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Abstract. In the aerospace engineering field, morphing structures refer to mechanical
structures capable of adapting their shape in order to improve some vehicle performance.
Their analysis requires a computational model detailed enough to represent the internal
structural parts which make morphing possible. These are often small with respect to the
size of the external structure, so the computational cost of a full 3D finite element model
would be high. We restrict our attention to straight, constant cross–section wings and rely
on generalized beam theory to develop a computational model capable of analysing the
morphing behaviour with a small number of degrees of freedom. We propose an extention
of the generalized beam models presented by Morandini et al. (2010). From a singular
value analysis of the cross–section finite element model, we derive an additional set of
degrees of freedom strictly related to the morphing behaviour, and show the convergence
of our projection–based reduced–order structural model to the full order one for some
validation cases. The proposed method is applied to the analysis of the FishBACmorphing
structure introduced by Woods et al. (2012).

1 INTRODUCTION

Morphing aircraft structures, i.e. structures capable of flexible seamless changes of
shape, have been re–introduced in the last years for their potential capability of adaptation
with a limited weight and reliability penalty [1, 2]. Shape changes on wings include
variations in span, twist, camber, and others [1]. Among all possible shape modifications,
in this work we focus on camber–morphing, whose application on rotorcraft blades offers
significant room for optimizing the performance of the vehicle, included the reduction of
vibratory loads and emitted noise [3, 4, 5].

In order to be able to perform a computer simulation of an aeronautical morphing sys-
tem, the combination of a structural elastic model, an aerodynamic model, and possibly
a model of the actuation system is required. The usage of state–of–the–art computa-
tional methods (such as finite elements) in every part of this multidisciplinary framework
would lead to a complex high–dimensional model, that would require High Performance
Computing (HPC) capabilities in order to run the simulations.
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Figure 1: Constant cross–section prismatic solid. Out–of–plane coordinate x, and in–
plane coordinates (y, z).

For a computational model that would be competitive (in terms of time and compu-
tational resources) with traditional aeronautical design methods, in this work we explore
the capabilities of generalized beam models to deal with camber–morphing of straight,
slender wings. Several works have focused on generalizing beam models by means of
semi–analytical methods providing a detailed characterization of the beam cross–section
(summarized in [6]), mostly based on a finite element modeling of the cross–section [7, 6],
allowing for composite and anisotropic materials. In [8], it has been shown that classical
beam solutions can be obtained without assumptions on the section behaviour, and with-
out any a priori displacement decomposition, once the continuum linear elasticity problem
is reformulated as an evolutionary problem along the beam axis [8, 7, 9] and the eigenanal-
ysis of the resulting first order system of linear Ordinary Differential Equations (ODEs)
is studied. The six rigid displacements and the six classical polynomial solutions for the
beam displacement automatically appear as the solutions generated by the generalized
eigenfunctions associated to null eigenvalues. Additional displacement fields (like section
warping and additional in-plane deformation) are generated by eigenfunctions associated
to non–null eigenvalues, as in the decoupling proposed in [7], and they are exponentially
decaying in accordance with de Saint Venant’s principle [10, 11].

The aim of this work is to use the formulation presented in [8] to identify a set of solu-
tions clearly related to in-plane deformation, to be used for the derivation of generalized
camber–morphing beam models by means of subspace projection of the model equations.
This was initiated in [12], where the usage of eigenfunctions related to non–null eigenval-
ues has been investigated. In this work we investigate an alternative model–projection
procedure in order to overcome some of the limitations already encountered in [12].

2 SEMI–DISCRETE FORMULATION OF LINEAR ELASTIC MECHAN-

ICS

We consider a prismatic three–dimensional elastic solid, with constant cross–section
and straight out–of plane x–axis (fig. 1). In–plane coordinates are labeled as ξ , (y, z).

2.1 Virtual work principle

We start from the virtual work principle for a linear elastic continuum [13] in the
three–dimensional domain Ω occupied by the elastic solid, stating the equality of virtual
internal and external work δLi = δLe for every suitable virtual displacement field δu (a
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test function in [H1
0 (Ω)]

3). The virtual external work, considering a cantilever constant
cross–section prism of length L in the interval x ∈ [0, L], can be written as

δLe =

∫

Ω

δu · fΩ dΩ +

∫

SL

δu · fL dA+

∫

∂Ω\{S0∪SL}

δu · τ dΓ (1)

where fΩ represents volume forces, fL represents the surface forces applied on the end
section SL (assuming Dirichlet conditions on the root section S0), and τ represents the
stress applied on the lateral surface ∂Ω\{S0 ∪ SL}. The virtual internal work for a linear
elastic solid under the small deformation hypothesis is compactly expressed as

δLi =

∫

Ω

ǫ(δu)TDǫ(u) dΩ (2)

where the symmetric stress and small strain tensors have been conveniently re-arranged as
six-component arrays σ, ǫ, the latter being related to the displacement field u by means
of a linear differential operator D, with matrix D expressing the linear elastic constitutive
law

ǫ = Du =











∂/∂x 0 0
0 ∂/∂y 0
0 0 ∂/∂z

∂/∂y ∂/∂x 0
∂/∂z 0 ∂/∂x
0 ∂/∂z ∂/∂y











u, D =











2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ











(3)

2.2 Separation of variables and cross–section discretization

In order to obtain an evolutionary form of the elastic problem along the space direction
x, it is convenient to split the strain tensor ǫ into contributions brought by derivatives in
the in–plane directions ξ , (y, z) ∈ S, and by the derivative in the beam axis direction
x ∈ [0, L]

ǫ =











0 0 0
0 ∂/∂y 0
0 0 ∂/∂z

∂/∂y 0 0
∂/∂z 0 0
0 ∂/∂z ∂/∂y











︸ ︷︷ ︸

,Dξ

u+











1 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0











︸ ︷︷ ︸

,S

∂u

∂x
= Dξu+ S

∂u

∂x
(4)

A nodal P1 linear finite element discretization for the cross–section domain S (which
is constant along the x–axis) is introduced as u(ξ, x) = N(ξ)v(x). Substitution into the
expression of the strain tensor splitting (eq. 4) allows to directly express the strain tensor
ǫ in terms of the section nodal displacements v(x) and their first derivative v′(x) = dv

dx

along the beam axis

ǫ = DξN(ξ)
︸ ︷︷ ︸

,Zξ(ξ)

v(x) + SN
︸︷︷︸

,Z0

dv(x)

dx
= Zξ(ξ)v(x) + Z0

dv(x)

dx
(5)
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Since only matrix Zξ(ξ) retains a dependence from the cross–section coordinates, the last
expression allows us to express the volume integral in the virtual internal work (eq. 2) as
a multiple integral over the surface S and the line [0, L], getting

δLi =

∫

Ω

ǫ(δu)TDǫ(u) dΩ =

∫ L

0

δ

[
v

v′

]T ∫

S

[
ZT

ξDZξ ZT
ξDZ0

ZT
0DZξ ZT

0DZ0

]

dA
[
v

v′

]

dx (6)

Also the virtual external work in eq. 1 can be discretized as

δLe =

∫ L

0

δvT

∫

A

NT fΩ dA dx+ δvT (L)

∫

SL

NT fL dA+

∫ L

0

δvT

∫

∂A

NTτ dΓdx (7)

The following matrices can be conveniently defined

E ,

∫

S

Zξ(ξ)
TDZξ(ξ) dA, C ,

∫

S

Zξ(ξ)
TDZ0 dA, M ,

∫

S

ZT
0DZ0 dA (8)

together with the semi–discrete domain and boundary nodal forces

FΩ ,

∫

A

NT fΩ dA, FL ,

∫

SL

NT fL dA, F∂A ,

∫

∂A

NTτ dΓ (9)

so that the virtual work principle can be compactly written in its semi–discrete form as

∫ L

0

δ

[
v

v′

]T [
E C

CT M

] [
v

v′

]

dx =

∫ L

0

δvT (FΩ + F∂A) dx+ δvT (L)FL,

∀δv ∈ [H1
0 ([0, L])]

3ns

(10)

3 SUBSPACE PROJECTION AND FULLY DISCRETE FORMULATION

A low–dimensional representation of the unknown v(x) ∈ H1
0 ([0, L])

3ns by means of a
vector k(x) ∈ H1

0 ([0, L])
nr , with nr ≪ 3ns, is sought. This is accomplished by finding a

matrix P ∈ R
3ns×nr whose columns span a nr–dimensional subspace of R

3ns so that we
can write the solution approximation as

v(x) = Pk(x) (11)

and perform a subspace projection of eq. 10, in accordance to classical methods for over–
determined systems [14]. This leads to the definition of the following projected matrices

Eπ = PTEP, Cπ = PTCP, Mπ = PTMP (12)

So the virtual internal work finally reads

δLπ
i =

∫ L

0

δ

[
k

k′

]T [
Eπ Cπ

CπT

Mπ

] [
k

k′

]

dx (13)
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This expression is independent from the specific choice of the basis functions. Analogously,
the projection of the forcing terms can be defined

Fπ
Ω = PTFΩ, Fπ

∂A = PTF∂A, Fπ
L = PTFL (14)

So that the projection of the virtual external work is expressed as

δLπ
e =

∫ L

0

δkT (Fπ
Ω + Fπ

∂A) dx+ δkT (L)Fπ
L (15)

This projection–based approach is common in many model reduction problems [15, 16].
In this work, we don’t look for a mathematical optimality criterion for the definition
of matrix P, since this often requires some knowledge of the full–system solution v(x),
like in Proper Orthogonal Decomposition (POD) approaches [16]. Instead, we compare
different a priori choices of matrix P based on an assessment of their computational cost
and convergence trends, thus avoiding full–system computations.

A fully discrete formulation is obtained once we introduce a set of nodal P1 basis
functions along the x–axis, so that the unknown is discretized as k(x) = Θ(x)h. This
leads to the definition of the linear system matrix L and forcing b

L ,

∫ L

0

(

ΘTEπΘ+ΘTCπ dΘ

dx
+

dΘ

dx

T

CπT

Θ+
dΘ

dx

T

Mπ dΘ

dx

)

dx

b ,

∫ L

0

ΘT (Fπ
Ω + Fπ

∂A) dx+ θT (L)Fπ
L

(16)

so that the final expression of the algebraic linear system to be solved reads Lh = b.

4 MODEL PROJECTION APPROACHES

We will compare two alternative choices for matrix P. Firstly, the eigenfunctions
of the strong form of eq. 10. Lastly, the singular vectors of the cross–section in–plane
deformation energy matrix E.

4.1 Eigenvectors of the Hamiltonian system

A strong form of the semi–discrete variational formulation is obtained by integrat-
ing by parts eq. 10, noting that test functions are not allowed to vary on the Dirichlet
boundary, and imposing the arbitrariness of variations in the domain δv(x) and on the
Neumann boundary δv(L). Defining for convenience matrix H , C − CT , and intro-
ducing w(x) , v′(x), we can write the corresponding homogeneous system of first order
differential equations as

[
I 0

0 M

]

︸ ︷︷ ︸

B

d

dx

[
v

w

]

︸︷︷︸
q

=

[
0 I

E H

]

︸ ︷︷ ︸

A

[
v

w

]

︸︷︷︸
q

(17)
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The above system is Hamiltonian, so the spectrum of matrix pair (A,B) is symmetric with
respect to the imaginary axis. In fact, the same first order system of differential equations
can be derived from a Hamiltonian formulation of the semi–discrete problem (eq. 10) [8,
17, 18]. Since the problem is twelve times singular1, the eigenvalue computation is ill–
conditioned and it is useful to remove the singularity by means of a deflation procedure
before performing a numerical eigenvalue computation. The computational procedure
used in this work is described in [12].

Interpretation and assessment of the method. Eigenvectors related to non–null
eigenvalues do show a camber–morphing displacement, making them interesting as basis
functions for morphing applications. Eigenvalues real part ℜ(λi) represents the amplifica-
tion or damping of each modal shape along the x–axis. This motivates the study of modal
truncation as a means for building the projection matrix P for morphing applications,
since retaining in the model the eigenvectors with the slowest decay rate would allow to
analyse the propagation of an imposed shape along the x–axis.

From the computational point of view, some issues when dealing with eigenanalysis of
Hamiltonian systems have shown to be relevant in the current application. (a) Eigenvalues
of a Hamiltonian system are symmetric with respect to both the real and the imaginary
axis,meaning that with a classical eigenvalue solver four new eigenvalues have to be com-
puted before an independent new one is found, making the procedure costly unless specific
eigenvalue solvers are employed [20, 21, 22]. (b) No convergence estimates are available for
modal truncation of non symmetric systems. (c) The non symmetric Hamiltonian matrix
pair of the problem at hand is ill–conditioned, even after mesh scaling has been employed
to improve the condition number of matrices E, C, M, and after deflation procedures [12]
have been employed to desingularize the Hamiltonian matrix pair. (d) Eigenvectors of
the Hamiltonian system (eq. 17) exhibit no clear uncoupling of out–of–plane warping dis-
placement from in–plane camber–morphing displacement in most of the eigenfunctions,
making it even more difficult to determine the number of eigenvalues which need to be
retained in the model in order to have a significant reproduction of a camber morphing
behavior.

4.2 Eigenvectors of the in–plane deformation energy

Due to the difficulties with the computation of the eigenfunctions of the linear system
(eq. 17), we seek an alternative approach for the choice of the basis functions. Matrix
E is related to a virtual work contribution produced only by in–plane derivatives of the
displacement. Recalling here the definition of matrix E, together with the cross–section
Gram matrix WS

E =

∫

A

(DξN(ξ))T D (DξN(ξ)) dA, WS =

∫

A

NT (ξ)N(ξ) dA (18)

1As shown in [8], the matrix pair (A,B) is defective [19] and it is not diagonalizable, thus a Jordan
form decomposition A = BXJX

−1 is sought [19]. Jordan blocks are related to null eigenvalues associated
to bending (two 4 × 4 blocks), axial tension (2 × 2), and torsion (2 × 2) [8], and they generate classical
polynomial de Saint Venant’s solutions.
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we seek a numerical approximation of the most deformable constant shapes from the
solution of the real symmetric eigenvalue problem Evi = σiWSvi, i = 1, . . . , R for the
first R lowest–modulus non–null eigenvalues, leading to the definition of a matrix of basis
functions PE ≡ [v1, . . . ,vR] ∈ R

3ns×R. This matrix is bordered by the de Saint Venant’s
solution Pd computed in the previous section, to give the complete projection matrix
P = [PE,Pd].

Interpretation and assessment of the method. Looking for the lowest–modulus
non–null eigenvalues of matrix pair (E,WS) means maximizing the cross–section L2 norm
of the solution while considering orthogonal contributions to the internal energy of a
deformed shape which doesn’t change along the x–axis

argmin
vi

(
vT
i WSvi

)
s.t. vT

i Evi = 1, vi /∈ ker(E) (19)

For constant solutions along the beam axis, this approach is equivalent to Proper Orthog-
onal Decomposition (POD) or Singular Value Decomposition (SVD) [16]. The present
approach offers several practical advantages over the previous one. (a) Since the virtual
work contribution δvTEv vanishes for the three rigid translation and for a rotation about
the x axis, matrix E is positive semidefinite and has four null eigenvalues [8]. Since E is
symmetric by construction, it is diagonalizable, its eigenvalues are real and its eigenvec-
tors are orthogonal [14]. (b) Clear convergence estimates are available for system SVD
(Schmidt–Eckart–Young–Mirsky theorem [16]) and apply for constant solutions along the
x axis. (c) In practice, this means that it is easier for standard eigenvalue solvers to con-
verge on a large number of eigenpairs (in this work, above 300) and to check numerically
the convergence of the model for non–constant solutions along the x axis. (d) Further-
more, camber–morphing and warping singular vectors are naturally uncoupled, as it will
be shown in the next paragraph.

Although out–of–plane variations of the deformed shape will be present in most of
morphing applications, it is often desirable to keep it at a minimum. In a design phase,
uncoupling out–of–plane from in–plane shape variations allows to design the cross–section
material layout in order to maximize the desired in–plane morphing behavior.

Uncoupling of in–plane and out–of–plane displacement. It is now convenient
to analyze the energy associated to Dξu differential operator before any discretization
is introduced. We now split the displacement u into out–of–plane warping u and in–
plane (camber–morphing) displacement c, and move rows of operator Dξ according to the
permutation [1, 4, 5, 2, 3, 6] so to partition it as

Dξu =











0 0 0
∂/∂y 0 0
∂/∂z 0 0
0 ∂/∂y 0
0 0 ∂/∂z
0 ∂/∂z ∂/∂y











[
u
c

]

,





0 01×2

Dw
ξ 02×2

03×1 Dc
ξ





[
u
c

]

(20)
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(a) FishBAC airfoil materials. (b) FishBAC airfoil mesh.

Figure 2: FishBAC airfoil materials and mesh.

We introduce the same partitioning of the elasticity matrix D (eq. 3) through the appli-
cation of the same permutation [1, 4, 5, 2, 3, 6] to its rows and columns

D =











2µ+ λ 0 0 λ λ 0
0 µ 0 0 0 0
0 0 µ 0 0 0
λ 0 0 2µ+ λ λ 0
λ 0 0 λ 2µ+ λ 0
0 0 0 0 0 µ











=





D00 01×2 D0w

02×1 Dww 02×3

DT
0w 03×2 Dcc



 (21)

Inserting this partitioning into the expression for the virtual work contribution δLE =
∫

A
(Dξδu)

TDDξu dA and using the adjoint operators2 Dw†

ξ and Dc†

ξ , we get

δLE(x) =

∫

A









0 01×2

Dw
ξ 02×2

03×1 Dc
ξ





[
δu
δc

]




T 



D00 01×2 D0w

02×1 Dww 02×3

DT
0w 03×2 Dcc









0 01×2

Dw
ξ 02×2

03×1 Dc
ξ





[
u
c

]

dA =

=

∫

A

[
δu
δc

]T
[

Dw†

ξ DwwDw
ξ 01×2

02×1 Dc†

ξ DccDc
ξ

] [
u
c

]

dA

(22)
So matrix E appears to be the discretization of a differential operator which uncouples
out–of–plane from in–plane displacements.

5 ANALYSIS OF CAMBER–MORPHING WING SECTIONS

We analyze the FishBAC (fishbone active camber) cross–section proposed by Woods
and Friswell in [23] for camber–morphing applications, and further studied in successive
works ([24, 25, 26, 27, 28] among others). This is a thin–walled cross–section layout built
inside a NACA 0012 airfoil. A sketch of the configuration, with materials layout and the
mesh used throughout the analysis is given in fig. 2. A unit–dimension aerodynamic chord
is used in the simulations.

Several materials layouts are studied; they are summarized in table 1. Different scal-
ings for the elastic modulus of different materials (identified with reference to their color
in figure 2) are chosen in order to enhance the camber–morphing capabilities of the air-
foil while keeping a good stiffness in the airfoil nose. Configuration G has been used

2A procedure for the derivation of adjoint differential operators can be found in [14].
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(a) Wing displacement, 0.2×.
(b) End–section (only morphing),
0.2×.

0
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1,000

x NDOF

||u
||

0 200 400 600 800 1,000

(c) L2(S) norm.

Figure 3: Displacement due to gravity on the FishBAC wing.

for simulations with gravity loads, configuration A for imposed shape simulations, and
configuration B for surface loads.

Table 1: Elastic modulus scaling for each cross–section material (with reference to fig. 2).

Red Blue Yellow Green
Configuration G 1 1 1 1
Configuration A 4 2 1 1
Configuration B 4 0.5 0.05 0.05

5.1 Three–dimensional simulations with gravity loading

We study a gravity load on the extrusion of length L = 5 of the FishBAC cross–section.
This is done by imposing the value −ρg in the z–component of the volume forcing fΩ.
Figure 3 shows the displacement of the wing. A significant camber–morphing behavior is
not directly appreciable from fig. 3a, but the modal decomposition allows to filter–out the
displacement on the classical deformations Pd, so to better visualize the slight morphing
deformation which the model is able to capture (fig. 3b). A convergence study for the
L2(S) norm of the displacement is shown in figure 3c, varying the number of modes
retained in the model.

5.2 Three–dimensional simulation on imposed modal shapes

From the definition of the eigenvectors of matrix pair (E,WS), it is possible to impose
a constant morphing solution on a mode vi by simply choosing the forcing terms as
FΩ = WSvi, FL = CTvi and setting an inhomogeneous Dirichlet boundary condition
at the root on the desired mode v(0) = vi. The same could be done for any prescribed
solution made of a desired linear combination of eigenvectors.

In order to study the evolution of the morphing shape along the x–axis, it is more
interesting to impose the same forcing while leaving the root boundary conditions homo-
geneous, i.e. in the undeformed configuration. This is done for eigenvector 8. Results are
shown in fig. 4.
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(a) Wing displacement, 1000×. (b) End–section, 1000×.
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(c) L2(S) norm.

Figure 4: Displacement due to forcing on eigenvector 8 for the FishBAC airfoil.

(a) Wing displacement, 107×. (b) End–section, 107×.
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Figure 5: Displacement due to analytical pressure load.

5.3 Three–dimensional simulations with analytical pressure loading

A preliminary three–dimensional simulation with surface loading is performed by as-
signing an analytical pressure distribution on the lateral surface ∂Ω\{S0∪SL}. We define
the coordinate θ(ξ) and an analytical pressure function P (x, ξ) as

θ(ξ) = sign(z) arccos

(

2
y − y0

ymax − ymin

− 1

)

(23)

P (x, ξ) =
1

L

√
L2 − x2

(
C + A0 sin

2 θ(ξ) + A1 sin θ(ξ)
)

(24)

Parameter values C = 1, A0 = 0.5, A1 = 0.5 have been used in the simulations. The
rationale is to assign a chordwise pressure distribution composed of a constant part plus
a symmetrical contribution (sin2 θ) and an asymmetrical one (sin θ). This chordwise
pressure distribution is modulated by an elliptical distribution along the x–axis. Finally,
resultants are filtered out to obtain a zero–resultant surface load τ .

Three–dimensional and cross–section displacements are compared in fig. 5. The dis-
placement is distributed on various modes whose amplitude do vary along the x–axis.
Displacements convergence in the L2(S) norm is shown in fig. 5.
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6 CONCLUSIONS

This work proposes an extension of the generalized beam models formulation intro-
duced in [8] for the analysis of camber–morphing constant cross–section structures. We
propose a new approach for a projection–based reduced order model, based on the usage
of eigenvectors of the in–plane virtual work matrix, and compare it with the usage of the
eigenvectors of the Hamiltonian system [12]. Advantages shown by the present method
over the previous one are: (a) Theoretical uncoupling of in–plane from out–of–plane dis-
placement basis functions. (b) Well–conditioning of the symmetrical eigenvalue problem.
(c) Convergence is observed in practice by increasing the number of basis functions. Re-
sults have been shown for test loadings, such as gravity, an imposed displacement solution
and prescribed surface pressure. Further work is underway for a coupled fluid–structure
interaction simulation.
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