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Abstract 

The lack of sufficient electron acceptors, particularly sulfate, can limit the rate of biodegradation 

of petroleum hydrocarbons (PHCs).  Hence there is a growing interest by remediation 

practitioners to deliver sulfate to a PHC impacted saturated zone to enhance biodegradation.  

When shallow contamination is present in a relatively permeable aquifer and site constraints 

allow, a cost-effective approach is to apply sulfate on the ground surface.  In this investigation a 

pilot-scale experiment was conducted to increase our understanding of the delivery of sulfate 

using a surface-based method and the resulting impact on a shallow PHC contaminated aquifer.  

A surficial infiltration pond positioned on the ground surface above a well-characterized residual 

PHC source zone was used to control sulfate dosing.  A high-resolution network near the 

infiltration pond and downgradient of the source zone was employed to monitor relevant 

geochemical indicators and PHC concentrations.  Compound specific isotope analysis (CSIA) 

was used to identify biodegradation patterns and to investigate the occurrence of microbial 

sulfate reduction. Selected metabolites and reverse-transcriptase quantitative polymerase chain 

reaction analyses of expressed biodegradation genes (as mRNA) were also used to 

characterize the response of indigenous microorganisms (especially sulfate reducing bacteria) 

to the added sulfate.  Three sulfate application episodes (5000 L each) at various Na2SO4 

concentrations were allowed to infiltrate under a constant hydraulic head.  Although the applied 

sulfate solution was impacted by density driven advection, detailed monitoring data indicated 

that the sulfate-enriched water mixed with up-gradient groundwater as it migrated downward 

through the residual PHC zone and formed a co-mingled downgradient plume with the dissolved 

PHC compounds.  The enrichment of δ34S of sulfate in conjunction with a decrease in sulfate 

concentration showed the occurrence of sulfate reduction due to the applied sulfate.  Increased 

dissolved inorganic carbon (DIC) concentrations associated with a shift toward more depleted 

values of δ13C of DIC was indicative of an input of isotopically depleted DIC from biodegradation 

of benzene, toluene and o-xylene (BTX). Despite fluctuations in the BTX concentrations, the 

CSIA data for BTX showed that these compounds were biodegraded. The biomarker data 

provided supporting evidence that toluene and o-xylene were undergoing anaerobic 

biodegradation due to sulfate reduction.  This study provides insight into factors controlling 

surface-based delivery of sulfate to shallow PHC impacted groundwater systems, and the value 

of isotopic and molecular-biological procedures to augment conventional monitoring tools. 

  

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
1.0 Introduction 

At sites contaminated with petroleum hydrocarbons (PHCs), biodegradation is often one of 

the most important attenuation mechanisms that contributes to the reduction in contaminant 

mass in both the source zone and dissolved PHC plumes.  Since dissolved oxygen is rapidly 

consumed and the rate of oxygen supply is not able to meet the aerobic biodegradation 

demand, anaerobic conditions usually develop.  Anaerobic biological oxidation of PHCs is 

widespread (Atlas 1981; Leahy and Colwell 1990; Foght 2008; Chapelle 1999; Meckenstock 

and Mouttaki 2011) and commonly leads to depleted concentrations of alternative electron 

acceptors (EA; e.g., nitrate, ferric iron and sulfate) in groundwater plumes.  This lack of 

sufficient EAs can limit the rate of biodegradation of PHCs (Meckenstock et al. 2015).  To 

overcome this limitation, engineered systems that deliver selected soluble EAs have been 

applied in anaerobic environments to stimulate biodegradation of PHCs (Lunardini and Dickey 

2003; Suthersan et al. 2011).  Although nitrate and ferric iron have been shown to be more 

effective than sulfate by Cunningham et al. (2001), these are less desirable EAs as the 

regulatory maximum contaminant level (MCL) for nitrate in groundwater is only 44 mg/L, and 

ferric iron is not practical due to its low solubility at neutral aquifer pH (Cunningham et al. 2001).  

Sulfate has been estimated to account for about 70 % of the overall natural biodegradation 

capacity (Wiedemeier et al. 1999) in PHC groundwater plumes, which consequently gives rise 

to sulfate depleted conditions in these systems (Roychoudhury and McCormick 2006; USEPA 

2007; Kolhatkar and Schnobrich 2017).  Therefore, there has been a growing interest in sulfate 

addition at sites impacted with PHCs to enhance the biodegradation of PHCs. 

Various approaches have been used to deliver a sulfate solution to the saturated zone 

including gravity feed into injection wells (Anderson and Lovely 2000; Kolhatkar et al. 2008), a 

series of injection and extraction wells (Cunningham et al. 2001), and gravity feed into an 

infiltration trench (Sublette et al. 2006).  The results from these studies clearly demonstrated the 

effectiveness of stimulating PHC biodegradation in the vicinity of the delivery location, but 

indicated various limitations with approaches to deliver a sulfate solution.  These included a 

limited zone of influence downgradient of the injection point (either due to the short-circuiting 

along the more permeable strata or density driven advection of the concentrated injected sulfate 

solution) and difficulty in maintaining a relatively uniform sulfate concentration over time.  As a 

result, the direct delivery of a sulfate solution to the saturated zone is associated with higher 

costs to satisfy closely spaced injection locations and/or more frequent sulfate delivery events. 

An alternative approach is to deliver sulfate from the land surface.  Hutchins and Miller 

(1998) used a sprinkler application system with and without nitrate addition on adjacent 30 m x 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
30 m experimental plots, and compared the extent of bioremediation of a JP-4 fuel 

contaminated aquifer. Based on the changes in groundwater and soil core concentrations of 

benzene, toluene, ethylbenzene, xylene (BTEX) and tri-methylbenzenes (TMBs), they 

demonstrated an approximately 5-fold increase in mass removal in the nitrate plot relative to the 

plot without nitrate addition.  A number of studies have also demonstrated the important role of 

natural surface recharge in transporting rate-limiting nutrients and EAs to groundwater. This 

process has been shown to exert an important control on natural attenuation of dissolved 

contaminants (McGuire et al. 2005; van Stempvoort et al. 2007), as well as methanogenic 

biodegradation of long chain alkanes in a crude oil body located in the shallow subsurface 

(Bekins et al. 2005; Baedecker et al. 2017).  

Based on these efforts, there is an increased interest in applying a „surface delivery‟ method 

of EAs over the entire footprint of a PHC plume as a cost-effective approach to enhance 

biodegradation of PHCs, especially at open/unpaved sites with shallow contamination in a 

relatively permeable aquifer.  Kolhatkar and Schnobrich (2017) described pilot testing and 

subsequent site-wide land application of agricultural gypsum and Epsom salt followed by 

irrigation or natural precipitation to provide sulfate to a predominantly benzene plume in a 

shallow groundwater system. At this site, up to a 3-fold increase in the rate of benzene 

attenuation was demonstrated at some monitoring wells following land application events where 

elevated sulfate concentrations (>150 mg/L) were sustained over 12 months.  Despite these 

enhancements, they identified the need to better understand factors controlling sulfate 

infiltration to groundwater and the role of novel diagnostic tools so that the performance of these 

systems can be optimized.  

To improve our understanding of the delivery of sulfate using a surface method and the 

resulting impact on a shallow PHC contaminated aquifer, a pilot-scale experiment was designed 

and executed.  While land application of solid sulfate salts (gypsum or Epsom) is likely more 

cost-effective, it involves an additional step and potential rate limitations associated with the 

dissolution of the salt.  To eliminate this uncertainty, the sulfate dose in this experiment was 

delivered episodically using a surficial infiltration pond positioned above a well-characterized 

PHC residual source zone.  The objectives of this experiment were: (1) to assess the spatial 

and temporal distribution of sulfate in groundwater and associated changes in PHC 

concentrations, and (2) to augment conventional groundwater parameters with isotopic and 

molecular-biological procedures to evaluate potential enhanced biodegradation of PHCs 

resulting from the applied sulfate.  A high-resolution monitoring network consisting of multiple 

transects of depth-discrete sampling points was employed to capture the behavior of the 
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infiltrating sulfate.  Geochemical indicators included dissolved oxygen (DO), electrical 

conductivity (EC), redox potential (Eh), pH, dissolved inorganic carbon (DIC) content, methane, 

and sulfide.  These data were enhanced with compound specific isotope analysis (CSIA) and 

biomarkers (GC/MS analysis of metabolites and quantitative polymerase chain reaction (qPCR) 

methods of expressed biodegradation genes). 

 

2.0 Methods 

2.1 Site Description 

This study was performed in an experimental gate (Figure 1) previously used by Freitas et al. 

(2011) located in the sandpit area of the University of Waterloo Groundwater Research Facility 

at the Canadian Forces Base (CFB) in Borden, ON, Canada.  The Borden aquifer material is 

considered homogenous and is composed of well-sorted fine to medium grain sand (hydraulic 

conductivity 6.0 × 10−6 to 2.0 × 10−4 m/s) with some microscale heterogeneity in the form of silty 

sand and coarse sand lenses (Mackay et al. 1986). The water table is usually located at ~1 m 

below ground surface (bgs) but varies seasonally, and the horizontal groundwater flow velocity 

is ~9 cm/day. The underlying aquitard is ~8 m thick and located at ~11 m bgs. A historical 

leachate plume exists >5 m bgs and is responsible for the background concentration of 2-

4SO  

(10 to 30 mg/L), and Na+ (1 to 2 mg/L) starting at about 4.5 m bgs (MacFarlane et al. 1983).  

This experimental gate is bounded by sheet pile walls that are parallel to the nominal 

groundwater flow direction. As a result, groundwater flow within this gate is controlled by the 

ambient aquifer flow conditions. 

Approximately 12 months before this field investigation began, 112 L of a well-characterized 

PHC mixture (Table S1) was injected from 1.25 to 2.5 m bgs between Row 2 and Row 3 (Figure 

1(a)).  Twelve stainless-steel drive points were driven down to 2.25 m bgs, and then 2.5 L 

aliquots of the mixture were injected at predetermined depth intervals before each drive point 

was pulled upwards to the next interval.  Following injection, the water table in the gate was 

lowered to 2.5 m bgs and allowed to recover ~12 times over a 7-day period to generate a smear 

zone.  Based on a qualitative assessment of the PHC distribution using an ultraviolet optical 

screening tool (UVOST; Dakota Technologies, Fargo, ND, USA) the footprint of the residual 

source was approximately 3 m x 3 m and extended vertically from 0.8 to 2.8 m bgs (see Figure 

S1). 

 

2.2 Monitoring Infrastructure 
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The relevant monitoring network consisted of three groundwater monitoring transects or 

fences identified as Row 2, Row 3 and Row 4 installed 5.5 m apart (Figure 1(a)). Each transect 

contained 6 multilevel monitoring wells (ML1 to ML6) separated by 1.2 m and equipped with 14 

sampling locations.  The upper 13 locations were evenly distributed from 1.50 to 3.84 m bgs at 

0.19 m intervals (D1 to D13), and the deepest location (D14) was screened between 4.8 and 5.3 

m bgs (Figure 1(b)).  Each sampling location is denoted by a row number, multilevel monitoring 

well number, and sampling interval. For example, R3-ML4-D3 identifies a monitoring location in 

Row 3 (R3), multilevel well 4 (ML4) at the third depth interval (D3).  To complement the 

monitoring transects, 5 additional multilevel monitoring wells (identified as source monitoring 

wells S1 to S5) were installed within and adjacent to the residual PHC source zone (Figure 

1(a)). Each of these monitoring wells were equipped with 8 sampling locations screened from 

0.5 to 4.0 m bgs at 0.5 m intervals (denoted as Sx-D1 to Sx-D8). 

To monitor the unsaturated zone, 10 suction lysimeters, identical to those used by Freitas 

and Barker (2008), were installed along the Row 3 and Row 4 transects (Figure 1(a)). Each 

lysimeter was comprised of 4 sampling locations screened at a nominal depth of 0.50, 0.75, 

1.00 and 1.25 m bgs (Figure 1(b)).  Each lysimeter sampling location is denoted by row number 

(R3 or R4), lysimeter number (L1 to L5), and sampling interval (D1 to D4). 

 

2.3 Sulfate Application System 

To remove potential uncertainties associated with a land surface sulfate application system 

that relied on natural or artificial precipitation as the driving force, we chose to use a surficial 

infiltration pond to control sulfate application volume, concentration, and timing.  A 3.25 m x 3.25 

m infiltration pond was constructed from 0.15 m wide x 0.05 m thick wood planks and centered 

over the footprint of the residual PHC source zone (Figure 1(a)).  Natural vegetation was 

removed from the interior of the pond, and the soil surface was raked by hand to a depth of ~5 

cm to increase the likelihood of uniform infiltration below the pond.  Nearby soil material was 

used to build a berm around on the exterior of the pond structure (Figure 2). 

A total of three sulfate solution applications were planned.  To assist with determining the 

initial system design parameters (i.e., ponding depth, total volume, and sulfate concentration), a 

series of three-dimensional density-dependent flow and mass transport simulations using 

SALTFLOW (Molson and Frind, 2013) were performed.  A key design consideration was the 

sulfate concentration since this controls density driven advection and the ability of the infiltrating 

solution to penetrate into and through the source zone.  Based on the simulation results, it was 

estimated that 5000 L of a 5 g/L Na2SO4 solution released in the infiltration pond at a ponding 
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depth of 0.1 m would migrate through the source zone in ~40 days.  These parameters were 

adopted for the initial (Day 0) application (Episode-1).  The parameters of the two subsequent 

application episodes were adjusted based on the data collected (see Section 3).  It was by no 

means the attempt of this pilot-scale experiment to deliver sufficient sulfate for complete 

treatment of the source zone mass. 

The sulfate solution was prepared, in batches, in a 3780 L tank using uncontaminated 

groundwater extracted from a nearby well and Na2SO4 solids (Kissner Milling Co. Ltd, 

Cambridge, ON, Canada) (Figure 2). Each batch was prepared and allowed to mix using a 

submersible pump recirculation system for at least 8 hours before use.  A 15 m length of 3.8 cm 

diameter tubing was used to transfer the sulfate solution from the tank to the infiltration pond. 

The dispensing flow rate was controlled by a gate valve at the outlet of the tank which was 

manually adjusted to maintain a constant water level in the pond.  The position of the drainage 

outlet was changed every ~20 minutes to evenly distribute the sulfate solution across the pond.  

The sulfate solution was allowed to infiltrate into the subsurface under a controlled ponding 

depth of 0.1 m.  

 

2.4 Sampling and Analyses 

To follow the migration and fate of the applied sulfate and the dissolved PHC compounds, 

we focused our attention on the sampling locations across Row 3 and Row 4, and the source 

monitoring wells.  Groundwater samples from these locations were used to determine EC, and 

the concentration of sulfate and the PHC compounds.  To monitor for the potential enhanced 

biodegradation of PHCs by sulfate reduction, 5 locations in the source monitoring wells, 5 

locations across the Row 3 transect, and 10 locations across the Row 4 transect were selected.  

These 20 locations were between 0.5 and 3 m bgs and chosen based on the anticipated 

migration pathway of the released sulfate from the infiltration pond and through the PHC source.  

In addition to EC and the concentration of sulfate and the PHC compounds, groundwater 

samples from these 20 locations were also analyzed for pH, dissolved oxygen (DO), oxidation 

reduction potential (Eh), sulfide, methane, dissolved inorganic carbon (DIC), 34S of sulfate, 13C 

of DIC, and CSIA (δ13C and δ2H) of benzene, toluene and o-xylene.  Furthermore, biomarkers 

characteristic of selected reactions were analyzed including mRNA of functional genes and 

metabolites.  Specifically, we focused on a total of four metabolites that are uniquely of microbial 

origin: benzene cis-dihydrodiol indicative of aerobic benzene degradation, toluene cis-

dihydrodiol indicative of aerobic toluene degradation, benzylsuccinate indicative of anaerobic 

toluene degradation, and 2-methylbenzylsuccinate indicative of anaerobic xylene degradation 
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(Wilson and Madsen 1996; Gülensoy and Alvarez 1999; Cébron et al. 2008; Beller et al. 2008; 

Nebe et al. 2009; Fuchs et al. 2011; Diaz et al. 2013).  Detection of mRNA of biodegradation 

genes shows that microorganisms hosting the DNA encoding the biodegradation enzymes are 

metabolically active and engaged in the biodegradation process.  The todC (aromatic 

dioxygenase) genes can be positive during the biodegradation of benzene or toluene under 

aerobic conditions (Hendrickx et al. 2006; Cébron et al. 2008; Nebe et al. 2009).  The abcA 

gene (anaerobic benzene carboxylase) is characteristic of benzene biodegradation under iron-

reducing and other anaerobic conditions (Abu Laban et al. 2010).  The bssA gene (and 

corresponding mRNA) encodes biodegradation of toluene and xylene under anaerobic 

conditions (Kazy et al. 2010; Fuchs et al. 2011). A specific variant of the bssA gene, bssA-SRB, 

has been shown to be carried by bacteria that are active in anaerobic toluene metabolism under 

sulfate-reducing conditions (Beller et al. 2008). Therefore, detecting mRNA of the bssA-SRB 

gene links biodegradation of toluene to populations carrying out sulfate reduction.  Finally, 

respiratory reduction of sulfate in anaerobic conditions has been linked to the expression of the 

beta subunit of the dissimilatory (bi)sulfite reductase genes, dsrB (Neretin et al. 2003; Geets et 

al. 2006; Chin et al. 2008; Bourne et al. 2011; Pelikan et al. 2016). 

A peristaltic pump and a sampling manifold (Mackay et al., 1986) was used to collect 

groundwater samples from the multilevel locations.  Prior to collecting samples, ~60 mL was 

purged from each sampling point to flush the water inside the tubing and the sampling manifold.   

Samples collected for sulfate and sulfide analyses were filtered with a 0.45 µm syringe 

membrane filter, and acidified with nitric acid (Sigma-Aldrich, St. Louis, MO) to a pH < 2.  

Samples for DIC, PHCs and for C/H isotopic analyses were collected in 40 mL glass vials and 

preserved with 0.5 mL of a 10% sodium azide solution.  Samples for isotope analysis (34S) of 

sulfate were collected in 1 L glass bottles without addition of preservatives. Samples for 13C 

analysis of DIC were collected in 60 mL transparent glass bottles with 0.2 mL of saturated 

mercuric chloride solution added for sterilization.  Samples for analysis of metabolites were 

collected in two 500 mL glass bottles; one bottle was preserved by adding HCl (J.T.Baker, 

Phillipsbourg, NJ) to a target pH of < 2, and the other bottle was preserved with NaOH (Fisher 

Scientific, Fair Lawns, NJ) to a target pH of ~ 8. All samples were stored at 4 °C and held for up 

to 14 days prior to analyses.  The samples for qPCR analyses were collected by passing 2 L of 

groundwater through a 0.2 µm Sterivex filter. The filter was then frozen immediately and stored 

at -80°C until further processing. 

Details of the analytical methods used to: (1) quantify the concentration of organic 

compounds and inorganic species; (2) analyze carbon (13C/ 12C), hydrogen (2H/ 1H), and sulfur 
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(34S/ 32S) isotope ratios; (3) extract and analyze DNA and RNA from groundwater biomass; and 

(4) identify specific metabolites are provided in the Supporting Information. 

 

 

 

3.0 Results and Discussion 

Figure 3(a) conceptually illustrates the anticipated behavior of this experimental investigation 

to enhance sulfate reduction within and downgradient of the PHC source.  For ~12 months 

before sulfate was applied, the residual PHC source was allowed to produce dissolved plumes 

of the various PHC compounds, and to promote favorable conditions for the acclimation and 

growth of indigenous sulfate reducing bacteria (SRB).  SRB communities capable of complete 

oxidation of benzene, toluene and xylene have been previously identified (Beller et al. 1996; 

Harms et al. 1999; Kleikemper et al. 2002).  The rate of microbial sulfate reduction is a function 

of the SRB specific growth rate which is controlled by the availability of sulfate and the organic 

substrate used by the microorganisms during energy production (Roychoudhury and McCormick 

2006).  

Each sulfate application episode was expected to generate a zone of infiltrating sulfate that 

would intersect the source zone, mix with the developing PHC plumes, and once the short-term 

hydraulic effects of the ponded infiltration system subsided, migrate downgradient through Row 

3 and Row 4 transects.  Between each episode, the natural infiltration processes due to rainfall 

or snowmelt are expected to wash any remnant sulfate held in the unsaturated zone below the 

infiltration pond into the groundwater system.  The increased sulfate concentration was 

expected to enhance sulfate reduction and lead to a decrease in the concentration of some 

PHCs and sulfate, and an increase in the concentration of sulfide, and dissolved inorganic 

carbon (Figure 3(b)).  It is expected that the remaining PHCs (e.g., benzene) would be enriched 

in 13C and 2H, and sulfate in 34S and 18O, while the dissolved inorganic carbon produced would 

be depleted in 13C.  Biomarker evidence for increased sulfate reduction was expected to include 

an increase in dsrB transcript levels. As PHCs began to be biodegraded under anaerobic 

conditions enhanced by sulfate addition, transcripts encoding abcA and bssA-SRB were 

expected to increase as were the concentration of the metabolites of toluene (benzylsuccinate) 

and xylene (methylbenzylsuccinate). 

The three sulfate application episodes were conducted on Day 0, Day 59 and Day 277.  All 

episodes involved the infiltration of 5000 L of solution; however, the Na2SO4 concentration was 
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increased from 5 to 20 g/L for Episode-2, and then reduced to 15 g/L for Episode-3.  The 

variation in Na2SO4 concentration was in response to observed density driven advection of the 

infiltrating sulfate as discussed in Section 3.1.  During and shortly after each application 

episode, changes to the water table were manually monitored using 4 wells (screened from 1.5 

to 2.0 m bgs; not shown on Figure 1) located just outside the infiltration pond.  In general, the 

water table rose rapidly within the first 60 mins and then stabilized.  The time for complete 

infiltration of the 5000 L was 18 hrs for Episode-1, 14 hrs for Episode-2, and 24 hrs for Episode-

3.  Episode-3 was conducted under spring conditions, and as a result the water table was close 

to ground surface and hence the infiltration rate was reduced.  A baseline sampling event was 

conducted on Day -1, although groundwater samples were collected on Day -17 from Row 2 for 

organic compound analysis and these data are shown where appropriate. Following each 

sulfate application episode, groundwater samples were collected from all locations across Row 

3 and Row 4 on Day 23, 37, 58, 86, 103, 294 and 394 for EC and/or sulfate analyses.  Samples 

were collected and analyzed from the 20 selected locations to monitor for enhanced 

biodegradation of PHCs by sulfate reduction on Day 44, 103 and 233. 

 

3.1 Sulfate Migration 

The baseline sulfate concentration was < 20 mg/L and EC < 400 μS/cm as determined from 

all source monitoring well sampling locations, and across Row 3 and Row 4 transects.  The EC 

of the applied sulfate solution was 6,800, 23,500, and 17,700 µS/cm for each of the three 

application episodes, respectively.  The ensemble data set of groundwater samples where EC 

and sulfate concentration were determined showed a linear relationship (r2 = 0.89) between EC 

and sulfate (Figure S2) indicating that EC can be used as quantitative indicator of sulfate 

concentration in this investigation. In the discussion below we use the phrase “equivalent sulfate 

concentration” to indicate that the sulfate concentration was estimated from EC using the 

relationship shown on Figure S2. 

Following the first application episode, the front of the sulfate plume reached a depth of ~1.5 

m bgs by Day 10 directly beneath the infiltration pond at S3-D3 but was not detected at Row 3 

(data not shown).  By Day 23, there was no change in the depth of penetration beneath the 

infiltration pond (maximum observed equivalent sulfate concentration of 2250 mg/L at S3-D2), 

but elevated EC (equivalent sulfate concentration of ~330 mg/L) was observed at Row 3 (Figure 

4(a)) to a depth ~2.0 m bgs suggestive of a slight downward flow component of the sulfate 

plume.  On Day 37 the EC data indicated that the majority of sulfate had left the source zone 

with moderate EC (equivalent sulfate concentration of ~400 mg/L) detected beneath the source 
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zone (i.e., at S3-D2) (data not shown).  At Row 3, the distribution of elevated sulfate had 

expanded both horizontally and vertically with a core equivalent sulfate concentration of ~3700 

mg/L (Figure 4(b)), compared to the Day 23 distribution (Figure 4(a)).  About 20 days later on 

Day 58, moderate sulfate concentrations (up to 1300 mg/L) were still present at a depth of 1.5 m 

bgs near the downgradient margin of the source zone (S5-D3) (data not shown).  The Row 3 

sulfate distribution (Figure 4(c)) on Day 58 indicated that the sulfate concentrations generally 

increased and sulfate had infiltrated deeper than the Day 37 distribution.  The maximum sulfate 

concentration in the core of the distribution was 4650 mg/L.  As expected, no elevated EC was 

observed at Row 4 on Day 58.  In summary, the sulfate distribution resulting from Episode-1 

extended to a depth of 1.5 m bgs coincident with the upper portion of the PHC source zone, was 

asymmetrical, and reached Row 3 in ~20 days. 

In an attempt to increase the depth of sulfate penetration into the residual PHC zone for 

application Episode-2, the Na2SO4 concentration was increased to 20 g/L; four times higher 

than in the first application.  On Day 86 (27 days after the second application) the EC data 

indicated that the infiltration depth of the sulfate-rich water had reached 2.5 m bgs within the 

source zone (data no shown). This is ~1 m deeper than observed during the first application 

episode.  The Row 3 sulfate distribution at Day 86 (Figure 4(d)) showed a thin core at ~1.8 m 

bgs that was 2.5 m wide and 0.5 m thick with concentrations between 4000 and 6000 mg/L.  

Below the core of this distribution was a region with sulfate concentrations as high as 1500 mg/L 

that extended to a depth of ~4.0 m bgs.  Elevated sulfate concentrations were more widespread 

and deeper compared to those from the first sulfate application as a result of density-driven 

migration.  No elevated EC or sulfate concentrations were observed at Row 4 on Day 86.  By 

Day 103 (44 days after the second application) the EC data from Row 3 (Figure 4(e)) indicated 

that sulfate had spread across most of this monitoring transect with equivalent sulfate 

concentrations ranging from 1300 to 2900 mg/L.  The maximum equivalent sulfate concentration 

of ~3890 mg/L was observed at a depth of ~3.0 m bgs.  This distribution suggested that the 

applied sulfate likely sank below the monitored depth of ~5 m bgs at Row 3.  An elevated sulfate 

signature from Episode-1 was expected to be observed at Row 4 between Day 90 and Day 120 

based on an assumed groundwater velocity of 9 cm/d; however, no elevated EC was observed 

at Row 4 on Day 103 likely due, in part, to the sinking of sulfate deeper than the monitoring 

depth locations. 

To reduce the density-driven migration of the applied sulfate observed following Episode-2, 

the Na2SO4 concentration was decreased from 20 g/L to 15 g/L for Episode-3.  Figure 4(f) 

shows by Day 294 (17 days after the third application) that the core of the sulfate distribution at 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
Row 3 was at a depth of ~1.5 m bgs.  This core was symmetric and had elevated sulfate 

concentration values between 4000 and 6000 mg/L that covered a region that was 3.5 m wide 

and 1.5 m thick.  The maximum sulfate concentration observed across Row 4 at Day 294 was 

~470 mg/L at a depth of 3.6 m bgs (Figure 4(g)).  Above this depth elevated sulfate 

concentrations were present across Row 4, but the depth of the core of this distribution 

confirmed sinking of sulfate likely related to Episode-2. 

Figure 5 depicts the maximum spatial extent of the sulfate distribution from the data 

assembled from the three sulfate application episodes. As discussed above, the sulfate-

enriched water left the infiltration pond and mixed with up-gradient groundwater as it migrated 

downward through the residual PHC zone.  Due to density effects, the sulfate continued to sink 

and by Row 4 it was observed to reach a depth of ~3.7 m bgs.  Based on this distribution, data 

from 4 of the 20 locations monitored to assess for enhanced biodegradation of PHCs by sulfate 

reduction were selected for presentation and discussion.  Two locations were located at S5 just 

downgradient of the infiltration pond (i.e., S5-D2 at a depth of 1.0 m bgs, and S5-D3 at a depth 

of 1.5 m bgs), and the other two locations were in the center of the Row 3 transect (i.e., R3-

ML4-D1 at a depth of 1.5 m bgs, and R3-ML4-D3 and a depth of 1.9 m bgs).  These four 

locations, shown on Figure 5, are where elevated concentrations of sulfate and PHC 

compounds were observed to be present during this investigation. 

 

3.2 PHC Behavior 

Figure 6 presents the temporal profile to Day 394 of benzene, toluene, o-xylene (BTX) and 

naphthalene at the four selected monitoring locations.  Since the infiltrating sulfate solution 

resulted in hydraulic perturbations to the local groundwater system, changes in the 

concentration of PHCs observed monitoring well S5 and R3-ML4 are potentially due to 

biodegradation processes, or by modifications to the groundwater flow regime that could 

produce an increase or decrease in the BTEX concentrations sampled.  

At S5-D2 (Figure 6(a)), the concentration of toluene and o-xylene remained relatively stable 

following the first two sulfate application episodes, while the concentration of benzene fell from 

an initial value of 109 to 58 µg/L after Episode-1, and then increased to 4430 µg/L after 

Episode-2 before decreasing to 114 µg/L on Day 233. In contrast to the BTX concentrations at 

S5-D2, at S5-D3 (0.5 m deeper in the system) the BTX concentrations all decreased following 

Episode-1 and Episode-2 before slightly increasing by Day 233 (Figure 6(b)).  The most notable 

was toluene which decreased from an initial value of ~7,000 to 8.4 µg/L after Episode-2 before 

rebounding to 140 µg/L.  The behavior of the BTX concentrations at both locations in R3-ML4 
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were similar (Figure 6(c,d)): (1) following Episode-1 the concentration of toluene and o-xylene 

decreased to <MDL, while the concentration of benzene increased significantly, (2) following 

Episode-2 the concentration of toluene and o-xylene increased to near Day -1 levels or higher 

by Day 103 before decreasing (more so for the levels at the deeper location R3-ML4-D3), and 

(3) following Episode-3 there was minor fluctuations in BTX concentrations except for a 

decrease in benzene concentration at R3-ML4-D3.  The observed increases in some BTX 

concentrations following Episode-2 are most likely related to the infiltrating solution contacting 

residual PHCs present within the capillary fringe below the infiltration pond.  Based on the 

changes in the BTX concentrations alone the role of biodegradation is unclear, and hence 

additional lines of evidence as discussed in the following sections are required to understand 

the behavior of this system. 

 

3.3 Geochemical and CSIA Data 

A significant decrease in Eh is observed at all four selected locations following sulfate 

application Episode-1 and remain low after Episode-2 (Figure 7(a,d)) indicating strong and 

persistent reducing conditions were created due to the applied sulfate.  Sulfide concentrations 

also increased substantially after sulfate application Episode-1 and Episode-2 (Figure 7(b,e) 

suggesting that sulfate reduction was enhanced.  By Day 233, the sulfide concentrations 

remained elevated suggesting sulfate reduction was still ongoing.  Low levels of methane were 

observed following Episode-1 and decreased to minor concentrations by Day 233 (Figure 

7(a,d)) indicating that methanogenesis was not significant and sulfate reducing conditions were 

present. 

The rationale for the application of environmental isotopes in biodegradation studies is 

based on the isotopic fractionation affecting compounds involved in biogeochemical processes 

(Aelion et al. 2009). In the case of sulfate, during sulfate reduction the remaining sulfate gets 

enriched in 34S as the concentration of sulfate decreases (Strebel et al. 1990). Similarly, BTX 

compounds get enriched in 13C and 2H as the concentration of these compounds decreases due 

to biodegradation (Hunkeler et al. 2001; Mancini et al. 2003; Meckenstock et al. 2004). 

At both locations at the source well S5, the sulfate concentration increased after sulfate 

application Episode-1 and reached a peak concentration of ~1500 mg/L on Day 57 following 

Episode-2 (Figure 7(b)).  At the shallow location (S5-D2) the δ34S value (+3.6 ‰) at Day 44 was 

close to the δ34S value of +3.2 ‰ of the applied Na2SO4 solution, but by Day 233 the δ34S was 

enriched as a result of sulfate reduction to +12.2 ‰.  In contrast, at the deeper location (S5-D3), 

the δ34S value is relatively constant at ~10‰ suggesting that sulfate reducing conditions are 
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enhanced due to the applied sulfate.  Downgradient of the source zone at the Row-3 transect, 

the sulfate concentration increased in a similar pattern to that observed at S5 (Figure 7(e)).  At 

both locations at R3-ML4, the δ34S values were between +4 to +5 ‰ for the first 103 days and 

then shifted to more enriched values by Day 233 (as high as +15 ‰ at R3-ML4-D3).  This 

enrichment was associated with a decrease in sulfate concentration (Figure 7(e)) and clearly 

indicates active sulfate reduction due to the applied sulfate. 

During biodegradation, DIC is generated and the carbon isotopic composition of the DIC 

(DIC-δ13C) reflects the contribution of the organic carbon from the degraded BTX mass.  In the 

source area at monitoring well S5 (Figure 7(c)), the DIC concentration increased significantly 

following sulfate application Episode-1 and Episode-2 with the concentration at the shallow 

location (S5-D2) reaching a value as high as 160 mg-C/L.  This trend was accompanied with a 

shift toward more depleted DIC-δ13C values of -20 and -17 ‰ at S5-D2 and S5-D3, respectively. 

By Day 233, the DIC-δ13C at both locations returned towards baseline values. In contrast at the 

downgradient well R3-ML4, smoother patterns of DIC concentration and DIC-δ13C values were 

observed (Figure 7(f)) possibly due to mixing with background water with a lower DIC 

concentration and more positive DIC-δ13C compared to the DIC from the source zone The DIC 

concentration at both locations at R3-ML4, increased to ~110 mg-C/L with a depleted DIC-δ13C 

value of about -17 ‰ on Day 103.  At R3-ML4-D1 the DIC concentration and DIC-δ13C value by 

Day 233 returned to near baseline (Day -1) conditions, while at R3-ML4-D3 there was minimal 

change in DIC-δ13C values and DIC concentration.  The observed pattern of increasing DIC 

concentrations associated with a shift toward more depleted DIC-δ13C values was likely 

associated with an input of isotopically depleted DIC from biodegradation of PHCs.  

 

3.3.1 CSIA for BTX 

The BTX in the PHC mixture used to create the residual source zone were characterized by 

δ13C and δ2H values of -27.0 and -98 ‰ for benzene, -25.7 and -75 ‰ for toluene, and -26.0 

and -97 ‰ for o-xylene, respectively. The PHC source was injected 12 months before the first 

sulfate application episode and some biodegradation prior to this episode can be expected to 

influence the isotope ratios. As shown in laboratory studies, the isotope fractionation factor for 

the biodegradation of BTX under sulfate reducing condition is smaller for carbon isotopes (-0.7 

to -6.7 ‰) than hydrogen isotopes (-25 to -106 ‰) (Vogt et al, 2014; Herrmman et al. 2009; 

Fischer et al. 2009).  This implies that a relatively large mass of these compounds would have 

to be removed by biodegradation to observe a shift to enriched δ13C values but an appreciable 

shift toward enriched δ2H values would be observed at lower mass loss due to biodegradation.  
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The typical analytical uncertainty associated with δ13C is ±0.5 ‰ and with δ2H is ±7‰ inferring 

that enrichments larger than these values are required to confidently attribute changes to 

biodegradation. 

 

Source Area 

At the shallow location (S5-D2) the isotope data showed a δ13C enrichment trend for 

benzene (-25 to -24 ‰) but the δ 2H data trended toward more depleted δ2H values (-29 to -89 

‰) followed by a shift toward an enriched δ 2H value of -31 ‰ by Day 233 (Figure 8(a,b)). The 

shift toward more depleted δ 2H values was accompanied by a significant increase in benzene 

concentration (Figure 6(a)) following sulfate application Episode-2. When the benzene 

concentration returned to near baseline (Day -1) levels the shift was toward more enriched δ 2H 

values.  Despite the benzene concentration increasing significantly after Episode-2, the δ2H 

value never returned to the source benzene value of -98 ‰ implying that some benzene mass 

was being removed by biodegradation.  For toluene, the carbon isotope data showed a shift 

toward enriched δ13C values (-26.3 to -24.6 ‰, Figure 8(a)) reaching a peak value after sulfate 

application Episode-2.  Similar to δ13C, the δ 2H data for toluene showed a shift toward more 

enriched δ2H values (-70 to -53 ‰) (Figure 8(b)). This toluene isotope pattern was accompanied 

with a trend toward decreasing concentration after Episode-1 and, similar to benzene, the 

toluene concentration increased after Episode-2 and then decreased reaching 3600 µg/L at Day 

233 (Figure 6(a)).  For o-xylene, the isotope data showed no appreciable shift for δ 13C values 

(Figure 8(a)) but δ 2H was enriched (-97.5 to -81 ‰) after Episode-2 (Figure 8(b)).  

At the deeper location (S5-D3) a different isotope pattern than appeared at S5-D2 was 

observed. No appreciable δ13C changes were detected for benzene with values around -25 ‰ 

(Figure 8(c)). However, the δ2H for benzene showed a clear shift toward more enriched values 

after Epsiode-1 and Epsiode-2 (-87 to -63 and then -72 ‰)(Figure 8(d)). This isotope pattern 

was accompanied by a significant decrease in benzene concentration (4200 to 25 µg/L) (Figure 

6(b)).  A large δ13C isotope shift in toluene was observed after Episode-2 (-25.5 to -21.4 ‰) and 

then a return to -25.5 ‰ at Day 233 (Figure 8(c)). The hydrogen isotope data for toluene also 

showed a shift toward more enriched δ2H values (-72 to -54 ‰, Figure 8(d)) but unfortunately 

data was not available on Day 44 or Day 233 as toluene concentrations were lower than the 

reporting limit for CSIA.  Similar, to the benzene isotope pattern, the toluene isotope pattern was 

accompanied by a significant decrease in toluene concentration Figure 6(b)).  The isotope 

pattern for o-xylene showed enrichment following Epsiode-2 for both δ13C (-25.6 to -24.2 ‰) 

and δ2H (-81 to -51 ‰) (Figure 8(c,d)). By Day 233 the δ13C value for o-xylene returned to near 
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Day -1 values while δ2H remained enriched.  This o-xylene isotope pattern was also 

accompanied by a decrease in the o-xylene concentration (Figure 6(b)). 

 

Downgradient Transect 

At the shallow location at Row-3 (R3-ML4-D1) the δ13C in benzene showed a trend of 

depleted values from -23.8 to -24.8 ‰ and then increasing to -24.1 ‰ at Day 233 (Figure 8(e)). 

A similar trend was observed for the δ2H values which changed from -58 to -84 ‰ and then 

increased to -31 ‰ at Day 233 (Figure (8(f)). Toluene also showed a trend toward more 

depleted δ13C values after Episode-2 from -24.2 to -25.6 ‰ and then an increase to -25.1 ‰ at 

Day 233.  A similar pattern was observed for the δ2H in toluene changing from -27 to -60 ‰ and 

then increasing to -41 ‰ at Day 233 (Figure (8(f)).  Similar to benzene and toluene, the 13C data 

for o-xylene showed a depleting trend from -26.4 to -25.8 ‰ and -25.7 ‰ at Day 233 (Figure 

8(e)). The δ2H data also showed a depletion trend from -71 to -89 ‰ and increasing to -67 ‰ at 

Day 233 (Figure 8(f)).  These isotope patterns for BTX were all accompanied by a spike in the 

BTX concentrations after sulfate application Episode-2 followed by decreasing concentrations to 

Day 233 (Figure 6(c)). 

At the deeper location (RM3-ML4-D3) the δ13C values in benzene showed a small trend 

toward depleted values (-24.3 to -24.8 ‰) after Episode-2 (Figure 8(g))while δ2H trend toward 

depleted values from -55 to -79 ‰ and then an enrichment toward -56 ‰ (Figure 8(h)).  The 

changes in δ13C values for toluene were also small (-24.4 to -25 ‰) but the δ2H showed a shift 

toward more enriched values from -69 to -32 ‰ after Episode-2.  The pattern of δ 13C in o-

xylene was similar to benzene and toluene, with a shift toward depleted values (-24.8 to -25.8 

‰) after Episode-2 and then to -25.3 ‰ at Day 233.  The δ2H in o-xylene varied between -78 

and -72 ‰ after Episode-2 and reached an enriched value of -42 ‰ at Day 233 (Figure 8(h)).  

Similar to the behavior at the shallow location, these isotope patterns were accompanied by an 

increase in the BTX concentrations after sulfate application Episode-2 followed by decreasing 

concentrations (Figure 6(d)). 

 

Synopsis 

The increase in BTX concentrations following Episode-2 was likely related to the infiltrating 

solution contacting residual PHCs present within the capillary fringe (Section 3.2). The BTX 

isotopic signature was similar to the residual source isotopic signature.  The more enriched 

isotope values observed at Day -1 at S5-D3, R3-ML4-D1 and R3-ML4-D3 compared to the 

signature of the BTX in the residual source indicates that these compounds were being 
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biodegraded prior to the first sulfate application episode. The enriched isotope patterns for BTX 

observed during the sulfate application episodes, even when the concentration increased after 

Episode-2, indicates that benzene, toluene and to a lesser degree o-xylene were being 

biodegraded which is consistent with the isotope and concentration patterns observed for DIC 

(Figure 7(c,f)). 

 

3.4 Biomarkers 

At all four locations (the source monitoring well S5, and R3-ML4), toluene cis-dihydrodiol and 

benzene cis-dihydrodiol (signature metabolites of aerobic biodegradation of toluene and 

benzene, respectively) were not detected (data not shown).  Expression of todC (aromatic 

dioxygenase, encoding aerobic biodegradation of toluene) was not detected (<100 copies/L) 

throughout the experiment at both S5-D3 and R3-M4-D3 consistent with the strong reducing 

conditions (Figure 7(a,d)).  At the shallower depths (S5-D2, and R3-M4-D1) there were 

occasional detections of mRNA of the todC as high as ~553,000 copies/L.  This was likely 

associated with the mixing of the oxygen-rich infiltrating solution with the PHC laden 

groundwater.  

Figure 9 shows the evolution of biomarkers observed at R3-M4-D1 and R3-M4-D3 that are 

unique to anaerobic biodegradation of aromatics or sulfate reduction (abcA mRNA, bssA-SRB 

mRNA, dsrB mRNA, and benzylsuccinates).  Unfortunately, the anaerobic biomarker data set 

assembled at the source well S5 was sporadic as a result of some sampling and handling 

issues, and hence these data are not presented or discussed. 

At R3-M4-D1 the transcripts and metabolites for toluene and o-xylene degradation were 

initially below detection, but increased after sulfate application Episode-2 and followed the same 

trend as dsrB expression.  These increased levels are suggestive of ongoing anaerobic 

biodegradation of toluene and o-xylene which is consistent with the CSIA data.  The increase in 

dsrB by Day 233 mirrors the enrichment pattern for 34S in sulfate (Figure 7(e)) and carbon and 

hydrogen isotope values for BTX over the same period (Figure 8(e,f)). Interestingly, transcripts 

of abcA were initially high, but decreased after sulfate application Episode-2 and were opposite 

in trend to bssA-SRB. Despite this, there was a substantial decrease in the toluene/benzene 

ratio (Figure 6(c)) suggesting that toluene was being degraded at a faster rate than benzene, 

even though bssA-SRB transcript levels were low (Wilson et al. 2016). 

At R3-M4-D3 the magnitude of transcripts and metabolite concentrations for toluene and o-

xylene were substantially lower than observed at the shallower location (R3-M4-D1).  For 

example on Day 233, the concentration of benzylsuccinate unique to anaerobic biodegradation 
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of toluene was an order-of-magnitude lower (2.5 vs 27 µg/L) despite CSIA evidence of 

biodegradation.  An inverse correlation between the presence of bssA-SRB and abcA is also 

observed. The levels of bssA-SRB were at their highest just prior to Episode-1 and then fell to 

<MDL for remainder of the experiment. Expression of abcA and dsrB mirrored one another: 

initially they were <MDL, spiking after Episode-1, but then dropped again <MDL where they 

remained for the duration of the experiment. An increase was observed in dsrB transcripts after 

the first injection decreasing to values <MDL after sulfate application Episode-2, which seemed 

to be consistent with small enrichment in δ34S (Figure 7(e)) values, however the concentration 

and isotope patterns for DIC (Figure 7(f)) and isotope patterns for BTX (Figure 8(g,h)) indicated 

that biodegradation was active in the deeper part of the aquifer at R3-M4.  Similar to the 

shallower depth, the toluene/benzene ratio (Figure 6(d)) dipped dramatically, but transiently 

after the first sulfate addition which suggested toluene degradation exceeded benzene 

degradation. 

The detection of metabolites specific to toluene and o-xylene biodegradation by sulfate 

reducing bacteria (benzylsuccinate and 2-methylbenzylsuccinate) and expression of the genes 

encoding the enzymes responsible for their production is evidence of biodegradation. These 

detections were observed despite additional BTX mass entering the system due to the hydraulic 

perturbations caused by the three infiltration episodes. This was particularly true of abcA 

expression which was highest at both locations despite drops in the toluene/benzene ratio. 

 

4.0 Closure 
In this pilot-scale experiment a surface-based delivery method was used to episodically apply 

sulfate into a residual PHC zone.  While the surficial infiltration pond was useful to control 

sulfate application volume, concentration, timing, and overall residence time of sulfate in the 

residual PHC zone, the migration of sulfate was primarily controlled by density-dependent 

advection.  In general, the sulfate-enriched water left the infiltration pond and mixed with up-

gradient groundwater as it migrated downward through the residual PHC zone and by ~8 m 

downgradient had reached a depth of ~3.7 m bgs.  The empirical attempts employed to 

minimize density effects while ensuring that a nominal mass of sulfate was delivered were 

unsuccessful to control the sinking of the infiltration sulfate solution.  However, for the purpose 

of this experiment, sufficient sulfate mass was delivered to increase sulfate concentrations to 

sustain enhanced sulfate reduction at the downgradient monitoring locations. 

The hydraulic perturbations to the system as a result of the sulfate infiltration episodes 

resulted in some observed increases in BTX concentrations.  This additional input of BTX mass 
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into the saturated system is presumed to be related to the infiltrating solution contacting residual 

PHCs present within the capillary fringe below the infiltration pond.  Hence the ability to use BTX 

concentration profiles alone to indicate that enhanced biodegradation occurred as a result of the 

applied sulfate was not possible.  Although confounded by the input of BTX mass, geochemical, 

CSIA and biomarker data provided additional lines of evidence to support the presence of 

enhanced sulfate reduction following sulfate application and biodegradation of BTX (Table 1).  

Specifically, sulfate was enriched in 34S, the DIC produced was depleted in 13C, enriched C and 

H isotope patterns were observed for BTX, metabolites specific to toluene and o-xylene 

biodegradation by sulfate reducing bacteria were detected, and the expression of the genes 

encoding the enzymes responsible for the production of these metabolites were present. 

While the results of this pilot-scale investigation provided insight into some factors controlling 

surface-based delivery of sulfate to shallow impacted groundwater systems, there are still many 

unanswered questions (e.g., controls on dissolution of solid sulfate salts, preferential pathways 

in the unsaturated zone, sulfate demand exerted by PHCs near the capillary fringe, and mixing 

within PHC plumes) surrounding basic design parameters and ways to optimize mass removal 

performance under dynamic conditions.  We believe that a combination of conventional 

monitoring tools augmented with isotopic and molecular-biological procedures which provide 

additional lines of evidence will lead to a better understanding of this cost-effective approach to 

enhance biodegradation of PHCs. 
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Table 1. Summary of increasing lines of evidence to support the occurrence of enhanced sulfate 

reduction. 

 Monitoring tool Observations 

 BTX concentrations variable; inconclusive trends 

 Dissolved oxygen (DO) minimal (< 1 mg/L); anoxic conditions 

 Redox potential (Eh) decreased values; reducing conditions present 

 Sulfide elevated levels; sulfate reduction ongoing 

 Methane (CH4) low levels; methanogenesis not significant 

 Sulfate (
2-

4SO ) increasing then decreasing values; sulfate consumption 

 Sulfur (34S) isotopic composition of sulfate enriched values; sulfate reduction 

 Dissolved inorganic carbon (DIC) increased concentration; PHC mineralization 

 Carbon isotopic composition of DIC (DIC-δ13C) depleted values; contribution from degraded BTX mass 

 Carbon (δ13C) and hydrogen (δ2H) isotopic 

composition of BTX (CSIA) 

enriched δ13C and δ2H patterns observed for BTX 

 Metabolites of microbial origin metabolites specific to toluene and o-xylene 

biodegradation by sulfate reducing bacteria detected 

 mRNA of biodegradation genes genes encoding the enzymes responsible for the 

production of metabolites present 
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Figure 1. Plan view of (a) the middle gate located in the sandpit area at CFB Borden between 

Row 2 and Row 4 showing the location of the monitoring infrastructure, PHC injection wells, and 

the spatial extent of the sulfate infiltration pond; and (b) cross-sectional view looking up-gradient 

at one of the monitoring rows showing the location of the monitoring points. 
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Figure 2. Image of the sulfate infiltration pond with a constant water level during an application 
episode. Multilevel source monitoring wells S1 to S5 are indicated. Since this image was taken 
looking from the top of Figure 1(a) towards the infiltration pond, groundwater flow is from right to 
left as indicated by the arrow.  
 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e

GW Flow

6 m 18 m12 m0 m

4 m

3 m

2 m

1 m

Ponded Sulfate Solution

Sulfate PulseTime = T1

Time = T2 > T1 Time = T3 > T2

Residual
NAPL zone

Dissolved PHC
Plume

Ground Surface

Concentration
Change 2- - -

6 6 4 2 2 3
8C H 30SO 24H O 15H S 15HS 48HCO 3H     

13C
2H

34S
18O

13CIsotopic Shift

(a)

(b)

Row 3 Row 4
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (a) Conceptual schematic of the sulfate delivery method used in this experimental investigation to enhance 
sulfate reduction within and downgradient of the PHC residual source. The sulfate solution is applied in pulse mode to a 
bermed-off pond and allowed to infiltrate under gravity.  As the sulfate-rich water migrates through the source zone, PHC 
mass will dissolve.  This groundwater will eventually migrate under ambient conditions once the short-term hydraulic 
effects of the ponded infiltration system have subsided. (b) We hypothesis that the increased sulfate concentration will 
enhance sulfate reduction and lead to a decrease (↓) in the concentration of some PHCs (e.g., benzene) and sulfate, and 
an increase (↑) in the concentration of sulfide, and dissolved inorganic carbon.  The remaining benzene will be enriched 

(↑) in 
13

C and 
2
H, and sulfate in 

34
S and 

18
O, while the dissolved inorganic carbon produced will be depleted (↓) in 

13
C.  
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(a) Sulfate*, Day 23 at Row 3

(b) Sulfate*, Day 37 at Row 3

(c) Sulfate, Day 58 at Row 3

(d) Sulfate, Day 86 at Row 3

(e) Sulfate*, Day 103 at Row 3

(f) Sulfate , Day 294 at Row 3

(g) Sulfate , Day 294 at Row 4

Post Episode-1 (Day 0) Post Episode-2 (Day 59) Post Episode-3 (Day 277)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Spatial distribution of sulfate concentration (mg/L) at Row 3 and Row 4 looking up-gradient following: Episode-1 
at (a) Day 23 (b) Day 37 and (c) Day 58; Episode-2 at (d) Day 86 and (e) Day 103; and Epiosde-3 at (f,g) Day 294.  The 
superscript * indicates that the sulfate distribution was estimated from the EC distribution using the relationship shown on 
Figure S2.  
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Figure 5. Longitudinal cross-section of the inferred maximum sulfate distribution extent based on the assembled data set 
from the three sulfate application episodes.  Also shown (solid brown circles) are the four monitoring locations selected to 
illustrate how the suite of diagnostic tools can be applied to demonstrate enhanced sulfate reduction.  The residual NAPL 
zone shown is a conceptual representation for illustration purposes only. 
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Figure 6.  Temporal profile of benzene (B), toluene (T), o-xylene (X) and naphthalene (Nap) concentrations at monitoring  
location (a) S5-D2 (1.0 m bgs), (b) S5-D3 (1.5 m bgs), (c) R3-ML4-D1 (1.5 m bgs), and (d) R3-ML4-D3 (1.9 m bgs).  The 
three sulfate application episodes are indicated with vertical brown lines at Day 0, Day 59 and Day 277.  
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Figure 7. Temporal evolution of geochemical indicators at (a–c) S5-D2 (solid lines) and S5-D3 (dashed lines), and (d-f) 
R3-ML4-D1 (solid lines) and R3-ML4-D3 (dashed lines): (a,d) oxidation-reduction potential (Eh) and methane, (b,e) sulfate 

(mg/L), sulfide (µg/L) and δ
34

S, (c,f) dissolved inorganic carbon (DIC) content in mg-C/L and δ
13

C. The sulfate application 
episodes are indicated with vertical brown lines at Day 0 and Day 59.  The δ34S value of the applied Na2SO4 solution was 
+3.2 ‰. A linear relationship was assumed for methane concentration between Day 44 and Day 233.  The standard 

uncertainty is ± 0.5‰ for δ
13

C and ± 0.5‰ for δ
34

S.
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Figure 8. Temporal evolution of δ
13

C (solid line with filled symbols) and δ
2
H (dashed line 

with open symbols) of benzene (B, red), toluene (T, green), and o-xylene (X, blue) at 
monitoring location (a, b) S5-D2 (1.0 m bgs), (c, d) S5-D3 (1.5 m bgs), (e ,f) R3-ML4-D1 
(1.5 m bgs), and (g, h) R3-ML4-D3 (1.9 m bgs).  The sulfate application episodes are 
indicated with vertical brown lines at Day 0 and Day 59.  Where data were missing at 
Day 44 a linear relationship was assumed.  The δ13C and δ2H values of the PHC source 
were -27.0 and -98 ‰ for benzene, -25.7 and -75 ‰ for toluene, and -26.0 and -97 ‰ 
for o-xylene, respectively. 
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Figure 9. Temporal patterns in the appearance of biomarkers (mRNA and metabolites) 
at (a) R3-ML4-D1 and (b) R3-ML4-D3. Shown are metabolites benzylsuccinate and 2-
MeBS (2-methyl benzylsuccinate) unique to anaerobic biodegradation of toluene and 
xylene, respectively; and abcA (anaerobic benzene carboxylase) mRNA active in 
anaerobic benzene metabolism, bssA-SRB (benzylsuccinate synthase) mRNA  active in 
anaerobic toluene metabolism under sulfate-reducing conditions, and dsrB 
(dissimilatory sulfate reductase) mRNA linked to the reduction of sulfate in anaerobic 
conditions. The sulfate application episodes are indicated with vertical brown lines at 
Day 0 and Day 59. Where data were missing at Day 103 a linear relationship was 
assumed. 
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