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Since the beginning of space activities, the number of spacecraft completing their missions keep rising, thus 

increasing the amount of inoperative spacecraft and space debris which could collide with operative spacecraft or 

re-enter to Earth in an uncontrolled manner. No guidelines currently exist for spacecraft orbiting about 

Lagrangian points; as orbits about them are increasingly being selected for future missions, it is important to safely 

dispose spacecraft at the end of their life. This goal is sometimes achieved performing a non-optimal single disposal 

manoeuvre directed along the Sun-Earth line direction to reduce the operational cost during the disposal phase. 

This paper will instead optimise such a manoeuvre dividing it in, at least, two consecutive burns, even in the case 

in which the total available Δv is low. In this work we will analyse the optimal disposal manoeuvre design using 

the elliptical restricted three-body problem and the energetic approach firstly introduced for the circular 

restricted three-body problem by Olikara et al. The disposal design is performed for the Gaia and Lisa Pathfinder 

missions for different initial conditions over one year. Finally, an interpretation of the results of a long-term 

simulation of the disposal orbit in the n-body problem is given, by analysing the probability of return to Earth 

against the date when the disposal manoeuvre is given. 
 
 

1 Introduction 

Libration Point Orbits (LPOs) are increasingly 

selected for science mission due to the favourable 

conditions they ensure for thermal stability, continuous 

communication with Earth and low-cost station keeping. 

Example of spacecraft orbiting libration points, are 

SOHO, ISEE-3, Lisa pathfinder, Gaia, Athena and 

JWST. Currently no guidelines exist to dispose them [1] 

and, since the dynamical environment at the Lagrangian 

points is highly perturbed, it is important to avoid an 

uncontrolled return to Earth of the spacecraft after the 

end-of-life of the spacecraft, unless planned by the 

mission operations. Various possible disposal strategies 

for spacecraft at LPOs were studied in the past. A 

spacecraft in LPO can be disposed through Moon impact 

(Colombo et al. [2]), Earth re-entry (Alessi et al. [3], 

Colombo et al. [4]) or displaced in a heliocentric 

trajectory (Olikara et al. [1], Colombo et al. [5], Soldini 

et al. [6]). This paper considers this last approach since 

it was selected by the European Space Agency (ESA) to 

dispose the Hershel and Lisa pathfinder spacecraft. 

Olikara et al. [1] used a Circular Restricted Three-Body 

Problem (CR3BP), while Colombo et al. [5] an n-body 

model. From this last study, it emerged that there is a 

relation between the optimal disposal manoeuvre and 

the true anomaly of the Earth + Moon Barycentre (EMB) 

at the time of the spacecraft departure from its nominal 

orbit. In this paper, to take into account this dependence, 

and to be able to isolate and understand the role of this 

parameter in the disposal design, the considered model 

is the Elliptical Restricted Three-Body Problem 

(ER3BP). Moreover, this model is simple and elegant, it 

allows an analytic interpretation and it is a good 

approximation to the real problem as stated by Luo et al. 

[7] and Hyeraci et al. [8]. 
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2 The elliptical restricted three-body problem 

2.1 The reference frames 

To describe the motion of spacecraft under the effect 

of two main attractors and taking into account the 

eccentricity in the orbit of one of the primaries, three 

reference frames are introduced: the inertial, the 

perifocal and the rotating frame (Soldini, [9]). The 

inertial reference frame is fixed in time and it is the mean 

ecliptic and equinox centred at the Sun - Earth 

barycentre. The perifocal reference frame has the 

Earth’s orbit around the Sun as a reference plane, while 

its x-axis is directed toward the pericentre of its orbit. 

Finally, the rotating frame follows the Earth’s rotation 

around the Sun. The velocity of rotation is not constant, 

since the orbit of the Earth is on an ellipse. Considering 

negligible the inclination of the Earth orbit over the 

ecliptic, as suggested in [9], the position vector of a 

generic body, rr, in the pulsating refence frame is 

defined as in Eq. (1) where ri is its position in the inertial 

refence frame and Cri is the matrix defined by Eq. (2). In 

this equation the terms ϑ, ω and Ω are, respectively, the 

Earth’s true anomaly, the argument of periapsis and the 

right ascension of the ascending node of its orbit.  

rr = Criri (1) 

Cri = [
  cos(ϑ + ω + Ω) sin(ϑ + ω + Ω) 0

– sin(ϑ + ω + Ω) cos(ϑ + ω + Ω) 0

                         0                        0 1

] (2) 

 

2.2 The dynamics equations 

To write the equation of motion in an easier form, in 

the literature, for example in [10] and [11], the position 

vector is used in its non-dimensional form, obtained 

dividing ri by r defined in Eq. (3) 

, where e is the Earth’s orbit eccentricity. 

r = 
a(1 – e2)

1 + ecosϑ
 

(3) 

 

In the rotating refence frame, centred at the Solar 

system barycentre, the x-axis is always directed as the 

Sun – Earth line, while the Earth and the Sun are moving 

along this orbit, while they orbit around the barycentre 

with a periodicity of one year. This pulsation can be 

eliminated from the equations of motion by performing 

the derivative of the dimensionless state vector with 

respect to the true anomaly ϑ, instead of the time. In this 

way the position of Sun and Earth are fixed in time on 

this frame. The resulting equations of motion, Eq.(4), 

have equal shape as the ones computed for the CR3BP, 

[10] [9]. This is possible since the only time-dependent 

variable in the dimensionless position vector is the true 

anomaly, if we consider negligible the change over time 

in ω and Ω.  

{
 
 

 
 x''  –  2y' = 

∂ψ

∂x

y''  + 2x' = 
∂ψ

∂x

z'' = 
∂ψ

∂x
         

 (4) 

The apexes indicate a derivative with respect to the 

true anomaly and the pseudo-potential ψ is defined as: 

ψ =
1

1+ecosϑ
[
1

2
(x2 + y2 – ez2cosϑ) + V] (5) 

V = 
µ

2

r2-sc

 + 
µ

1

r1-sc

 (6) 

In Eq.(6), the subscript 1 indicates the Sun and the 

subscript 2 indicates the Earth. Indeed, x1 and x2 are the 

non-dimensional Sun and Earth position, given 

respectively by x1 = – µ and x2 = 1 – µ. The term µ is 

equal to µ
2
 which is defined as (µmoon + µearth)/( µmoon + 

µearth + µsun). The term µ
1 

is equal to 1 – µ and r1-sc = 

√( x - x1 )
2 + y2 + z2 and r2-sc = √( x - x2 )

2 + y2 + z2. 

Thus, the dimensionless equations of motion in 

ER3BP are expressed as: 

{
 
 
 

 
 
   x''– 2y'=

1

1+ecosϑ
[x – µ

1

x – x1

r1-sc
3

 – µ
2

x – x2

r2-sc
3

]   

 

y''+ 2x'= 
1

1+ecosϑ
[y – µ

1

y

r1-sc
3

 –  µ
2

y

r2-sc
3
]    

z''= 
1

1+ecosϑ
[– ezcosϑ – µ

1

z

r1-sc
3

 – µ
2

z

r2-sc
3
]

 (7) 

Another advantage to use the pulsating 

dimensionless reference frame is the one that the 
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libration points, points of equilibrium for the equation of 

motion for which x’’= y’’= z’’= x’= y’= 0  still exist and 

have the same position as the one in CR3BP (Colasurdo 

et al. [12]). 

2.3 The energy and the zero velocity curves 

In the CR3BP, it exists a constant of motion, J, called 

the Jacobi constant [10], which is related to the energy, 

E, of the spacecraft by the relation E = – J/2. In the 

ER3BP, the energy of the spacecraft is obtained 

multiplying Eq. (7)  by, respectively, x’, y’ and z’. Then 

the sum of the resulting equations and the integration of 

the result over the true anomaly, from ϑ to ϑ0, yield the 

energy, which is composed by two terms: the relative 

energy Er and an integral term I, [13]. 

E = Er + I (8) 

Er = 
1

2
v2 (9) 

v = √x'2 + y'2+z'2 (10) 

I =∫
esinϑ

(1 + ecosϑ)2
W

ϑ

ϑ0

 (11) 

W = x2+ y2 + z2+ V (12) 

 

In Eq. (12) V is the potential defined in Eq. (6), ϑ0 is 

the true anomaly of Earth at the departure point for the 

numerical integration. 

To solve the integral in Eq. (11) analytically it is 

necessary to know how W depends on ϑ explicitly, as 

explained by Luk’yanov [13]. This dependence is 

implicit into the spacecraft’s position vector, which is 

obtained numerically integrating the ER3BP equations 

of motion, Eq. (7).  Luk’yanov in 2005, demonstrated 

that the total energy of the spacecraft in the ER3BP is 

constant if the ϑ0 is fixed, [13]. Moreover, this 

assumption can be demonstrated solving the integral 

numerically. Consequently, the Jacobi constant J exists 

even in the ER3BP. 

For the purpose of explaining the selected disposal 

strategy, we introduce the Zero Velocity Curves 

(ZVCs), which give a qualitative representation of 

region of space in which the spacecraft is allowed to 

move. In Fig. 1 the black curve represents a generic ZVC 

which divides the space in three regions: the exterior 

realm, the interior realm and the forbidden region. This 

last one, in grey, is the region where the velocity of the 

spacecraft would be a complex number, which is 

physically impossible, meaning that in this region the 

spacecraft cannot move due to energetic reasons. The 

importance of ZVCs in the disposal will be better 

explained in Section 3.2, [10]. 

 
Fig. 1: Representation of the zero velocity curves. 

 

To obtain the equation that describes the ZVCs it is 

sufficient to set to zero the velocity term in the Jacobi 

constant espression. However, in ER3BP it is not 

possible to have an analitical espression for them, due to 

the fact that the integral term cannot be analitically 

solved. In literature, different types of approximations 

were proposed [14], [15], [13]. In this paper, the one 

suggested by Luk’yanov in [13] with Soldini et al. 

modifications [6] it is used. Luk’yanov suggested to 

approximate the integral term in the energy as follows: 

I = Wmin (
1

1+ecosϑ
 – 

1

1+ecosϑ0

) (13) 

where  
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Wmin = 
1

2
[3 + μ(μ – 1)] (14) 

The term Wmin can be computed as shown in [13] 

and in [9], because Luk’yanov demonstrated that a 

minimum for the quantity W exists, and it is equal to Eq. 

(14). Thus, the zero velocity curves equation, obtained 

by substituting the integral term in J with Eq. (13) and 

setting the velocity v to zero, is represented by Eq. 

Errore. L'origine riferimento non è stata trovata., 

J = 2ψ – 2Wmin (
1

1+ecosϑ
 – 

1

1+ecosϑ0

) (15) 

Soldini et al. [6], demonstrated that this 

approximation is good only at Close Approaches (CA), 

which are defined as the region of space in the pulsating 

dimensionless reference frame for which x > 0  and 

|y|<10-2, accordingly with [5].  Since we are interested 

only in the regions of space close to the libration points, 

thus in the CA region, this approximation is the ideal 

one.  

The ZVCs are defined setting J equal to a constant, 

which is the Jacobi constant of the spacecraft, Jsc, as in 

[6].  Thus, in Eq.Errore. L'origine riferimento non è 

stata trovata., the left-hand side should be constant and 

equal to Jsc, while the right-hand side pulsates due to the 

true anomaly ϑ.  

3 The disposal manoeuvres strategies 

As analysed by Colombo et al. in [2] and Armellin et 

al. in [16], the three possible options for the end-of-life 

for missions targeting the libration points are: disposal 

through semi-controlled Earth re-entry (Colombo et al. 

[4], Alessi et al. [3], Armellin et al. [16]), disposal 

through impact onto the Moon surface (Colombo et al. 

[17] ) or the disposal toward a heliocentric orbit with the 

exploitation of solar radiation pressure or with an 

impulsive manoeuvre (Olikara et al. [1], Colombo et al. 

[5], Soldini et al. [6]). In this paper the latter one is 

presented, of which two variants are proposed: the single 

and the two-impulse disposal strategies. 

3.1 Single impulse non-optimal disposal manoeuvre 

The simple single one, given along the Sun – Earth 

direction, towards the Sun to enter the interior realm for 

missions to L1 and in the opposite direction in the L2 

case, to enter the exterior realm of  the  ZVCs. This 

manoeuvre was the one used by ESA for Lisa pathfinder 

and Hershel and it is shown in Fig. 2. This solution best 

fits the cases in which there are some operational 

constraints that require to have a rapid disposal, like 

avoiding possible engine failure. Moreover, it might be 

the only choice if the available Δv is so small to not 

allow to give two burns. If we name respectively α and 

β the Δv in-plane and out-of-plane angles in the synodic 

reference frame, as it is shown in Fig 3 the single 

manoeuvre strategy corresponds to an angle α = π for 

missions around L1 and α = 0 for missions around L2. 

The out-of-plane angle β is equal to zero in both cases. 

 

 
Fig. 2: Single burn disposal manoeuvre 

representation. 

 

 
Fig. 3: Δv components in the synodic reference 

frame. The angle α is the in-plane angle, while the β 

represent the out-of-plane angle. 

 

3.2 The energetic approach 

The basic idea for the disposal is to use the energetic 

approach first indroduced by Olikara et al. [1] for 
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CR3BP, which is simply explained for Gaia in Fig. 4. 

This approach, also used by Colombo et al. [5], concerns 

in changing the spacecraft energy by applying two Δvs. 

Changing the spacecraft energy, means to modify the 

geometry of the ZVCs, indeed the manoeuvres shall be 

done in such a way to close them at the libration point 

of interest, to trap the spacecraft around L1 in the interior 

realm or the spacecraft around L2 in the exterior real. A 

first manoeuvre is given to let the spacecraft leave its 

orbit to enter the unstable manifold [18], then a second 

one should be given within six months, for operational 

reasons, to close the curves. 

 
Fig. 4: Simple representation of the energetic approach for the disposal of Gaia mission. With IR is indicated the 

Interior Realm, while with ER the Exterior Realm. On the left, the ZVCs are opened at L2 and Gaia Lissajous is 

represented with the red curve. On the right the ZVCs are closed at L2 and Gaia is trapped in the exterior realm 

 

In this paper, the main difference with respect to the 

previous work is the use of the ER3BP model in 

designing the optimal impulsive disposal manoeuvre, as 

done by Soldini et al. exploiting the effect of solar 

radiation pressure [6] using the propellant left on board 

and a new way to determine if the ZVCs are properly 

closed or not. Moreover, the optimal manoeuvre will be 

designed for both type of missions about L1 and L2 (Gaia 

and Lisa Pathfinder (LPF) has been selected as test 

cases).  

In the ER3BP, as said in Section 3.2, the zero 

velocity curves pulsate with the true anomaly of the 

Earth ϑ, therefore it is important to clearly understand 

when the ZVCs are truly closed. 

Before proceeding it is important to remark that, in 

the ER3BP: 

 the energy of the spacecraft is constant for a fixed 

level of ϑ0, where ϑ0 is the true anomaly of Earth at 

the begging of the disposal, 

 the energy evaluated at the libration points is 

constant and depends only on ϑ0 (see [19]), 

 the actual and the approximated ZVCs in ER3BP 

oscillate with a period of one solar year. 

It is also important to clarify the terminology that will 

be used in the following lines: 

 with Jacobi constant, we refer to the constant -2E, 

where E is the true energy of the spacecraft, 

defined in Eq. (8); 

 with Jacobi pseudo-constant, we refer to the 

approximated Jacobi constant defined as: 

J = – v2 + 2ψ – 2Wmin (
1

1+ecosϑ
 – 

1

1+ecosϑ0

) (16) 

In the case in which the velocity v Eq. (16) is set to 

zero, the Jacobi pseudo-constant represents the 

ZVCs at CAs, indeed in this case will be named 

simply ZVC, Eq. (15); 

 the approximated energy is defined as the Jacobi 

pseudo-constant multiplied by –2.   
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The Jacobi pseudo-constant evaluated at the libration 

points JLP, is obtained from Eq.(16), reminding that the 

velocity term is equal to zero because the libration 

points are points of equilibrium: 

JLP =   2ψ
LP

 – 2 Wmin (
1

1+ecosϑ
 – 

1

1+ecosϑ0

) (17) 

If we evaluate Eq. (17) at the libration points, the 

Jacobi pseudo-constant result to be equal to the ZVCs 

approximation for the ER3BP (called ZVCLi and 

defined in Eq. (15), where the subscrit i is the number of 

the considered libration point) since the only difference 

is the velocity term, which in this case is zero due to the 

libration point definition. Thus, Eq. (17), gives the 

information about the ZVCs evolution for a body with 

an energy equal to the one of the libration point of 

interest. The ZVCs oscillates with ϑ, with a periodicity 

of one year, Fig. 5. More precisely, the curve gives the 

information about how the energy of a body should 

evolve to have the ZVCs just closed at the considered 

equilibrium point. Indeed, in the CR3BP model, it was 

sufficient that the Jacobi constant of the spacecraft was 

above the one of the libration point, to be sure that the 

ZVC will be closed for any following time instants. 

Since in the ER3BP the energies are constant, but the 

ZVCs have a pulsating behaviour, it is not any more 

sufficient to have the Jacobi constant of the spacecraft 

above the one evaluated at the libration point.  

Thus, knowing that Eq. (15)(17) is a good 

approximation of the ZVCs at the CA, this value of 

Jacobi pseudo-constant identify the boundary between 

having the ZVCs opened or closed. Thus, if the 

spacecraft Jacobi constant, JSC, is above the curve 

defined by Eq. (17), for a selected libration point and for 

a determined ϑ it means that, for that ϑ, the ZVCs are 

closed in correspondence of the equilibrium point. 

To facilitate the understanding and to prove the 

validity of the method just explained, a graphical 

demonstration is shown in Fig. 5 and in Fig. 6. Fig. 5 

shows the ZVCs evaluated at L1 (ZVCL1, in red) and at 

L2 (ZVCL2, in yellow), through Eq. (17). The blue line 

represents a generic Jacobi constant of a spacecraft. In 

the zoomed picture on the right, five points can be 

identified (x-symbols), which corresponds to different 

values of ϑ. The comparison between the spacecraft 

Jacobi constant (blue line) with the ZVCs evaluated at 

L1 (red curve) and L2 (yellow curve) for each different ϑ 

gives the information about the state of the ZVCs at 

those equilibrium points. 

For the ϑ corresponding to the point A in Fig. 5, JSC, 

is less than both ZVCL1 and ZVCL2. Consequently, it is 

expected that both the bottlenecks at L1 and at L2 are 

opened. This is confirmed by Fig. 6a. The point B is 

located at a value of ϑ for which JSC intersects ZVCL2, 

while ZVCL1 does not. Thus, the bottleneck at L2 should 

be just closed while the one at L1 should be still opened 

because JSC < ZVCL1 for that value of ϑ. As before, Fig. 

6b confirms this hypothesis. In the case of the point C, 

the condition is the same than point B, with the only 

difference that the bottleneck at L1 is more closed with 

respect to the previous case (Fig. 6c). Point D has a ϑ at 

which JSC  intersects ZVCL1, while JSC > ZVCL2. This 

means that the bottleneck at L1 is closed at a single point 

(Fig. 6d), while the one at L2 is still closed. In the last 

case, point E, both bottlenecks are well closed since JSC 

> ZVCL1 and JSC > ZVCL2 (Fig. 6e).  

In conclusion, it is important to underline two facts. 

The first one is that the energy of the spacecraft is 

constant and that the ZVCs changes only because the 

true anomaly does, thus this method uses the evaluation 

of approximated ZVCs at the libration points to 

understand their behaviour with respect to the Jacobi 

constant of the spacecraft. The second fact is that the 

method is valid for each value of true anomaly, but, 

since it has been demonstrated that Eq. (17) are the exact 

representation of ZVCs is only valid at CAs, it can be 

considered valid only in this case. The CA is indeed the 

situation at which we want to make sure that the 
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spacecraft does not trespass the ZVCs and re-enter in an 

uncontrolled way to the Earth. 

 

  
Fig. 5: Approximated ZVC evaluated at L1 (in red) and at L2 for ϑ0 = 20°. The blue line indicates a Jacobi constant 

of the spacecraft. 

  

  

 
Fig. 6: Zero Velocity Curves representation for JSC = 2.9545, ϑ0 = 20° and different values of ϑ. 

 

 

c) 
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3.3 Two-impulse optimal disposal manoeuvre 

The second method suggested to perform the 

heliocentric disposal is to give two manoeuvres and to 

optimise them selecting the best combination of the 

direction, α1, β
1
, and the magnitude Δv1 for the first 

kick, and the time Δt1 to wait to give the second one, 

which shall be less than 6 months, following [1]. To 

obtain the optimal disposal, a genetic algorithm was 

used. The algorithm was made of the following steps: 

1. Get the initial conditions. In some case, it is 

required to start the disposal within a determined 

interval of time, thus, the initial ephemeris are 

taken within this range. Each state vector 

represents a different initial condition for the 

disposal, and it will be indicated with the subscript 

‘0’. Thus, the initial state vector is named s0. 

2. First manoeuvre. At the time instant t = t0 the first 

burn is given. The variables ∆v1, α1 and β
1
 shall be 

optimised, and the components of the provided ∆v 

are: 

{

∆vx1 = ∆v1cosβ
1
cosα1

∆vy1 = ∆v1cosβ
1
sinα1

∆vz1 = ∆v1sinβ
1
          

 (18) 

 

The term ∆v1 is dimensionless, and it is obtained by 

dividing the dimensional Δv by r𝜗̇, where r that is 

defined by Eq. (3) 

, while 𝜗̇ by Eq. (19). 

ϑ̇ = 
 ((μ

1
+ μ

2
)(1 + ecosϑ))

1
2

(a(1 – e2))
3
2

 (19) 

Moreover, if the efficiency is provided, this ∆v1 is 

rescaled in accordance with the efficiency, remembering 

that it depends on the orientation of the spacecraft [5]. 

The three Δv components showed in Eq. (18) are 

added to the velocity of the considered initial state 

vector s0, which then becomes: 

s0=

{
 
 

 
 

x0

y
0

z0

vx0 + ∆vx1

vy0 + ∆vy1

vz0 + ∆vz1

 (20) 

 

3. First leg. The equations of motion defined in Eq. 

(7) are integrated for a time interval which goes 

from t0, the day in which Δv1 is given, up to t0 + 

Δt1. This interval is converted in the corresponding 

ϑ span, since the equation of motion are expressed 

in a pulsating reference frame. To integrate the 

equations of motions the MATLAB ode113 solver, 

with an absolute and relative tolerances of 10-12, 

has been used. The initial conditions were the ones 

defined in Eq. (20). 

4. Second manoeuvre. The magnitude of the second 

manoeuvre shall be dimensionless. Thus, the 

dimensional  

       ∆v2 = Δvavailable–  ∆v1 (21) 

shall be divided by rϑ̇, as already explained in point 

2.  If the magnitude of the ∆v2, is higher with 

respect to the one of the velocity of the spacecraft 

at the end of the propagation done in point 3, which 

is v1end
, the ∆v2 shall be rescaled in the following 

way, in agreement with [4]: 

∆v2 = min(Δvavailable–  ∆v1, v1end
) (22) 

To reduce the energy of the spacecraft to close the 

ZVCs as much as possible, the ∆v2 shall be given 

in the opposite direction (in the rotating frame) 

with respect to the direction of the spacecraft 

velocity at time t0 + Δt1. 

Then, calling α1end
 and β

1end
, respectively, the in-

plane and the out-of-plane angle of v1end
 with 

respect to the synodic reference frame, the 

direction of ∆v2 is determined by the angles α2= 

α1end
+ π   and β

2
= – β

1end
. Thus: 
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       ∆v2=[∆vx2, ∆vy2 , ∆vz2 ] (23) 

where the elements are equal to: 

 ∆vx2 = ∆v2cosβ
2
cosα2= – ∆v2cosβ

1end
cosα1end

 

 ∆vy2 = ∆v2cosβ
2
sinα2= – ∆v2cosβ

1end
sinα1end    

 

       ∆vz2 = ∆v2sinβ
2
 = – ∆v2sinβ

1end
 

Consequently, the initial state vector for the second 

propagation turns into: 

s1=

{
  
 

  
 

x1end

y
1end

z1end

vx1end
+∆vx2

vy1end
+∆vy2

vz1end
+∆vz2

         (24) 

5. Second leg. The second propagation has been set 

to 100 years, to be sure that after 100 years from 

the disposal the spacecraft does not return in 

proximity of the Earth, as the planetary protection 

requirements imposes. 

6. Objective function. The last passage of the 

optimisation is the evaluation of the objective 

function. In this paper, two objective functions 

were considered and used: the first is the one to 

obtain the optimised disposal which does not re-

enter into the Earth’s vicinity within 100 years of 

propagation, while the aim of the second one is to 

obtain a sustainable disposal, valid for more than 

100 years of propagation, in compliance with the 

planetary protection requirements [20]. The chosen 

objective function is similar to the one used by 

Colombo et al. [5]. The used objective function 

which shall be minimised during the optimisation 

process, is defined as: 

Obj = log
JLP,max@CA

JSC,2

 + P (25) 

The term JSC,2 is the Jacobi constant of the spacecraft 

on the second leg, which is constant for any ϑ, red 

straight line in  

 

 

 

 
Fig. 7, on the bottom.  On the top, the blue curve 

represents the evolution of the Jacobi pseudo-constant 

value for which the ZVCs are closed at the considered 

libration point, while the back dots represent the CAs. 

The term JLP,max@CA is defined as: 

JLP,max@CA  = max(ZVCLP@CAs) (26) 

where the considered close approaches are only the 

one referred to the second leg. The minimisation of this 

function means the maximisation of the distance 

indicated by the red arrow in  
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Fig. 7, which means that we attempt to close, as 

much as possible, the ZVCs. 

The last term, P = 1020, is a penalty factor that is 

assigned to the solutions that arrive too close to Earth 

(distance from Earth lower than 1.2∙106 km, Colombo et 

al. [5]) or to the one which the resulting trajectory goes 

in the a wrong direction direction, such that it will 

approach the Earth. 
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Fig. 7: Graphical representation of the objective function minimisation. 

 

4 Results 

4.1 Lisa Pathfinder 

Lisa pathfinder had 6-months period Lissajous orbit 

around L1 and an available Δv of 1 m/s. The departure 

dates were considered in the period going from 2016-

10-30 to 2017-10-30, with a time span of 6 days. For 

each selected date, the optimisation was performed and 

the best combination of parameters as explained in 

Section 3 was found. The Fig. 8 shows the objective 

function, Eq. (25), value for each initial time, in red it is 

represented the single manoeuvre case while in blue the 

optimised two-burn manoeuvre. In both cases the 

objective function is positive, this means that the Jacobi 

pseudo-constant of the spacecraft value is always lower 

than the one evaluated at L1, meaning that the propellant 

available is not enough to close the ZVCs. However, the 

Jacobi constant value is lower for the two-burns 

optimised strategy, which indicated that in this case the 

bottleneck at L1 is smaller than the one in the single burn 

strategy. In conclusion, even if the Δv is low, if there is 

the possibility to perform a study to know which are the 

optimised disposal parameters for a two-burn disposal 

manoeuvre, it is better to proceed in this direction, to 

obtain the safer disposal possible. Indeed, a smaller 

gateway means lower probability for the spacecraft to 

cross the bottleneck and to come pack Earth in this way. 

In Fig. 8, it can be noticed that there are four local 

minima.  

 
Fig. 8: Objective function value with respect to the 

true anomaly of the Earth in the moment in which 

the disposal started. 

 

The studies performed showed that the two centre 

ones could be related with the maximum geometrical 

distance between Earth orbit and Lissajous, before the 

disposal. In other words, if the Δv is not enough to close 

the ZVCs, it is better to perform the disposal in a day in 

which the distance between the two orbit is maxima. 

4.2 Gaia 
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Gaia spacecraft is orbiting on a six-months period 

Lissajous orbit around L2 and the considered available 

Δv was the one given in [5], of the value of 275 m/s. The 

time span of initial condition went from 2019-01-01 to 

2020-01-01. For every initial condition, Fig. 9 shows 

that the objective function is less than zero, meaning that 

the Δv is more than enough to close the gateway at L2. 

On the other side, Fig. 10 indicates that the single 

manoeuvre strategy, even if the Δv is high, does never 

allow the closure of the ZVCs. Even in this case it 

appears that the strategy with two manoeuvre and the 

optimisation represent the best solution.  

In this case, the optimal objective function has two 

local minima in correspondence of ϑ0 = 0° and ϑ0 = 180°. 

This study leads to the conclusion that those could be 

related with the maximum difference between the Earth 

and Gaia phases at the departure. Moreover, the absolute 

minima was the same obtained using a more precise n-

body model by Colombo et al. [5], which confirms that 

the ER3BP used here is a useful and simpler model to 

study the disposal from orbit around libration points. 

The simulations also showed that the direction of the 

first burn is given in the direction which leads the 

spacecraft to enter the unstable manifold. The fact that 

that Δt1 resulted almost equal to six months, leads to the 

conclusion that the best manoeuvre is the one which aim 

to be a pseudo-Hohmann, in accordance with [5]. 

  
Fig. 9: Objective function value obtained optimising 

the two-burns disposal strategy. 

 

Fig. 10: Objective function value obtained with the 

single-burn disposal strategy. The solution indicated 

by the ‘x’ are the ones which come too close to Earth. 

5 Analysis of Lisa Pathfinder return probability 

Jehn and Renk in [21] analysed the Earth return 

probability for Lisa pathfinder using SNAPPshot [20], a 

tool for computing the planetary protection compliance. 

The simulation was done considering a Δv = 2 m/s, 

given within a time interval from 2016-10-30 to 2017-

10-30 and the results are the one obtained in Fig. 11 

where four local minimum can be easily individuate. 

The here is to understand, using the ER3BP model and 

the objective function defined in this paper in Section 3, 

the reason behind the existence of the four local minima, 

shown in different colours in Fig. 11.  

Our study leads to the conclusion that those could be 

related with the following quantities: 

 The maximum geometrical distance between the 

two orbits (yellow minimum), as shown in Fig. 12 

by the red curve. This means that, if there is only 

one disposal manoeuvre, it would be better to 

perform that when the spacecraft and the Earth are 

as far as possible one from each other. 

 The maximum absolute relative phasing between 

Lisa Pathfinder and the Earth (red, purple and blue 
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minima), Fig. 13. Even in this case, the best 

solution is represented by the maximum angular 

distance between spacecraft and Earth. 

 The angle between the Earth and the projection of 

Lisa Pathfinder pericentre orbit onto the ecliptic 

plane. 

The Fig. 14 shows the objective function value (see 

Eq. (25) ) for each initial condition in which the disposal 

is performed. Some minima and maxima are caught by 

our proposed objective function, while some other are 

not. The fact that some are caught could be seen as a 

further proof that the ER3BP and the objective function 

defined in this paper could be considered for a 

preliminary study on the disposal of spacecraft in 

libration points orbits. The minima and maxima that are 

not caught could be due to the fact that SNAPPshot uses 

a more precise model which, for example takes into 

account solar radiation pressure or the effect of all the 

bodies in the Solar system. 

 

 
Fig. 11: Earth return probability for Lisa pathfinder. 

 
 

Fig. 12: Maximum geometrical distance between 

Earth and Lisa pathfinder orbits with respect to 

different initial condition over one year. 

Fig. 13: Relative phasing Earth and Lissajous. 
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Fig. 14: LPF return probability compared with sustainable objective function obtained disposing LPF with one 

manoeuvre in Sun direction and using 2 m/s. 

 

6 Conclusion 

In this paper we used the ER3BP to design and to 

study the optimal disposal manoeuvre for spacecraft 

orbiting libration points. That was done through 

considering the pulsating behaviour of the zero velocity 

curves. Moreover, this paper tried to give an analytical 

and simple interpretation of the obtained results, added 

with an attempt to explain why there are some local 

minimum in the return probability analysis for Lisa 

pathfinder spacecraft. 

In conclusion, the ER3BP could be a good model to 

study the disposal of spacecraft around the libration 

points. Moreover, if there are no constraint it should be 

better to optimise the disposal, together with the two-

burn disposal solution, to decrease as much as possible 

the probability to return to Earth. Among the optimised 

solutions, the optimal ones are related with the true 

anomaly of Earth in correspondence of when the first 

disposal manoeuvre is given and with the initial 

geometrical distance between the Earth and the 

spacecraft orbits. 

Regarding the Lisa Pathfinder return probability 

analysis, the minima could be related with the relative 

phasing between the Earth and the spacecraft, with the 

phasing between Earth and the projection onto the 

ecliptic of the Lisa pathfinder orbit pericentre, and with 

the maximum geometrical distance between the two 

initial orbits. In the future the used model can be 

improved considering also the effects of Moon and solar 

radiation pressure. 
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