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AN ANALYTICAL 3D SHAPE-BASED ALGORITHM BASED ON
ORBITS INTERPOLATION FOR MULTI-REVOLUTIONS

LOW-THRUST TRAJECTORY OPTIMIZATION WITH ECLIPSES
AND PERTURBATIONS

J. Prinetto∗, M. Lavagna†

A novel 3-dimensional shape based algorithm is proposed in order to extend the domain of
analytical solutions to planeto-centric mission scenarios, in which hundreds or thousands
of revolutions are required. Due to the strong physical meaning of the shape the method
outputs a trajectory close to the real optimal solution. Practical mission constraints are easily
formalized, such as maximum thrust threshold and eclipses; moreover, relevant perturbations
effects can be considered; free and fixed time of flight are manageable as well. The approach
is almost completely analytic, beneficial to significantly lower the computational load, well
suited for complex mission scenarios near optimal solutions fast detection.

INTRODUCTION

In the lasts decades Solar Electric Propulsion (SEP) became of primary interest both for long and complex
interplanetary missions (such as ESA BepiColombo or NASA Dawn ) and for Earth-centered satellite station
keeping. The continuous progress on SEP will probably extend the domain of these kind of thrusters to
the main propulsion system of planeto-centric missions, such as tug vehicles and launcher’s upper stages.
On the other hand the low thrust trajectory design and optimization is still a challenge. The optimization
of a trajectory using SEP from a mathematical point of view is a continuous optimal control problem of
an especially complicated kind:1 the system of equation governing the dynamics, that is reported in Eq. (1),
consists of seven coupled non-linear differential equations (six for the state plus the mass). Perturbations, that
are time and state dependent, complicate the problem, as well as the high number of discontinuities that are
typically present in a mission (vehicle separation, gravity assists, eclipses). Analytical solutions are available
only for unrealistic simple cases.2–4 Moreover, the structure of the solution in most of the cases is unknown
a-priori.1, 5 

ṙ = vr
θ̇ = ω
ż = vz

v̇r = − µ√
(r2+z2)3

r + rω2 + T cos(β) sin(α)
m + arpert

ω̇ = 1
r

(
T cos(β) cos(α)

m − 2ṙω + atpert

)
v̇z = − µ√

(r2+z2)3
z + T sin(β)

m + azpert

ṁ = − T
Isg0

(1)

Direct or Indirect optimization methods need typically a good guess in order to converge to an optimal
solution, and cannot manage a-priori unknown structure for the solution. Moreover, they require a high
computational effort that makes these methods unsuitable for large search spaces.1, 6, 7 In order to overcome
this shortcut shape-based algorithm have been introduced. Using Shape-based algorithms the continuous
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optimal control problem is reverted: a shape, with proper degrees of freedom, is assumed for the trajectory
and the control law is recovered. Typically some assumption, such as the tangential direction of the thrust, are
assumed in order to get faster analytical solutions.8, 9 These methods, working on a subspace of the problem,
are able to give only a suboptimal solution and are extremely fast if compared with the others.5, 8, 10 They
are well suited for fast search of sub-optimal solutions in wide search domains using Heuristics algorithms,
with the possibility to use multiple/multidisciplinary objectives.5 These solutions can be used or as initial
guests for direct or indirect optimizations or in the earlier phases of the design of a space mission.5, 10 The
first shapes developed, was able only to solve simple planar problems without the possibility to impose exact
boundary conditions on the positions and velocities and with no TOF constrain.10 These algorithms were
only used to have a quickly estimation of the low thrust trajectory cost and to generate guests trajectories.
An important improvement in flexibility of the trajectory and in precision of the solution was proposed by
De Pascale and Vasile;11 the possibility to impose exactly BC gives also the chance to include Gravity assist
maneuvers in the trajectory.12 Conway and Wall developed a new simple but effective shape for both 2D
problems and approximated 3D problems with small displacement from plane.8, 9 Other improved shape-
based algorithms were found by Novak and Vasile, in which a new coupling between analytic solution and
LQR controller is presented.13 Furier series have also been used in order to generate more effective shapes
able to yield solutions nearer to the optimal one.14 All the above-mentioned shapes, and some other variations
proposed by other authors, give very god results in interplanetary trajectory design: the flexibility of the
methods and the reduced computational costs allow to design and optimize complex mission scenarios, with
mixed integer and continuous variables and with multidisciplinary objective.5 Unfortunately all the above-
mentioned algorithms fail or give unrealistic solutions whenever applied in Earth-Centered mission scenarios.
Indeed in this peculiar environment the proximity of the attractor makes the dynamics much more constrained:
hundreds or thousands of revolutions are typically needed to move the satellite between two different orbits,
and on one revolution the osculating elements remains almost unchanged. Purely geometrical shapes are
not able to follow this behavior, especially when eccentric orbits are considered.8–10 Moreover, eclipses
introduces an high number of discontinuities that are not manageable with these algorithms. The purpose
of this work is to develop a novel shape-based algorithm able to deal with Earth-centered problems. The
working principle of the algorithm is to transform the complex multi-revolution problem in an high number
of simpler single revolution trajectories that are solved efficiently with a novel 3D shape-based algorithm.
In order to do that a proper number of intermediate orbits is introduced and accurately placed in order not
to exceed a threshold on the required thrust. In the first section the developed single revolution algorithm is
analyzed, in section 2 the planeto-centric and interplanetary extensions are presented, while section three is
devoted to the analysis of some test cases.

SINGLE REVOLUTION ALGORITHM

In this chapter the developed single-revolution shape-based algorithm will be analyzed in-depth and derived
in both fixed and free TOF formulations starting from the equation of motion of a thrusting spacecraft via
a nonlinear interpolation between departure and target orbits. The working principle of the algorithm is to
compute the attractor distance and the declination above the reference plane of the trajectory (respectively
s and δ) using a non-linear interpolation between the corresponding functions on the departure and target
orbits. The kinematic and the dynamics are then recovered using a semi-analytic procedure. Following
the requirements analysis the equation of motion will be parametrized, the non-linear interpolation will be
introduced and the architecture of the algorithm will be explained. The most important blocks and equations
will be also discussed within this section. Some kinematics relations, even if important in the numerical
implementation, are not fundamentals for the comprehension of the work. For shake of simplicity these
equations are reported only in appendix.

Requirements

The requirements was selected in order to drive the design of an algorithm able to deal with the highly
constrained dynamics that is peculiar of one revolution around the Earth using low thrust propulsion. They
are also thought to include as much trajectories as possible, making the tool useful in a wide range of working
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conditions. The fundamentals requirements are reported below:

1. The algorithm shall link two different states (Modified Equinoctial Elements15 or Keplerian Parame-
ters) with the possibility also to impose the time of flight.

2. The algorithm shall work with any couple of orbits that are physically linkable with zero radial thrust8

(every set of orbits for which Eq. (11) is positive along the whole path) without show singularities,
including polar and retrograde orbits.

3. The thrust acceleration shall be exactly recovered via an analytical procedure.

4. The thrust and mass profiles shall be recovered via numerical integration of Tsiolkovsky equation.16

5. The required thrust shall tend to zero as the distance between initial and final orbits decreases, inde-
pendently from eccentricity and departure or arrival anomaly:

lim
∆KP→0

max

(
|T |
m

)
= 0 ∀ e, i, θ1, θ2 (2)

The last requirement (Eq. (2)) is necessary in order to have feasible solutions in Earth-centered mission
scenarios: if it is not fulfilled, it is not possible to arbitrary reduce the maximum thrust required simply adding
more intermediates orbits.

Parametrization of low thrust equations

The aims of this section is to formalize the parametrization of the 3D equation motion of a thrusting
spacecraft in cylindrical coordinates. Differently from the work done by Wall it makes no assumption on
small displacement out the plane.8 The equations of motion presented in the first chapter can be rewritten as
shown in Eq.3.17

Figure 1. Spacecraft position


r̈ − rθ̇2 = − µ

s3 r + TIN

m sinα

rθ̈ + 2ṙθ̇ = TIN

m cosα

z̈ = − µ
s3 z + TOUT

m

(3)

The idea is to parametrize every quantities in-
volved in Eq. (3) as function of the non-dimensional
anomaly x introduced in Eq. (4) and then, under
some typical assumptions,9 recover the thrust, mass
and time profiles. Physically ’x(t)’ is the angle
between the initial position vector and the pro-
jection of the spacecraft on the reference plane
normalized with the total transfer angle ψ, as can
be seen in Figure 1.

x(t) =
θ(t)

ψ
with x ∈ R ∧ 0 ≤ x ≤ 1 (4)

It is supposed to have also an analytical parametrization of the in-plane radius ’r’ and the out-of-plane
displacement ’z’, as shown in Eq. (5). In general the parametrization of these quantities is not unique: the
one selected in this work will be shown later in this section.{

r = r(x)
z = z(x)

(5)
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The first and second time variation of the in-plane angular displacement can be easily computed as shown
in Eq. (6) {

θ̇ = dθ
dt = ψẋ

θ̈ = d2θ
dt2 = ψẍ

(6)

Since both the in-plane radius and the out of plane displacement are considered as function of the in-plane
non-dimensional anomaly in order to take their first and second time derivative is necessary to apply the rules
for composite function derivation, as shown in Eq. (7)


ṙ = dr

dt = dr
dx

dx
dt = r′ẋ

r̈ = d2r
dt2 = d

dt (r′ẋ) = r′′ẋ2 + r′ẍ

ż = dz
dt = dz

dx
dx
dt = z′ẋ

z̈ = d2z
dt2 = d

dt (z′ẋ) = z′′ẋ2 + z′ẍ

(7)

These quantities can be substituted into Eq. (3) giving Eq. (8).
r′′ẋ2 + r′ẍ− rψ2ẋ2 = − µ

s3 r + TIN

m sinα

2ψr′ẋ2 + rψẍ = TIN

m cosα

z′′ẋ2 + z′ẍ = − µ
s3 z + TOUT

m

(8)

From the first two equations of system shown in Eq. (8), that describe the in-plane motion, is possible to
extract the second time derivate of the non-dimensional anomaly, as shown in Eq. (9).{

ẍ = 1
r′

[
− µ
s3 r + TIN

m sinα− r′′ẋ2 + rψ2ẋ2
]

ẍ = 1
rψ

[
−2ψr′ẋ2 + TIN

m cosα
] (9)

In order to analytically compute the time derivative of ’x’ is necessary to remove the dependency from
the thrust per unit mass in Eq. (9): this is possible if and only if the in-plane thrust is supposed to be only
tangential to the trajectory,9 indeed in this case the thrust angle is exactly equal to the flight path angle that
can be easily computed as shown in Eq. (10).

tanα = tan γ =
vr
vθ

=
ṙ

rθ̇
=

r′

rψ
(10)

Putting together Eq. (10) and Eq. (9) and removing the dependence from the thrust a is possible to compute
the square of the time variation of x as shown in Eq. (11).

ẋ2 =
µr

s3
(
rψ2 − r′′ + 2 r

′2

r

) =
Nu

De
(11)

Taking the time derivate of Eq. (11) is possible to derive also the second time variation of the non-
dimensional anomaly, as shown in Eq. (12).


ẍ = 1

2

(
Nu′−ẋ2De′

De

)
Nu′ = µr′

De′ = 3 s
′

s De+ s3
(
r′ψ2 − r′′′ + 2rr′r′′−r′3

r2

) (12)

Since now every time depended quantities are known, it is possible to recover from Eq. (8) the thrust per
unit mass as shown in Eq. (13).
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{
TIN

m = 1
cos γ

(
2ψr′ẋ2 + rψẍ

)
TOUT

m = z′′ẋ2 + z′ẍ+ µ
s3 z

(13)

In order to recover the mass profile it is necessary to numerically integrate the Tsiolkovsky equation18

shown in Eq. (14).


∣∣ T
m

∣∣ =
2

√(
TIN

m

)2
+
(
TOUT

m

)2
dm
dt = −|

T
m |m
ISg0

(14)

A numerical integration is also needed to compute the time vector from the variation of the non-dimensional
anomaly,9 as shown in Eq. (15).

t =

∫ t

0

dτ =

∫ t

0

1

ẋ
dx (15)

It is important to underline that, differently from the parametrization proposed by Wall,8 the one here
presented is more general, being suitable for any shape, and removes the assumptions of low displacements
from reference plane. The drawback is an increased complexity of the model, as will be shown later in this
chapter.

Non-Linear Interpolation

The parametrization of the equation of motion presented before needs a parametric representation of the
trajectory in cylindrical coordinates (r(x) and z(x)).

These quantities are obtained via a non-

Figure 2. Non-linear interpolation

linear interpolation between the departure
and arrival orbits. This interpolation is
performed in spherical coordinates (s(x),
δ(x), ψx, see Figure 2 ) using an inter-
polating function χ(x), as shown in Eq. (16).

{
s(x) =

(
s2(x) − s1(x)

)
χ(x) + s1(x)

δ(x) =
(
δ2(x) − δ1(x)

)
χ(x) + δ1(x)

(16)

Once the attractor distance and the dec-
lination are known it is possible to derive
the shape in cylindrical coordinates using
Eq. (17). {

r = s cos δ
z = s sin δ

(17)

In order to solve the parametrized equation of motion, it is also necessary to compute the first, second and
third derivatives of r(x) and the first two derivatives of z(x) with respect to x as shown in Eq. (18) and
Eq. (19) respectively.


r′ = −sδ′ sin δ + s′ cos δ

r′′ = − (2s′δ′ + sδ′′) sin δ +
(
s′′ − sδ′2

)
cos δ

r′′′ = −
[
3 (s′′δ′ + s′δ′′) + s

(
δ′′′ − δ′3

)]
sin δ + [s′′′ − 3δ′ (s′δ′ + sδ′′)] cos δ

(18)

5



{
z′ = sδ′ cos δ + s′ sin δ

z′′ = (2s′δ′ + sδ′′) cos δ +
(
s′′ − sδ′2

)
sin δ

(19)

The derivatives of the spherical coordinates introduced in the last equations can be evaluated using Eq. (20)
and Eq. (21).

 s′ = ∆s′χ+ χ′∆s+ s′1
s′′ = ∆s′′χ+ χ′′∆s+ 2∆s′χ′ + s′′1
s′′′ = ∆s′′′χ+ χ′′′∆s+ 3∆s′′χ′ + 3∆s′χ′′ + s′′′1

(20)

 δ′ = ∆δ′χ+ χ′∆δ + δ′1
δ′′ = ∆δ′′χ+ χ′′∆δ + 2∆δ′χ′ + δ′′1
δ′′′ = ∆δ′′′χ+ χ′′′∆δ + 3∆δ′′χ′ + 3∆δ′χ′′ + δ′′′1

(21)

From the previous equations, it is evident the necessity to compute some geometrical quantities of the initial
and final orbits: the full set of equations is reported in appendix.

Architecture

The architecture of the algorithm, that is presented in Figure 3, is composed by five main blocks plus two
optional, that are activated only if required by the mission.

Figure 3. Architecture

A short description of each block it is here reported:

• Transfer definition: This block takes as inputs the departure and arrival states. Its aims are to compute
the reference frame and the transfer angle. The selected reference frame contains as first axis the initial
position and, as third one, the cross product of initial and final radii; the second close the high-handed
orthonormal RF. The transfer angle is always considered between π and 3π, in this way singularities
due to small transfer angles are avoided. These outputs are the bases of transfers and are therefore
passed to the ’ Departure/Target’ blocks and to the ’Trajectory shaping’ block.

• Departure/Target orbit analysis: These blocks take as input the data coming from the Transfer defi-
nition one. They compute some important geometrical quantities that will be used for the interpolation
of the shape. The outputs include all the geometric quantities of interest of the departure and arrival
orbits and they are passed directly to the ’Transfer shaping’ block.
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• TOF solver: The aim of this block is to impose a prescribed time of flight to the shape: this block is
activated only when TOF constrained problems have to be faced. In order to do that, the shape itself
shall contain a further degrees of freedom not fixed with the boundary conditions. This further degrees
of freedom is introduced in the interpolating function χ(x, a). In order to force the time of flight to be
equal to the desired one, it is necessary to numerically solve Eq. (22) in the unknown a

TOF −
∫ t

0

1

ẋ(a)
dx = 0 (22)

this can be easily performed using a Newton algorithm initialized with a = 0. The integral presents in
Eq. (22) shall be solved numerically at each step of the Newton solver.19 For this purpose a Cavalieri-
Simpson integration scheme is adopted in order to guarantee an acceptable compromise between nu-
merical error reduction and fastness of computation.19 The function ẋ(a) can be computed at each step
using Eq. (11). The output of this block is the interpolating function, that is passed to the trajectory
shaping block.

• Trajectory shaping: This block takes as input the geometries of departure and target orbits computed
in the previous blocks and an interpolating function, eventually corrected by the TOF solver block. It
computes the exact geometry of the transfer using the non-linear interpolation between departure and
target orbits explained before. The output includes the whole geometry and is directly passed to the
’Control law’ block and to the ’Natural perturbation’ one.

• Natural perturbations: This block takes as inputs the trajectory and computes the acceleration due to
the natural perturbations (J2 effect). The output, consisting of the acceleration, is sent to the ’Control
Law’ Block. This block is not fundamental, and can be manually switched on if needed.

• Control Law: This block takes as input the geometry of the transfer and the natural perturbation
acceleration. The control law, as well as the time array, are computed via a mixed numerical-analytical
procedure. In order to compute the time vector, Eq. (15) is integrated using an high order multi-
step predictor-corrector scheme (Adams-Bashford-3 Adams-Multon-419), while for the mass profile
the same integration scheme is used to integrate Tsiolkovsky equation16 (Eq. (14)). These integrations
can be performed both forward and backward: in this way it is possible to solve both problems with
imposed dry or wet mass. The thrust is computed as the element-wise product of the mass and thrust
acceleration vectors (eventually corrected with natural perturbations). Since this block presents two
ODE to be solved, it is one of the most time consuming. Anyway, it is important to underline that
typically an ODE solver spends most of the time to evaluate the function to be integrated but, as can
be seen in Eq. (15) and Eq. (14), these information have been yet computed during previous blocks
and are therefore available. Moreover, the selection of an accurate integration scheme is necessary to
reduce the number of computation nodes, keeping the numerical errors low.

Interpolating functions

A key element of the developed algorithm is the interpolating function χ. As explained before it contains
the boundary conditions, therefore it has to respect some requirements, that are briefly described in this
section. The boundary conditions to be imposed are simply the initial and final state. As first requirement,
the interpolating function χ(x) shall be continuous with its derivatives till the third order in the domain [0; 1].
The boundary conditions are expressed in cylindrical coordinates as follows:

• Position: Looking at Eq. (17) and Eq. (16) , it is easy to derive that initial and final conditions on
positions (in plane radius r(x) and out of plane displacement z(x)) are automatically satisfied if the
interpolating function satisfies Eq. (23) {

χ(0) = 0
χ(1) = 1

(23)
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• Velocity: From the definition of the radial velocity (ṙ) and the out of plane velocity (ż) in Eq. (7) it is
clear that r′, z′, ẋ must match the corresponding quantities of the initial state for x = 0 and final state
for x = 1. If the previous conditions are verified, the boundary conditions on transversal velocity are
automatically satisfied, being this velocity defined as vr = rψẋ. The requirements on r′ and z′ at the
initial and final point can be directly derived from Eq. (18) and Eq. (19) and are summarized in Eq. (24){

χ′(0) = 0
χ′(1) = 0

(24)

For the initial and final conditions on ẋ, it is necessary to look at Eq. (11) in which appears also the
second derivatives of r, therefore it is necessary to impose boundary conditions also on r′′. From
Eq. (18) is possible to derive the conditions on χ shown in Eq. (25){

χ′′(0) = 0
χ′′(1) = 0

(25)

In the examples presented in this work the seventh order polynomial function shown in Eq. (26) was
selected to solve the free TOF problems, while the eight order polynomial shown in Eq. (27) was selected to
solve constrained TOF problems.

χ(x) = −20x7 + 70x6 − 84x5 + 35x4 (26)

χ(x, a) = asx
8 − (20 + 4as)x

7 + (70 + 6as)x
6 − (84 + 4as)x

5 + (35 + as)x
4 (27)

Figure 4. Interp. function comparison

It is easy to prove that these functions satisfy the above-mentioned boundary conditions. For shake of
completeness they are plotted in Figure 4 for different values of the parameter as. Moreover, it is easy to
prove that these interpolation functions lead to solutions with null initial and final thrust: typical undesired
peaks at the beginning and the end of the transfer arc (see the thrust profile obtained in8 and9) are avoided.
Moreover for a = 0 the two functions are identical, and for this reason the TOF solver block above mentioned
is always initialized with this value.

On MATLAB R2017 using a laptop equipped with a sixth generation Intel i7 processor at 2.6 GHz this
algorithm can evaluate more than 20 thousands revolution per second without imposing TOF and more than
8 thousands with TOF constrained.

MULTI-REVOLUTION APPROACHES

In this section two possible solutions to extend the above-mentioned algorithm to the multi-revolutions
trajectories will be presented. The first is the classical way to solve interplanetary trajectories, and it is valid
only with a low number of revolutions (no more than 2 or 3), the second, more complicated, is able to deal
with thousands of revolutions, including also discontinuities such as eclipses, and therefore it is suitable for
planeto-centric mission scenarios.
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Interplanetary

Due to the low number of complete revolutions that are typically involved in interplanetary trajectories,
one simple but effective possibility is to consider an ’augmented’ transfer angle as show in Eq. (28).8, 9

ψ = ψ + 2πNrev (28)

The solution is not well suited for N larger that 2 or 3, otherwise the shape of the interpolating function
generates solutions with a bad distribution of the thrust peaks. This solution is extremely fast since it requires
the evaluation of only one trajectory.

Interplanetary trajectories design and optimization introduces some other issues and constrains/objectives
that are necessary to identify and formalize. Regardless from the technology adopted, the thrust is linearly
related with the power available: typically a specific power between 15 W

mN and 40 W
mN is needed. By

definition in interplanetary trajectories the variation of the distance from sun is not negligible and, in most
of the cases, it can affect the available power of around one order of magnitude if solar arrays are used as
primary power sources due to the dependence of the solar flux to the inverse of the square of the distance.20

Solar panels are affected by aging effects that reduces the amount of available power during time. This
aging effect can be estimated between 2% and 4%21 depending on the technology adopter for them. Inter-
planetary missions can lasts decades5,22 therefore the amount of available power is also function of the total
time of flight. These effects can be merged together in a unique constrain that, for shake of fastness in the
convergence of the optimizer and flexibility in the mission design, is threated as an objective. The physical
quantity that synthesize all the above-mentioned issues is obviously the solar panel surface needed to accom-
plish the mission. It can be performed evaluating Eq. (29)20 in each computational nodes and considering the
maximum value.

ASA(x) =
kT + Pss

ηtot cosφ (1− β)
t φEarth

s2

(29)

In Eq. (29) k is the power per unit thrust, Pss is the power consumption of the rest of the spacecraft, η is the
efficiency of the power production/conversion, cos(φ) is the cosine of the sun angle, β is the aging factor of
the solar panels and φEarth is the solar flux at 1 [AU ]. The sun-angle can be supposed a-priori or computed
point by point from the control law, if the geometry of the spacecraft is known. Since the optimal solution is
the same for every positive multiple of the objective function, Eq. (29) can be simplified in order to generate
an objective function that is less dependent from the specific parameter of the spacecraft giving the objective
function in Eq. (30).

obj = MAX

[
T (x)s(x)2

(1− β)
t(x)

]
(30)

This objective function, that due to the presence of the aging effect tries to contain also the Time of Flight,
can be used5 inside a multi-objective multidisciplinary genetic algorithm together with the fuel mass. It is
possible also to impose a constrain on the maximum thrust or introduce it as a third objective function: in
this last case the Pareto front allows to select directly the solution that better fits the requirements and the
constrains of the mission. In the following paragraph two different approaches are reported.

Planeto-centric

As introduced at the beginning of this work, the basic principle to solve this kind of mission scenarios is to
introduce some intermediate keplerian orbits. Within this framework it is possible, as will be analyzed later
in this section, to switch off thrusters during the eclipses. Before introducing the architecture scheme, it is
important to formalize the problem: the initial and final states are imposed as Modified Equinoctial Elements
(MEE), as shown in Eq. (31).
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{
MEEi = [pi, fi, gi, hi, ki, Li]
MEEf = [pf , ff , gf , hf , kf , Lf ]

(31)

Since the algorithm can work both forward and backward in time, two different but similar formulations
are available: for shake of brevity only the forward algorithm is deeply analyzed. The steps involved are the
following:

1. initialization of the problem: at the first step of the algorithm the spacecraft is at the initial state,
while the desired is the final one, therefore Eq. (32) holds.

MEE1 = MEEi
MEE2 = MEEf
mk(0) = Minitial

tk(0) = 0

(32)

with k = 1 since the first trajectory has to be designed.

2. Positioning the k-th intermediate orbit: the spacecraft is in the position described by MEE1 with
mass mk(0) and the time after departure in tk(0). The objective is to place the kth intermediate orbit
in such a way that the maximum thrust required is equal to the maximum available one. Accordingly
to Eq. (33) the position of the intermediate orbit depends on the value of the parameter ηk: the higher
is ηk the higher will be the gap between the current orbit and the intermediate one and so the higher
will be the thrust required. 

pk = (p2 − p1) ηk + p1

fk = (f2 − f1) ηk + f1

gk = (g2 − g1) ηk + g1

hk = (h2 − h1) ηk + h1

kk = (k2 − k1) ηk + k1

(33)

The exact position on the intermediate orbit, described by the sixth parameter Lk, is depending on the
other five Modified Equinoctial Elements computed in Eq. (33) since, as said before, it must coincide
with the entrance on the eclipse, no matter if it is real or fictitious. The model adopted for the eclipse
is the standard cylindrical one. It is important to underline that, being the shadowed region function of
the time due to the Earth motion around the sun, it has to be computed at each kth step. The desired
value of ηk is found solving numerically Eq. (34) in which the term max (T (ηk)) is the maximum
thrust required during the kth trajectory that can be computed using the TOF free algorithm presented
in the previous section.

max (T (ηk))− Tavailable = 0 (34)

The numerical solution of Eq. (34) in general is not straightforward since there are points in which its
continuity is not guaranteed, as well as the existence of the solution itself. The adopted solution is an
hybrid Newton-Bisection algorithm developed ad-hoc. As first step, the algorithm tries to solve the
equation with Newton method, then if it fails, the algorithm tries again with the Bisection method. If
also in this case the algorithm fails in reaching a predefined tolerance in a certain number of iterations,
the equation is transformed into an inequality, as shown in Eq. (35).

max (T (ηk))− Tavailable < 0 (35)

The last inequality can always be solved since the developed shape-based algorithm fulfill the require-
ment in Eq. (36)
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lim
∆MEE→0

max

(
|T |
m

)
= lim
ηk→0

max

(
|T |
m

)
= 0 (36)

If the value of ηk found with previous equations is equal or greater than one it means that the thrust
available on-board is sufficient to reach the final position MEE2, as can be seen from Eq. (33): in this
case ηk is automatically switched to one and the kth trajectory is computed again; the algorithm stops.
Otherwise if ηk is between 0 and 1 it is necessary to prepare the states for the next step using Eq. (37):
the new starting position is the exit from the eclipse of the kth intermediate orbit, the initial mass of the
spacecraft on the trajectory k + 1 is exactly equal to the final mass of the trajectory k since during the
eclipse no fuel is consumed. The time after departure at the beginning of the k + 1 trajectory is equal
to the arrival time of the trajectory k plus the time spent in shadow (∆teclipse)

MEE1 = MEEk
MEE2 = MEEf
mk+1(0) = mk(1)
tk+1(0) = tk(1) + ∆teclipse

(37)

The value of k is then increased and the algorithm goes back to the beginning of point 2. The cycle
stops when ηk is equal or greater to one.

3. Trajectory analysis: For fastness purposes, the previous block gives as outputs only the initial/final
mass and the time of flight. If more information are needed once the intermediate orbits are placed,
this block is activated and compute all the kinematics and dynamics quantities of the trajectory. The
computational time required by the algorithm is in around 50% higher if this block takes place, there-
fore in the optimization of complex mission scenarios it is better to run it only on a limited number of
solutions.

The backward version of the algorithm involves the same steps, with some important differences:

• Now the initial state is the arrival one, and the desired is the departure one, therefore Eq. (32) is
substituted with Eq. (38). 

MEE1 = MEEf
MEE2 = MEEi
mk(1) = Mfinal

tk(1) = 0

(38)

• The mass imposed in Eq. (38) is the final one instead of the initial one and the variable tk(x) now
means ’time before the arrive’ instead of ’time after departure’ ant it is a negative quantity.

• The kth intermediate orbit is integrated itself backward in time, therefore the update of the states
becomes the one shown in Eq. (39) instead of the one in Eq. (37).

MEE1 = MEEi
MEE2 = MEEk
mk+1(1) = mk(0)
tk+1(1) = tk(0)−∆teclipse

(39)

It means that the final mass to be imposed to the kth + 1 single revolution trajectory is the initial one
computed for the kth revolution, as happens for the time.

The effect of having both the forward and backward direction for the trajectory design allows to keep into
account more scenarios. The high level block scheme of the algorithm is presented in Figure 6 for shake of
completeness. Figure 5 shows how the algorithm works for a geocentric (unfeasible) trajectory.
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Figure 5. Example of multi-revolution application

Figure 6. Multi-revolution algorithm architecture

TEST CASES

In this section some test cases are presented. All the computations have been performed with MATLAB
R2017b on an laptop equipped with a sixth generation Intel i7 processor working at 2.6 GHz without adopting
parallel computation.

Electric Orbital Rising to GEO

In this scenario the possibility to launch a satellite in GEO using electric propulsion is explored. The satel-
lite, with a dry mass of 800 [kg], specific impulse of 3800 [s] and max. thrust of 0.5 [N], is firstly placed in a
parking orbit by the European VEGA launcher,23 and then with its own electric propulsion unit reaches GEO.
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The inclination of the parking orbit is fixed at 5.4 [deg], the minimum reachable from Kourou without a plane
change, and the standard parking orbit plane for VEGA.23 The apocenter and pericenter radii are considered
as degree of freedom for the optimization process. Their values can range from 1.03 [DU ] to 6.6108 [DU ],
including therefore any possible intermediate orbit between LEO and GEO. Due to the inclination of the
Earth rotation axis, eclipses encountered by a satellite above LEO orbits are strongly affected by the period
of the year: a satellite in GEO goes in Earth shadow only nearby the equinoxes.17 Since in this example the
spacecraft is supposed to be able to thrust only in sunlight, the solution will depend also on the season of the
GEO arrival, therefore the two opposite cases (arrival at the equinoxes or at the solstices) have been analyzed.
In order to highlight the importance of having included the eclipses in the model also the solution without
them will be reported.

The most significant scenario is

Figure 7. Orbit rising to GEO

reported in Figure 7. The GEO
injection epoch is nearby the Sol-
stice, and an impulsive disposal ma-
neuver is included in the optimiza-
tion process in order to reenter the
upper stage ’AVUM’ in the atmo-
sphere. Red lines represent the launch-
able mass using VEGA launcher:
since a complete set of informa-
tion for the launcher is not avail-
able, data are extrapolated apply-
ing the Tsiolkovsky equation to the
last stage of the launcher (AVUM)
from the reference orbit available
on the user-manual.23 The time op-
timal problem was solved for all
the above-mentioned cases using
a Nelder-Mead simplex algorithm2419

modified with a penalty method in
order to force the solution to show
an initial mass lower than the launch-
able one on the same orbit. The decision to adopt a derivative-free algorithm arises from the fact that, being
the number of revolution discrete, the time of flight is not continue.

Table 1. Time optimal constrained solutions

Model Eclipses Eclipses and disposal No eclipses
Arrival epoch Equinox Solstice Solstice —-

Fuel Mass [kg] 62.30 61.72 71.5 61.59
TOF [days] 83.89 79.84 98.47 66.5
Revolutions [-] 280 279 425 214
rp parking [DU] 1.8994 1.9019 1.6517 1.8816
ra parking [DU] 1.9030 1.9029 1.6524 1.9207
CPU time [s] 23 31 41 12

Table 1 shows different solutions for similar scenarios, changing or the arrival epoch, removing the eclipses
or avoiding the disposal maneuver. The fuel consumption is similar for all the trajectories while the time of
flight increases between 20% and 25% if eclipses are considered. The effect of the injection season is much
smaller: this is due to the fact that, even if nearby the equinoxes eclipses are present at any distance from
ground, the fraction of time spent in shadow decreases with the radius. The CPU time highlights the capability
of the algorithm to find sub-optimal solutions for multi-revolutions discontinuous trajectories very quickly:
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in these simulations 50 computational nodes per revolution have been used for the optimization processes
and 100 for the plot of the final trajectory. All optimization processes have been initialized with the reference
VEGA parking orbit (200 [km] x 1500 [km] height LEO orbits), the differences in the CPU times between
the solutions reflect the different number of revolutions required and the increase in complexity if eclipses are
encountered. In literature there is no database with time optimal solutions of GEO rising problems including
eclipses in the model, therefore the only crosscheck can be done with the solutions without them.

The optimal solution found within

Figure 8. Time optimal trajectory

this work is slightly more expen-
sive if compared with the ones avail-
able in literature, but the CPU times
are order of magnitude lower25.26

For shake of completeness in Fig-
ure 8 is reported the 3D trajectory,
with a quasi circular switching or-
bits with a radius of 2 [DU], for
the case with eclipse and disposal
maneuver that represents the most
complex solution among the ones
listed in Table 1. It is easy to see
that the distribution of the density
of the intermediate orbits is much
higher near the Earth. Regarding
the eclipses, it is possible to see

the distortion of the shadow region caused by the motion of the Earth around the Sun and, as lower effect, the
plane changes.

Earth-Mars Rendezvous

The Earth-Mars rendezvous problem is a classical scenario for the validation of low thrust algorithms.11

The spacecraft has a dry mass

Figure 9. Launch opportunities

of 1000 [kg], a specific impulse of
3000 [s] and a maximum thrust of
0.22 [N] The thrust required and
the fuel mass fraction over the whole
search domain are reported in Fig-
ure 9; white regions are the ones in
which or the thrust exceeds 1 [N ]
or the fuel mass fraction exceeds
0.5 [−]. The thrust optimal and
fuel mass fraction optimal solutions
are also reported: it is evident that
for this algorithm the search do-
main proposed by Vasile is too small
and therefore both the optimal so-
lutions are located at the border of
the domain. Anyway, inside the
domain it is possible to recognize
two convenient regions in which
the thrust and the fuel mass frac-
tion are low even for Time of Flight

reduction. The fuel optimal solution is similar to the one found by Vasile and De Pascale, with the same fuel
mass fraction of 0.177 [-] and a slightly higher time of flight of 1000 days ; the departure date is the 8th
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of May 2030. The CPU time, using the standard MATLAB genetic algorithm with a population of 100
individuals and stopping criteria based on the average change of the cost function, is lower than 10 seconds.

Earth-Nereus Rendezvous

This scenario was selected to underline the ability of the shape based algorithm to find near optimal solution
when high elliptical orbits are considered. Nereus is a Near Earth Object with an high elliptical orbit on a
plane slightly different with respect to the Earth one. Its pericenter is located nearby the Earth’s one, while
the apocenter is at 1.5 [AU], therefore a quasi ballistic solution with a non zero escape velocity is expected if
or the spacecraft’s fuel mass fraction or the thrust required are selected as objectives. In order to try to find
the best trajectory, an extremely wide search space is considered: the degrees of freedom and their ranges are
reported in Table 2.

Table 2. Search domain

Range Optimum

Departure Date from 2030 to 2050 9th February 2042
Time of Flight [days] from 500 to 1500 690.5
Number of revolutions [-] from 0 to 2 1
vinf departure [km/s] from 0 to 6 5.93
vinf in plane angle [deg] from -90 to +90 -8.07
vinf out of plane angle [deg] from -90 to +90 44.79

Regarding the optimization process, the MATLAB genetic algorithm is adopted with a population of 1000
individuals and the optimal trajectory is obtained after 5 minutes with 100 computational nodes.

As can be seen from the output

Figure 10. Earth Nereus trajectory

trajectory reported in Figure 10, the
launcher inserts the spacecraft, that
has a mass of 1000 kg and a spe-
cific impulse of 3000 s, directly in
a quasi ballistic orbit, as expected
from theory: the only use of the
thrusters is the relative approach
phase to Nereus; slightly more than
10 mN of thrust are sufficient, and
the fuel mass fraction required is
only 0.0052. This example shows
that the developed algorithm is ca-
pable to manage also high ellipti-
cal orbits in interplanetary trajec-
tories: this is possible only because the peculiarity of the shape is to be a non-linear interpolation between
arrival and departure orbits.

CONCLUSION

The goal to develop a shape-based algorithm able to deal with planeto-centric scenarios is achieved. More
in detail the algorithm shows a good convergence and it is extremely fast and sufficiently flexible for the
purposes of this work. The strategy developed to introduce eclipses is fast and efficient, and can work with
any type of orbits without singularities. The algorithm converges for any value of the maximum thrust if
purely keplerian motion is considered. The speed of the algorithm is guaranteed by the fact that, even if
an elevate number of expression have to be evaluated, they are all composed by the same block of repeated
terms, that can be computed only one time. Moreover, most of the trigonometrical expression are not directly
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evaluated by MATLAB functions, but they are evaluated using the trigonometrical relations. Unfortunately,
the strategy adopted to take into account perturbation is not so effective: they are simply zeroed by the
thrust. Unfortunately, in Geocentric environment, especially in LEO, perturbations can be of the same order
of magnitude of the control thrust, and therefore the algorithm doesn’t converge for these levels of thrust.
As future work, it is planned to introduce directly perturbations in the intermediates orbits, indeed by doing
that the interpolated shapes contain the perturbation effect, and will be able to follow closer the perturbed
dynamics, giving the possibilities to use also a control thrust lower with respect to the perturbation forces.

NOTATION

a Semi-Major axis
apert Perturbation acceleration
as Semi-Major axis

Asa Solar panels surface
e Eccentricity
f Second MEE

Gloss Gravity loss
g Third MEE
h Fourth MEE
Is Specific Impulse
i Inclination
k Fifth MEE
L Sixth MEE
m Mass

Nrev Number of revolution
PSS Spacecraft Power consumption
p First MEE
r In-plane attractor distance
s attractor distance
T Thrust

TIN In-plane Thrust
TOUT Out of plane Thrust

t Time
vr Radial velocity
vz Normal velocity
vθ transversal velocity
x Non-dimensional anomaly
z Out of plane displacement
α In-plane thrust angle
β Out of plane thrust angle
γ Flight path angle
δ Declination

ηtot Power production efficiency
θ Anomaly
φ Solar aspect angle
χ Interpolating function
ψ Total transfer angle
ω angular velocity

APPENDIX A: LIST OF DERIVATIVES

In this appendix the equation that are fundamental to the geometrical interpolation of the trajectory are
reported. The subscript ’1’ indicates the initial orbit, while the subscript ’2’ indicates the arrival one.
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Departure orbit

The inclination of the initial orbit with respect to the reference plane can be computed as in Eq. (40).
cosα1 = ĥ1 · ĥREF
sinα1 = ξ1

√
1− cosα1

2{
ξ1 = 1 if vi · ĥREF > 0

ξ1 = −1 if vi · ĥREF < 0

(40)

The declination (δ(x)1) of the initial orbit over the reference plane can be computed using Eq. (41), while
its derivatives can be computed using Eq. (42), Eq. (43) and Eq. (44).

sin δ1 = sinα1
sin(ψx)

sinβ1
(41)

δ′1 =
ψ sinα1 cos (ψx)− β′1 cosβ1 sin δ1

cos δ1 sinβ1
(42)

δ′′1 =
−ψ2 sinα1 sin (ψx) + sinβ1 sin δ1

(
δ′21 + β′21

)
cos δ1 sinβ1

+

− 2δ′1β
′
1 cos δ1 cosβ1 + β′′1 sin δ1 cosβ1

cos δ1 sinβ1
(43)

δ′′′1 =
−ψ3 sinα1 cos (ψx) + sinβ1 sin δ1 (3δ′1δ

′′
1 + 3β′1β

′′
1 )

cos δ1 sinβ1
+

+
− cosβ1 cos δ1 (3δ′1δ

′′
1 + 3β′1β

′′
1 ) + cosβ1 sin δ1

(
3δ′21 β

′
1 + β′31 − β′′′1

)
cos δ1 sinβ1

+

+
sinβ1 cos δ1

(
3β′21 δ

′
1 + δ′31

)
cos δ1 sinβ1

(44)

In the previous equations another spherical angle (β(x)1 in Figure 2) is introduced together with its deriva-
tives. They can be computed using Eq. (45).


β1 = arccos (sinα1 cos(ψx))

β′1 = ψ sinα1
sin (ψx)
sin β1

β′′1 =
ψ2 sinα1 cos (ψx)−cos β1β

′2
1

sin β1

β′′′1 =
−ψ3 sinα1 sin (ψx)−3β′

1β
′′
1 cos β1+β′3

1 sin β1

sin β1

(45)

The angle ∆L1(x) is fundamental to compute the Longitude (6thMEE) on the initial orbit at each x and
so the attractor distance of the departure orbit as function of x; it can be computed with Eq. 46 and Eq. 47.

{
sin (∆L1) = 1

sinα1
sin δ1

cos (∆L1) = cos (ψx) cos δ1
(46)


∆L′1 =

δ′1
sinα1 cos (ψx)

∆L′′1 =
δ′′1 +ψ sinα1 sin (ψx)∆L′

1

sinα1 cos (ψx)

∆L′′′1 =
δ′′′1 +2ψ sinα1 sin (ψx)∆L′′

1 +ψ2 sinα1 cos (ψx)∆L′
1

sinα1 cos (ψx)

(47)
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Target orbit

The inclination of the arrival orbit with respect to the reference plane can be computed as in Eq. (48).
cosα2 = ĥ2 · ĥREF
sinα2 = ξ2

√
1− cosα2

2

ξ2 = 1 if vf · ĥREF < 0

ξ2 = −1 if vf · ĥREF > 0

(48)

The declination (δ(x)2) of the arrival orbit over the reference plane can be computed using Eq. (49), while
its derivatives can be computed using Eq. (50), Eq. (51) and Eq. (52)

sin δ2 = sinα2
sin(ψ(1− x))

sinβ2
(49)

δ′2 =
−ψ sinα2 cos (ψ(1− x))− β′2 cosβ2 sin δ2

cos δ2 sinβ2
(50)

δ′′2 =
−ψ2 sinα2 sin (ψ(1− x)) + sinβ2 sin δ2

(
δ′22 + β′22

)
cos δ2 sinβ2

+

− 2δ′2β
′
2 cos δ2 cosβ2 + β′′2 sin δ2 cosβ2

cos δ2 sinβ2
(51)

δ′′′2 =
ψ3 sinα2 cos (ψ(1− x) + sinβ2 sin δ2 (3δ′2δ

′′
2 + 3β′2β

′′
2 )

cos δ2 sinβ2
+

+
− cosβ2 cos δ2 (3δ′2δ

′′
2 + 3β′2β

′′
2 ) + cosβ2 sin δ2

(
3δ′22 β

′
2 + β′32 − β′′′2

)
cos δ2 sinβ2

+

+
sinβ2 cos δ2

(
3β′22 δ

′
2 + δ′32

)
cos δ2 sinβ2

(52)

In the previous equations another spherical angle (β(x)2 in Figure 2) is introduced together with its deriva-
tives. They can be computed using Eq. (53).


β2 = arccos (sinα2 cos(ψ(1− x)))

β′2 = −ψ sinα2
sin (ψ(1−x))

sin β2

β′′2 =
−ψ2 sinα2 cos (ψ(1−x))−cos β2β

′2
2

sin β2

β′′′2 =
ψ3 sinα2 sin (ψ(1−x))−3β′

2β
′′
2 cos β2+β′3

2 sin β2

sin β2

(53)

The angle ∆L2(x) is fundamental to compute the Longitude (6thMEE) on the arrival orbit at each x and
so the attractor distance of the arrival orbit as function of x; it can be computed with Eq. 54 and Eq. 55.

{
sin (∆L2) = 1

sinα2
sin δ2

cos (∆L2) = cos (ψ(1− x)) cos δ2
(54)


∆L′2 =

δ′2
sinα2 cos (ψ(1−x))

∆L′′2 =
δ′′2−ψ sinα2 sin (ψ(1−x))∆L′

2

sinα2 cos (ψ(1−x))

∆L′′′2 =
δ′′′2 +2ψ sinα2 sin (ψ(1−x))∆L′′

2 +ψ2 sinα2 cos (ψ(1−x))∆L′
2

sinα2 cos (ψ(1−x))

(55)
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Attractor distances

In order to compute the attractor distance the first step is to compute the Longitude at each position x on
the initial and final orbits using Eq. (57).

{
l1(x) = L1 + ∆L1(x)
l′1(x) = ∆L′1(x)

(56)

{
l2(x) = L2 −∆L2(x)
l′2(x) = −∆L′2(x)

(57)

The attractor distance on the initial and final orbit can be computed using Eq. (58).



si(x) = pi
qi(x)

si(x)′ = −piq
′
i

q2i

si(x)′′ = 2
piq

′2
i

q3i
− piq

′′
i

q2i

si(x)′′′ = −6
piq

′3
i

q4i
+ 6

piq
′
iq

′′
i

q3i
− piq

′′′
i

q2i

(58)

In which another term appears with its derivatives; it can be computed using Eq. (59)


qi(x) = 1 + fi cos li(x) + gi sin li(x)
qi(x)′ = (−fi sin li + gi cos li) ∆L′i
qi(x)′′ = (1− qi)∆L′2i + q′i

∆L′′
i

∆L′2
i

qi(x)′′′ = −q′i∆L′2i + 3(1− qi)∆L′i∆L′′i + q′i
∆L′′′

i

∆L′
i

(59)
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