate estimation should happen in the switch,
however, to simplify the prototype implementation we decided
to move it to the client machines. We use Linux 's t c (Traffic
Control) to emulate different RTTs at the clients and to
perform priority scheduling at the switch. Open vSwitch is
used to steer packets to the different queues based on the band
tags. Finally, we use PFQ [4], a framework for accelerated
packet 1/0, to measure the bitrate of each user. Both clients and
server use TCP Cubic, with the default parameters found in the
Linux Kernel v4.9.16. We only adjust the memory available
to TCP buffers to allow for a large number of connections.
We set the MTU of all interfaces to 1500 bytes.

We configure sources to experience an emulated RTT of
around 5 ms with maximum 0.25 ms of variable jitter with
25% correlation. TCP increases its sending rate at RTT
timescales, hence for FDPA to promptly respond to rate
variations, the estimation interval should be in the order of
few RTTs. For this reason we set the estimation interval to 30
ms.

B. Metrics

We measure the quality of an experiment using two metrics:
(i) the aggregate throughput (TPut) normalized over the link
capacity, i.e. bounded between 0 and 1, and (ii) the Jain's
Fairness Index (JFI) [10]. The JFI is a popular fairness measure
defined as:

where Xn is the normalized rate of a user nand N is the
total number of users. The normalized rate is defined as
Xn = M easuredRaten / Fair Raten . In our experiments each
user is assigned with the same fair share, i.e. Fair Raten =
LinkCapacity/N \In = L.N. The JFI is bounded between
o and 1, where 1 is a fair distribution and 0 is a discriminating
one. In testing FDPA we aim at maximizing both TPut and
JFI.

C. Results

Figure 5 shows the results obtained from the experiments.
We generate long-lived TCP traffic varying the number of
users to 50, 100 and 200, I and varying the number of TCP
connections per user based on four scenarios: (i) all users open

1 We put a limit to 200 as we noticed that our experimental setup suffers
of performance degradation when emulating more users.

1 TCP conn. per user

o ORR 0 F(0.85+4*0.50)

T

~
~ ~ 0.90
= := 0.85 = II) 0.80

0 .75 L..L..----'_'---'---'----'-----'
0.40.50.60.7 0 .80.9 1.0

JFI

o ORR 0 F(0.75+4*0.25)
T FIFO 0 F(1.00+4*0.75)

~ 0.90
:= 0.85

0.80

25% 10 conn.

o ORR 0 F(0.85+4*0.50)

T

0.75 L..L..----'_-'----'-----'-----'-----'
0.40.50.60.70.80.9 1.0

~ 0.90
:= 0.85

0.80

JFI

o ORR 0 F(1.00+4*0.25)
T FIFO 0 F(0.85+4*0.50)

0.75 '7-:-:"::-:"-:-=,"=-:-'-::-:"-=-:-'
0.4 0.5 0 .6 0 .7 0 .8 0 .9 1.0

JFI

o ORR 0 F(0.75+3*0.33)

T

0.75 '7-:-:"::-:"-:-=,"=-:-'-::-:"-=-:-'
0 .40.50.60.70.80.9 1.0

JFI

50% 10 conn.

o ORR 0 F(0.85+4*0.50)

T

0.75 L..L..----'_-'----'-----'-----'-----'
0.40.50.60.70.80.9 1.0

~ 0.90
:= 0.85

0.80

JFI

ORR 0 F(0.85+4*0.50)
FIFO 0 F(1.00+4*0.75)

".' , ' . ' ~ -', ~ .. ':

0.75 '7-:-:"::-:"-:-=,"=-:-'-::-:"-=-:-'
0.4 0.5 0 .6 0 .7 0 .8 0 .9 1.0

JFI

o ORR 0 F(1.15+3*0.67)
T FIFO 0 F(1.15+4*0.25)

F(0.75+3*0.33)
1.00 ' ;' .
0.95 . .

~ 0.90
:= 0.851-:------:--,--,---,=-,.;-;

0.80

0.75 '7-:-:"::-:"-:-='"=-:-'-::"7-=-:-'
0.40.50.60.70.80.9 1.0

JFI

UniC. range 1-10 conn.

~ 0.90
:= 0.85

0.80

o ORR 0 F(0.85+4*0.50)

T

0.75 L..L..----'_-'----'-----'-----'-----'
0.40.50.60.70.80.9 1.0

~ 0.90
:= 0.85

0.80

JFI

o ORR 0 F(0.85+4*0.50)
T FIFO 0 F(1.15+4*0.75)

. ' ---.. ~ . --- .' ... --', "
'.

0.75 '7-:-:"::-:"-:-=,"=-:-'-::-:'-=-:-'
0.4 0 .5 0 .6 0 .7 0 .8 0 .9 1.0

JFI

o ORR 0 F(0.85+4*0.50)
T FIFO 0 F(1.15+4*0.75)

F(0.75+4*0.25)
1.00F=i==;=; = ; .. T,;/ .;o:' ••• ===;==;=;====l
0.95

~ 0.90
:= 0.85

0.80

.'. -_ .. ; . ~

---_." ---,

Fig. 5. Experimental results

only one TCP connection, i.e. they all well-behave, (ii) 25% of
the users misbehave by opening 10 parallel TCP connections,
while the remaining 75% only 1 (iii) 50% of them misbehave,
and (iv) the number of connections per user is uniformly
distributed between 1 and 10.

We also vary the number and size of rate bands. We
use the following notation to describe an FDPA configu
ration: F(FirstBand + NumBands * BandSize), where
FirstBand is the size of B 1, NumBands is the num
ber of bands following the first one, each one of size
BandSize, except for the last one that has infinite size,
i.e. up to the link capacity. FirstBand and BandSize
are expressed as a proportion of the fair share, e.g.
F(1 + 4 * 0.5) describes a configuration where the first
band is exactly the fair share, and the other 4 bands
have size half of the latter. We perform experiments with
FirstBand E {0.75, 0.85, I, 1.15, 1.25}, NumBands E

{3,4} and BandSize E {0.25, 0.33, 0.50, 0.67, 0.75}. For
sizing the queues we empirically found that the following
rule provides optimal performances: Lq = min(20, BDP/ qq),
where BDP is the bandwidth delay product RTT x
LinkCapacity. With RTT = 5 ms, the sizing for 5 queues
is L1 = 4166 MTU-size packets, L2 = 1041, L3 = 154,
L4 = 20, and L5 = 20.

At the server, we collect samples of the average bitrate
over a I-second interval, each second at the same time for
all sources, for 50 seconds. We start sampling 30 seconds
after starting iperf, allowing all TCP sessions to converge to

their average bitrate. For each second, we then compute both
the lFI and TPut. In the plots, we show the median of the
lFI and TPut samples for each experiment, along with a 80%
confidence interval. For each traffic scenario, we plot only
three configurations of FDPA, the one with the best TPut, the
one with the best IF!, and the one that maximizes the product
of both. We also provide a scatter plot of all lFI and TPut
values obtained in all FDPA configurations. This explicitly
shows the trade-off between TPut and IFI.

Finally, we compare results with the following cases:
FIFO. All users are served using 1 FIFO queue of size L =
BDP, e.g. 4166 MTU-size packets with RTT = 5 ms. This
is our worst case, when fairness is not enforced.
DRR. The switch implements DRR scheduling with per-user
queues. We use the tc-drr implementation provided as part
of the Linux 's tc suite. We use DRR as the best case scenario,
however this should be considered as an ideal case. Indeed,
while it is still feasible to provide a large number of per
user queues in software, the same does not apply to hardware
switches, where an a priori instantiation of hardware resources
(memory and logic circuitry) is required for each queue. The
reader should remember that the majority of today switching
chips provide 10 or less output queues per port [1].

As expected, FDPA holds the promise of enforcing fairness
W.Lt. a single FIFO queue in all scenarios, producing results
comparable to the ideal case of a DRR scheduler with per-user
queues. However, with FDPA fairness comes at the expense
of throughput. We observe how configurations of FDPA that

use narrower bands provide more fairness, between 0.95
and 0.99 in most cases. Unfortunately, these configurations
systematically incur in throughput degradation, down to 0.85
in some cases, while for the same scenario DRR achieves
almost perfect fairness with throughput comparable to that of a
FIFO queue, i.e. optimal around 0.98, or little less around 0.95.
Vice versa, larger bands improve throughput, at the expense
of fairness.

V. DISCUSSION

How to improve throughput? Preliminary analysis shows
that throughput degradation is mostly caused by packet re
ordering due to frequent changes in the queue assignment,
which confuses the TCP congestion control. A solution to
this problem could be that of using a fiowlet-based approach
[11], in which queue assignments are valid for the whole
burst of packets, where bursts are separated by an idle time
usually comparable to the RTT. This would decrease the
probability of having back-to-back packets sent out from
two different queues, and hence packet reordering. Detecting
flowlets is a common function implemented by stateful data
plane abstractions [7], [12], [20]. We leave exploring such a
more advanced design for future work.
Rate estimation. An alternative to average estimators are
token bucket-based estimators. The advantage of using token
buckets lays in their ability to immediately respond to rate
spikes and bursts of packets, while an average estimator might
leave enough time to an aggressive user to congest the highest
priority queue. We know that the downside of frequent band
variations is a higher risk of packet reordering, and preliminary
results on our testbed using token buckets show that this is
the case. However, we believe that using token buckets along
with per-flowlet queue assignment could help in improving
both fairness and throughput. We leave this for future work.
How to compute the fair share? We envision an external
controller (or switch-internal control plane) that periodically
adjusts band sizes by counting the number of active users. In
the case of a service provider network, where the number of
active users varies slowly, we do not expect that the frequency
of the estimation process might be a limit for the scalability of
the approach. Indeed, using many priorities helps in absorbing
also minor variations of the fair share. How to efficiently
implement user estimation is outside the scope of this work,
however, we note that a controller could use the same counters
instantiated at the switch for the rate estimation process.

VI. CONCLUSIONS

We introduced FDPA, a design for a packet forwarding
pipeline to enforce approximate fair bandwidth sharing. FDPA
is based on primitives common in data plane abstractions
such as P4 and OpenFlow. Differently from other approaches
based on per-packet scheduling, the implementation and time
complexity of FDPA does not depend on the maximum number
of active users. We performed experiments on a 10 Gbitls
testbed, results show that performance are close to that of an
ideal DRR scheduler with dedicated per-user queues, FDPA

instead does not need per-user queues. We identified a trade
off between fairness and throughput, in which throughput is
penalized when configuring FDPA for more fairness. Prelimi
nary analysis show that packet reordering is the cause of such
effect. We identified potential solutions to such problem that
we leave for future work.

REFERENCES

[I] Packet buffers. https:llpeople.ucsc.edu/~warnerlbuffer.html.

[2] G. Bianchi, M. Bonola, A. Capone, and C. Cascone. Openstate:
Programming platform-independent stateful open flow applications inside
the switch. ACM SIGCOMM CCR 44.2, 2014.

[3] G. Bianchi, M. Bonola, S. Pontarelli, D. Sanvito, A. Capone, and
C. Cascone. Open packet processor: a programmable architecture for
wire speed platform-independent stateful in-network processing. CoRR,
abs/1605.01977, 2016.

[4] N. Bonelli, S. Giordano, and G. Procissi. Network traffic processing
with pfq. IEEE JSAC, 34(6), 2016.

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al. P4:
Programming protocol-independent packet processors. ACM SIGCOMM
CCR 44.3, 2014.

[6] CAIDA. Analyzing UDP usage in Internet traffic. https:llwww.caida.
org/research/traffic-analysis/tcpudpratiol, 2009.

[7] c. Cascone, L. Pollini , D. Sanvito, and A. Capone. Traffic management
applications for stateful sdn data plane. In EWSON, 2015.

[8] c. Cascone, D. Sanvito, L. Pollini, A. Capone, and B. Sanso. Fast failure
detection and recovery in sdn with stateful data plane. International
Journal of Network Management , 27(2), 2017.

[9] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a
fair queueing algorithm. ACM SIGCOMM CCR 19.4, 1989.

[10] R. Jain , D.-M. Chiu, and W. R. Hawe. A quantitative measure of fairness
and discrimination for resource allocation in shared computer system.
CoRR, cs.Nl/9809099, 1998.

[II] S. Kandula, D. Katabi , S. Sinha, and A. Berger. Dynamic load balancing
without packet reordering. ACM SIGCOMM CCR 37.2, 2007.

[12] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford. HULA:
Scalable load balancing using programmable data planes. In ACM SOSR,
2016.

[13] P. E. McKenney. Stochastic fairness queueing. In IEEE INFO COM,
1990.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and 1. Turner. Openflow: Enabling innovation
in campus networks. ACM SIGCOMM CCR 38.2, 2008.

[15] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan. Flow
level state transition as a new switch primitive for SDN. In ACM
HotSON, 2014.

[16] J. Nagle. On Packet Switches With Infinite Storage. IETF RFC 970,
1985.

[17] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker. Approximate fairness
through differential dropping. ACM SIGCOMM CCR 33.2, 2003.

[18] R. Pan, B. Prabhakar, F. Bonomi, and B. Olsen. Approximate fair
bandwidth allocation: A method for simple and flexible traffic manage
ment. In IEEE Allerton Conference on Communication, Control, and
Computing, 2008.

[19] L. Qiu, Y. Zhang, and S. Keshav. Understanding the performance of
many TCP flows. Computer Networks, 37(3-4), 2001.

[20] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nelson,
and S. Peter. Evaluating the power of flexible packet processing for
network resource allocation. In USENIX NSOI, 2017.

[21] M. Shreedhar and G. Varghese. Efficient fair queuing using deficit round
robin. IEEEIACM Transactions on networking, 4(3), 1996.

[22] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakr
ishnan, G. Varghese, N. McKeown, and S. Licking. Packet transactions:
High-level programming for line-rate switches. In ACM SIGCOMM,
2016.

[23] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown.
Programmable packet scheduling at line rate. In ACM SIGCOMM, 2016.

[24] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford. Heavy-hitter detection entirely in the data plane. In ACM
SOSR, 2017.

