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Abstract 

Optimal orbital trajectories are obtained through the solution of highly nonlinear large-scale problems. In the case 
of low-thrust propulsion applications, the spacecraft benefits from high specific impulses and, hence, greater payload 
mass. However, these missions require a high count of orbital revolutions and, therefore, display augmented sensitivity 
to many disturbances. Solutions to such problems can be tackled via a discrete approach, using optimal feedback 
control laws. Historically, differential dynamic programming (DDP) has shown outstanding results in tackling these 
problems. A state of the art software that implements a variation of DDP has been developed by Whiffen (2006) and 
it is used by NASA’s DAWN mission. One of the latest techniques implemented to deal with these discrete constrained 
optimizations is the Hybrid Differential Dynamic Programming (HDDP) algorithm, introduced by Lantoine and 
Russell (2012). This method complements the reliability and efficiency of classic nonlinear programming techniques 
with the robustness to poor initial guesses and the reduced computational effort of DDP. The key feature of the 
algorithm is the exploitation of a second order state transition matrix procedure to propagate the needed partials, 
decoupling the dynamics from the optimization. In doing so, it renders the integration of dynamical equations suitable 
for parallelization. Together with the possibility to treat constrained problems, this represents the greatest improvement 
of classic DDP. Nevertheless, the major limitation of this approach is the high computational cost to evaluate the 
required state transition matrices. Analytical derivatives, when available, have shown a significant reduction in the 
computational cost and time for HDDP application. This work applies differential algebra (DA) to HDDP to cope with 
this limitation. DA is introduced to obtain state transition matrices as polynomial maps. These maps come directly 
from the integration of the dynamics of the system, removing the dedicated algorithmic step and reducing its 
computational cost. Moreover, by operating on polynomial maps, all the solutions of local optimization problems are 
treated through differential algebraic techniques. This approach allows users to deal with higher order expansions of 
the cost, without modifying the algorithm. From the examples provided, it emerges that increasing the order of the 
expansions does not yield a better convergence rate. Additionally, it causes numerical instability of the algorithm to 
arise, as well as a noticeable increase on computational time due to the number of polynomial coefficients that ought 
to be computed. 
 
Nomenclature 

• 𝑥𝑥𝑖𝑖,𝑗𝑗 ∈ ℝ𝑛𝑛𝑥𝑥,𝑖𝑖  vector of states of dimension ℝ𝑛𝑛𝑥𝑥,𝑖𝑖  
at phase 𝑖𝑖 and stage 𝑗𝑗; 

• 𝑢𝑢𝑖𝑖,𝑗𝑗 ∈ ℝ𝑛𝑛𝑢𝑢,𝑖𝑖  dynamic controls of dimension 
ℝ𝑛𝑛𝑢𝑢,𝑖𝑖 at phase 𝑖𝑖 and stage 𝑗𝑗; 

• 𝑤𝑤𝑖𝑖 ∈ ℝ𝑛𝑛𝜔𝜔,𝑖𝑖 static controls of dimension ℝ𝑛𝑛𝜔𝜔,𝑖𝑖  at 
phase 𝑖𝑖 and stage 𝑗𝑗; 

• Γ𝑖𝑖:ℝ𝑛𝑛𝜔𝜔,𝑖𝑖 → ℝ𝑛𝑛𝑥𝑥,𝑖𝑖  functions describing initial 
states of phase 𝑖𝑖; 

• 𝐹𝐹𝑖𝑖,𝑗𝑗:ℝ𝑛𝑛𝑥𝑥,𝑖𝑖 × ℝ𝑛𝑛𝑢𝑢,𝑖𝑖 × ℝ𝑛𝑛𝜔𝜔,𝑖𝑖 → ℝ𝑛𝑛𝑥𝑥,𝑖𝑖  transition 
functions that propagate the states from stage 𝑗𝑗 
to stage 𝑗𝑗 + 1 of phase 𝑖𝑖; 

• 𝐿𝐿𝑖𝑖,𝑗𝑗:ℝ𝑛𝑛𝑥𝑥,𝑖𝑖 × ℝ𝑛𝑛𝑢𝑢,𝑖𝑖 × ℝ𝑛𝑛𝜔𝜔,𝑖𝑖 → ℝ stage cost 
functions at phase 𝑖𝑖 and stage 𝑗𝑗; 

• 𝑔𝑔𝑖𝑖,𝑗𝑗:ℝ𝑛𝑛𝑥𝑥,𝑖𝑖 × ℝ𝑛𝑛𝑢𝑢,𝑖𝑖 × ℝ𝑛𝑛𝜔𝜔,𝑖𝑖 → ℝ𝑛𝑛𝑔𝑔,𝑖𝑖 stage 
constraints at phase 𝑖𝑖 and stage 𝑗𝑗; 

• 𝜓𝜓𝑖𝑖,𝑗𝑗:ℝ𝑛𝑛𝑥𝑥,𝑖𝑖 × ℝ𝑛𝑛𝜔𝜔,𝑖𝑖 × ℝ𝑛𝑛𝑥𝑥,𝑖𝑖+1 × ℝ𝑛𝑛𝜔𝜔,𝑖𝑖+1 → ℝ𝑛𝑛𝜓𝜓,𝑖𝑖  
boundary phase constraints between phase 
𝑖𝑖 and 𝑖𝑖 + 1; 

• 𝜙𝜙𝑖𝑖,𝑗𝑗:ℝ𝑛𝑛𝑥𝑥,𝑖𝑖 × ℝ𝑛𝑛𝜔𝜔,𝑖𝑖 × ℝ𝑛𝑛𝑥𝑥,𝑖𝑖+1 × ℝ𝑛𝑛𝜔𝜔,𝑖𝑖+1 → ℝ𝑛𝑛𝜙𝜙,𝑖𝑖 
terminal cost of phase between phase 

• 𝑖𝑖 phase 𝑖𝑖 + 1; 
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• 𝐽𝐽: = ∑ �� (𝐿𝐿𝑖𝑖,𝑗𝑗(𝑥𝑥𝑖𝑖,𝑗𝑗 ,𝑢𝑢𝑖𝑖,𝑗𝑗 ,𝜔𝜔𝑖𝑖)) +
𝑁𝑁𝑖𝑖

𝑗𝑗=1

𝑀𝑀
𝑖𝑖=1

𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖,𝑁𝑁𝑖𝑖+1,𝜔𝜔𝑖𝑖 , 𝑥𝑥𝑖𝑖+1,1,𝜔𝜔𝑖𝑖+1)� generic 

formulation of the cost function; 
• 𝜙𝜙

~
𝑖𝑖�𝑥𝑥𝑖𝑖,𝑁𝑁𝑖𝑖+1,𝜔𝜔𝑖𝑖 , 𝑥𝑥𝑖𝑖+1,1,𝜔𝜔𝑖𝑖+1, 𝜆𝜆𝑖𝑖� ≔

𝜙𝜙𝑖𝑖�𝑥𝑥𝑖𝑖,𝑁𝑁𝑖𝑖+1,𝜔𝜔𝑖𝑖 , 𝑥𝑥𝑖𝑖+1,1,𝜔𝜔𝑖𝑖+1� +
𝜆𝜆𝑖𝑖𝑇𝑇𝜓𝜓𝑖𝑖�𝑥𝑥𝑖𝑖,𝑁𝑁𝑖𝑖+1,𝜔𝜔𝑖𝑖 , 𝑥𝑥𝑖𝑖+1,1,𝜔𝜔𝑖𝑖+1� +
𝜎𝜎||𝜓𝜓𝑖𝑖(𝑥𝑥𝑖𝑖,𝑁𝑁𝑖𝑖+1,𝜔𝜔𝑖𝑖 , 𝑥𝑥𝑖𝑖+1,1,𝜔𝜔𝑖𝑖+1)||2 Augmented 
cost function as formulated in HDDP. 

• 𝑚𝑚𝑚𝑚𝑥𝑥
𝜆𝜆𝑖𝑖

𝑚𝑚𝑖𝑖𝑚𝑚
𝑢𝑢𝑖𝑖,𝑗𝑗,𝜔𝜔𝑖𝑖

� [𝑀𝑀
𝑖𝑖=1 � (𝐿𝐿𝑖𝑖,𝑗𝑗(𝑥𝑥𝑖𝑖,𝑗𝑗 ,𝑢𝑢𝑖𝑖,𝑗𝑗 ,𝜔𝜔𝑖𝑖)) +

𝑁𝑁𝑖𝑖

𝑗𝑗=1

𝜙𝜙
~
𝑖𝑖(𝑥𝑥𝑖𝑖,𝑁𝑁𝑖𝑖+1,𝜔𝜔𝑖𝑖 , 𝑥𝑥𝑖𝑖+1,1,𝜔𝜔𝑖𝑖+1, 𝜆𝜆𝑖𝑖)] Formulation of 

the cost function in HDDP 
 
While in the framework of DA operations: 

• 𝛿𝛿𝑥𝑥 represents the infinitesimal variation of a 
variable; 

• ℳ represents the polynomial map at high order 
(i.e. all the coefficients of a series expansion 
except the one of order 0); 

• [𝑥𝑥] Represent the DA object obtained via series 
expansion of the quantity 𝑥𝑥 including its 
infinitesimal and constant part. 

 
1. Introduction 

Low thrust optimal control has found growing interest 
among researchers and practitioners thanks to its 
remarkable mass savings. With respect to chemical 
propulsion, ion-thrusters allow for higher specific 
impulses, yielding greater useful mass. For example, a 
solar sail mission could reduce the propellant mass stored 
virtually to zero, as the thrust is provided by solar wind. 
The downsides in the design of these methods are 
twofold. First, they increase the size of the problem that 
needs to be solved due to the large amount of decision 
variables that must be chosen. Secondly, it causes an 
accumulation of errors due to the large actuation times 
needed to produce significant delta-V’s [1]. The aim of 
this thesis is to add to the current literature regarding 
optimal control for low-thrust trajectory design. In order 
to do so, the focus is placed on implementing DA 
techniques for the treatment of a well validated DDP-
based technique: HDDP [2]. The work starts by 
addressing the question whether higher than second order 
expansions could lead to an improvement on 
convergence speed of the algorithm. This enhancement 
in speed can be seen as an augmented convergence region 
of the algorithm. In particular, HDDP is based on a trust 
region quadratic programming (TRQP) algorithm, 
whereas this work attempts at using higher orders. The 
increase in order of the expansion allows also for the 
evaluation of nonlinear optimal feedback. To these 

purposes, this paper starts by replicating HDDP 
algorithm, which is then enhanced by the addition of DA 
techniques implemented in the software DACE 
developed in Politecnico di Milano’s Department of 
Aerospace Science and Technology. Four test cases are 
provided at the end of this work in order of growing 
complexity: I) a validation Linear-Quadratic problem; II) 
a Mono-Dimensional Landing problem; III) an 
interplanetary Earth-Mars Transfer and, to conclude, IV) 
a Satellite Constellation Refueling Problem.  

The expected improvement of the algorithm is tested 
on the Satellite Constellation Refueling case. The 
dynamic model for the system is modified by adding the 
effect of Earth’s zonal harmonic perturbation J2 to the 
system of dynamical equations. The algorithm achieves 
convergence without need for the user to compute and 
assemble complicated partials via a symbolic external 
software (e.g. MAPLE). Overall, this work provides a 
first attempt at the application of DA techniques in the 
Differential Dynamic Programming framework. By 
doing so, it creates the first building block for further 
research in this field. Moreover, it adds to the current 
Differential Dynamic Programming literature by 
exploiting high order nonlinear optimal feedback 
controls, also dealing with constraints. Furthermore, it 
tries to improve the user’s capability of exploiting HDDP 
software by removing the tedious step of obtaining 
partials from symbolic external software and interfacing 
it with Fortan/C code. 

 
1.1 Literature Review 

In the past, several approaches have been 
implemented to find optimal trajectories. Among the 
many solutions, particularly challenging is the case of 
low-thrust propulsion. Approaches to these optimization 
challenges are classically divided in two main categories: 
indirect methods and direct methods [3].  

 
1.1.1 Indirect Methods 

These methods rely on calculus of variation or 
Pontryagin’s Maximum Principle [4] to retrieve the 
necessary optimality conditions. The problem is then 
reduced to a two-point boundary value problem (TPBVP) 
and solved. Indirect approaches introduce additional 
states, the so called “co-states” (or adjoint states), that 
have little physical meaning most of the time. 
Additionally, the equations and gradients of co-states, 
needed to retrieve necessary conditions for optimality, 
are not easily formulated. Therefore, one of the main 
disadvantages of indirect methods, is the necessity of the 
user to have deep knowledge of the problem [4]. Their 
solution is obtained when, for each time instant, the 
adjoint states (Lagrange multipliers) extremize the 
Hamiltonian. Moreover, the boundary conditions 
together with the dynamics of state and adjoint states 
must be satisfied. The classical approaches to solution of 
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these problems include single-shooting and multiple-
shooting techniques. Single shooting methods solve a 
TPBVP with a first guess on the initial conditions, then 
this trial guess is updated as a function of the final error, 
details can be found in [5]. Keeping this in mind, a first 
guess on Lagrange multipliers is also necessary, 
subsequently this guess is evaluated and iterated until 
optimality is achieved. The major downside of these 
techniques is that the first guess on Lagrange multipliers 
is not always obvious and the solution of the problem is 
strongly affected by it, as shown in [3,6,7]. Multiple 
shooting techniques attempt to solve the TPBVP by 
splitting the time interval in a succession of subintervals. 
Then, single-shooting is applied between the subintervals 
and continuity is then ensured via linking constraints. 
The main advantage of multiple shooting, is the reduction 
of sensitivity to bad initial conditions and the possibility 
to parallelize the computations, being the subintervals 
independent as shown by Betts and Huffmann [8]. On the 
other hand, the number of decision variables increases 
quite rapidly with the number of subintervals, causing an 
increase of computational effort. 

 
1.1.2 Direct Methods 

In direct methods, the problem is reformulated from 
an optimal control problem to a nonlinear (often 
quadratic) programming problem. To reformulate it as 
NLP problem, the optimal control problem is discretized 
and parametrized with polynomials or other functions 
whose coefficients become the new decision variables. 
The idea behind this method, is that the research for the 
approximating function of the solution is restricted in a 
finite dimensional space of functions. Such 
approximations are usually piecewise polynomials as 
explained by Von Stryck and Bulirsch in [4]. Usually, 
direct methods rely on physical quantities rather than 
abstract Lagrange multipliers, and their solutions are only 
approximated. The reformulation is based on a selected 
decision vector and an iterative procedure which adjusts 
it during iterations until all convergence criteria are met. 
The key step of the NLP procedures is the assembly of a 
Hessian containing all the second order pure and mixed 
partial derivatives of the cost function with respect to the 
decision variables. After it is assembled, the Hessian is 
inverted, however the size of the Hessian grows rapidly 
with the number of decision variables as explained in [2]. 
In fact, decision vectors for classic NLP increase linearly 
with the number of discretization points, while the size of 
the Hessian grows with the square of the discretized 
variables (sometimes with the cube) [9]. This causes an 
increase in computational effort which is twofold. First, 
inverting the sparse Hessian matrix is notoriously 
computationally expensive. Secondly, the process of 
assembling large Hessians is expensive per se. This is 
owed to the repeated chain rule applications needed to 
compute all the necessary sensitivities with respect to 

decision variables [10]. Regardless their broad usage, 
direct methods are in general less accurate than the 
indirect ones, and they may converge to a local minimum 
as shown by Kraft [11]. The main advantage of these 
direct methods over indirect ones, is the reduced 
dependence of the solution on initial choice of adjoint 
variables. This allows for less expert users to tackle the 
problems, as reduced insight is needed. An additional 
note should be made regarding Differential dynamic 
programming. This method is classified as a direct one, 
but if implemented in a first order version, it retrieves the 
same equations of calculus of variations, minimizing the 
Hamiltonian at each iteration [12,13]. The necessary 
conditions for optimality may not be formulated by DDP 
as they were for indirect methods, however its solution is 
influenced by them.  
 
1.1.3 Constrained Optimization 

Methods requiring constraint handling, introduce 
Lagrange multipliers in their cost and new conditions 
necessary for optimality, i.e. Karush-Kuhn-Tucker 
conditions [14]. These conditions make it possible to 
treat linear constraint, therefore nonlinear constraints 
must be linearized to be addressed. The typical solution 
to these equality constrained problems, are based on 
elimination methods (also called primal methods) [15]. 
These approaches restrict the number of inputs in a subset, 
so that the optimization problem to be solved becomes 
unconstrained. The optimal solution is then found in this 
subset which is compliant with the constraints. Such 
methods are for example the null-space method and the 
range space method [16]. The approach of linearizing the 
constraints is widely used also in methods where the 
Lagrangian function has a quadratic order expansion 
such as the Sequential Quadratic Programming [17]. 
Some methods implement a quadratic approximation of 
the constraints [18], but they require also quadratic 
control feedback implementation. Another category of 
constraint handling procedures is Penalty Methods, 
which are only approximate solutions to the optimization 
problem. They include in the objective function a penalty 
term for the violation of constraints. In this way, the 
problem is treated as unconstrained and the quality of the 
constraint satisfaction is dictated by the entity of the 
penalty. However, penalty methods require the penalty 
term to be raised to infinity to give exactly zero constraint 
violation. This characteristic of penalty methods, results 
in conditioning problems of the Hessian matrix [19]. 
The necessity to accurately treat inequality constraints, 
has led to many other solution approaches. A first 
approach, is to add slack variables so that an inequality 
can be transformed into an equality, adding to the set of 
tuning parameters of the problem. The second approach 
is, instead, to use an active set of constraints to determine 
whether a constraint is active or not during optimization 
[16,20]. Finally, an Augmented Lagrangian method can 
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be used [21,22]. These strategies constitute a hybrid 
between the Lagrangian approach and the penalty 
function method. The gist of this method is that the 
Lagrangian is augmented with a penalty function which 
increases with the violation of constraints. The 
introduction of the Lagrange multipliers solves the 
conditioning problem posed by pure penalty methods 
[23]. The strategy for solving these problems is by 
primal-dual approach. This means dividing the problem 
into an inner loop and an outer loop. The inner loop, is 
where the decision variables are updated to minimize the 
cost function. Whereas, the outer loop updates the 
Lagrange multipliers, after the internal loop has 
converged, to maximize the cost function. For this reason, 
these problems are known also as minimax problems. It 
is paramount to have a correct Lagrange multipliers 
update formulation, which can be linear as well as 
nonlinear [2]. The inner loop rigorous convergence is not 
necessary for the complete algorithm to converge and 
some problems showed convergence also when the inner 
loop is only approximately solved as in [24]. The 
prevalence of one of these methods on another is yet to 
be proven, however the tendency of penalty function 
method to increase nonlinearity and slow down 
convergence rates is well known and documented [23]. 
An improved method, based on a mixed approach of 
augmented Lagrangian and range space active set method, 
was implemented by Yakowitz [25] and reprised by 
Lantoine and Russell in HDDP [2]. 
 
1.1.4 Differential Dynamic Programming 

To solve larger problems with an admissible amount 
of computational power, DDP was introduced. DDP is a 
technique available for problems that can be 
reformulated as a dynamic optimization problem. What 
DDP does is discretizing the optimization into smaller 
subproblems, dividing the decision vector in smaller sub 
vectors that only influence local and future optimization 
steps. Optimizing for each stage on the control variables 
of that stage, yields a linear scaling of the problem with 
the number of control variables [26,27]. The founding 
assumption of DDP is Bellman’s Principle of Optimality 
developed for pure Dynamic Programming [28]. This 
solution method allows for the computation of an optimal 
feedback control law from the trajectory for any initial 
conditions. Unfortunately, this requires prohibitive 
amount of computational power/storage, hence 
generating the so-called "curse of dimensionality". DDP 
is, therefore, a development of pure Dynamic 
Programming based on a quadratic expansion of the cost 
in the neighbourhood of a reference trajectory, 
effectively rendering the minimization a localized 
problem, hence sacrificing globality. The reference 
trajectory is then updated iteratively and so are its second 
order expansions. A feedback law, based on the 
perturbations of states, is generated during a process 

called "backward-sweep" so as to improve the following 
iterate. Instead, during the "forward-sweep", the 
dynamics of the system subject to this feedback law is re-
computed. Analytical quadratic expansions, moreover, 
allow for improved convergence with respect to previous 
linear problems or to numerically approximated second 
order problems. However, DDP is mainly suitable for 
smooth, unconstrained problems. This is, in fact, the 
original form in which it was formulated [26]. Several 
attempts were made at applying DDP also to constrained 
problems, and an overview of the spectrum of different 
approaches is presented by Yakowit [29]. The latest 
methods have started to include well validated NLP 
techniques in DDP, for example in the work of Lantoine 
and Russell [2,31]. The state of the art in low-thrust 
optimal control is Mystic software developed by Whiffen 
[31,32] and it is based on a DDP variant. Mystic exploits 
a Hessian shifting technique to enforce convexity of the 
optimization problems and has a penalty function for 
treating constraints. Another method that relies on DDP 
is HDDP [2,31,33,34] which is a multi-phase, multi-stage 
method that uses augmented Lagrangian technique to 
treat phase constraints. On the other hand, each stage is 
constrained via null-space methods directly during 
optimization. Moreover, instead of a generic Hessian 
shifting technique, HDDP implements a trust region 
algorithm to guarantee boundedness of the solution and 
convexity of the cost function. Being this algorithm 
multiple-phase but non multiple-shooting, the 
subproblems are solved in a succession and not 
independently in parallel. The attempt at applying 
multiple shooting principles to HDDP was made by 
Pellegrini [35]. 
 
1.1.5 Robust Control 

Especially in space applications, the uncertainties are 
many and they have a great impact on the mission’s 
outcome. The impact of unmodeled dynamical 
perturbations, as well as the scarce knowledge of the 
system initial state, produces a very rapid error 
accumulation in the trajectory. Together with the 
accumulation of uncertainties on system parameters, 
non-deterministic constraints and terminal condition can 
be detrimental to the mission’s reference path [1]. Instead 
of using empirical margins to estimate the propellant 
necessary for corrections, there has been a growing 
interest in a robust optimal low-thrust trajectory design 
strategy. The main benefit coming from this technique 
would be the possibility to reduce the modelling cost for 
small satellites, allowing for some errors, which would 
reduce the cost for research rendering it more accessible 
[36]. Classical approaches to the solution of optimization 
problems under uncertainties, rely on the assumption of 
linearity both of dynamics and feedback control [37]. To 
face also nonlinear problems, Theodorou et al. [38] have 
exploited Stochastic Differential Dynamic Programming 
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(SDDP) to minimize the expected value of the cost 
function. Finally, a new set of optimization techniques is 
introduced. They do not rely on any statistical hypothesis 
on the uncertainties and they belong to the so-called 
semi-analytic methods. They try to add to this debate by 
introducing new mathematical tools to treat uncertainties. 
One of the possible approaches is Interval Analysis, a 
mathematical tool developed by Moore [39]. The main 
idea of Interval Analysis is the substitution of real 
numbers with intervals of real numbers. Arithmetic and 
analysis of intervals are substituted to the usual ones 
acting on real numbers. Therefore, acting on the interval 
of all possible initial values will yield all possible final 
values as outputs. This technique can be exploited to 
propagate effectively errors and uncertainties, but it may 
as well result in an artificially high overestimation of the 
solution (i.e. “wrapping effect”) [40]. Following this train 
of thoughts has led to the development of a substitute for 
interval analysis that still retains the idea of propagating 
more than a single state vector. Differential algebra (DA) 
guarantees such an instrument. After reducing the 
optimization problem to a two-point boundary value 
problem, DA is used to expand the solution of the optimal 
problem with respect to initial and terminal conditions 
about a reference trajectory. In doing so, the optimal 
trajectory and feedback law are computed only once as 
polynomial maps, and the retrieval of the optimal 
feedback control policy is obtained as simple polynomial 
evaluation when different final or initial conditions are 
imposed [41]. The feedback laws obtained with this 
approach can be evaluated to an arbitrarily high order. 
 
1.1.6 Differential Algebra 

In this framework, an introduction to differential 
algebra is paramount for the following work. The reason 
why DA was invented in the first place, was to obtain the 
solution to analytical problems applying algebraic 
techniques [42]. The application of DA was extended by 
Berz [43] for the solution of differential equations and 
partial differential equations. DA’s founding assumption 
is that it is possible to convey more information about 
functions than just their values at specific points, being 
this extra information the Taylor expansion of the 
function at a certain location up to arbitrary order. 
Historically, numerical treatment of functions was, in 
fact, based on floating point arithmetic operations at 
some specific evaluation points. To achieve the same 
goal for functions, computer programs were developed, 
so that they could implement operations between them in 
a similar way as they are implemented for real numbers. 
The key feature of DA is in fact its ability to efficiently 
represent functions in a computer environment in a way 
that they can be easily manipulated via usual arithmetic 
expressions. For each operation defined between 
functions, an equivalent one is coded to act on their 
Taylor expansions. In this way, the Taylor expansion of 

the result of an operation between functions is equivalent 
to applying a corresponding operator to the operands and 
vice versa. The computer implementation of differential 
algebra, allows for the computation of a function’s values 
and its Taylor expansion coefficients up to an arbitrary 
order with a fixed amount of computational effort. 
Similarly to floating points numbers, elementary 
operators and algorithm to perform more complex tasks 
can be implemented in computer environment [42,44]. 

 
1.2 Work Outline 

In this work, the application of DA for the 
improvement of some aspects of HDDP is studied. DA is 
exploited for its ability to retrieve precise high order 
derivatives of functions along with the functions values. 
These properties are exploited to propagate the needed 
partials of the cost function and to obtain feedback laws 
as inversion of polynomial maps at arbitrarily high order. 
Additionally, this allows to consider perturbed dynamics 
with little to no effort. After the theoretical setup has been 
laid, the methodology is introduced in section 2, in which 
a clear explanation of the application of DA techniques 
in HDDP is provided. Following this section, some 
examples are provided in section 3 and 4, where models 
and their results are detailed. Finally, the discussion of 
the results and conclusions are presented in the final 
section 5, where further research directions are also 
suggested. 

 
2. Material and methods  

A general overview of DDP has been given by 
Yakowitz [29], the reader is directed to his work for 
details. This technique is paramount to understand the 
work of Lantoine and Russell [2] in HDDP which is a 
stepping stone for this paper. The reader is encouraged to 
go through the referenced texts to better understand this 
work, which is not reviewed here in order to avoid 
repetition. 

 
2.1 HDDP Based on Polynomial Maps 

The general outline of the modifications implemented 
to HDDP is given in this section. The DA makes it 
possible to compute the derivatives of a function f in v 
variables up to order n along with the computation of the 
function’s value.  

This has important consequences when the dynamical 
function that maps the states from stage k to stage k+1 is 
obtained via numerical integration. Without a loss of 
generality, one can express the expansion of an ODE in 
one variable as: 

 

�
�̇�𝑥 = 𝑓𝑓(𝑥𝑥)
𝑥𝑥(𝑡𝑡0) = 𝑥𝑥0

     (1) 

 
The solution of this ODE equation requires algebraic 

operations to be performed, together with the evaluation 
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of f at several time instants. Thanks to this, if the initial 
point is initialized as its constant part plus the DA identity 
(i.e. the Taylor expansion of its identity function) [𝑥𝑥0] =
 𝑥𝑥0 + 𝛿𝛿𝑥𝑥0, then the Taylor expansion of the solution at 
each integration step is obtained as a function of variation 
from reference initial conditions. The procedure is 
described with a first order Euler integration scheme, but 
any ODE scheme ideally exploits the same algebraic 
operations. Using a first order scheme as 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 +
𝑓𝑓(𝑥𝑥𝑘𝑘)Δ𝑡𝑡 , then by the properties of DA [42] this new 
value can be expressed as [𝑥𝑥𝑘𝑘+1] = [𝑥𝑥𝑘𝑘] + 𝑓𝑓([𝑥𝑥𝑘𝑘])Δ𝑡𝑡 . 
The extraction of the operator 𝑓𝑓([𝑥𝑥𝑘𝑘]) gives the Taylor 
expansion of the function f about the starting condition 
𝑥𝑥𝑘𝑘  as a function of 𝛿𝛿𝑥𝑥𝑘𝑘, expressed as 𝑓𝑓(𝑥𝑥𝑘𝑘) + ℳ𝑓𝑓(𝛿𝛿𝑥𝑥𝑘𝑘) 
(constant and differential part of the expansion). The 
remaining algebraic operations help to compute [𝑥𝑥𝑘𝑘+1] =
𝑥𝑥𝑘𝑘+1 + ℳ𝑥𝑥𝑘𝑘+1(𝛿𝛿𝑥𝑥𝑘𝑘) which represents the expansion of 
𝑥𝑥𝑘𝑘+1  with respect to the initial value 𝑥𝑥𝑘𝑘  about the 
reference point 𝑥𝑥𝑘𝑘+1. If the procedure is continued, then 
at the step 𝑘𝑘 + 2 : 

 
[𝑥𝑥𝑘𝑘+2] = [𝑥𝑥𝑘𝑘+1] + Δ𝑡𝑡𝑓𝑓([𝑥𝑥𝑘𝑘+1]) =
=  𝑥𝑥𝑘𝑘+1 + ℳ𝑥𝑥𝑘𝑘+1(𝛿𝛿𝑥𝑥𝑘𝑘) + Δ𝑡𝑡𝑓𝑓(𝑥𝑥𝑘𝑘+1 + ℳ𝑥𝑥𝑘𝑘+1(𝛿𝛿𝑥𝑥𝑘𝑘));
[𝑥𝑥𝑘𝑘+2] = 𝑥𝑥𝑘𝑘+1 + ℳ𝑥𝑥𝑘𝑘+2(𝛿𝛿𝑥𝑥𝑘𝑘);

  (2) 

 
This procedure gives, [𝑥𝑥𝑘𝑘+2] = 𝑥𝑥𝑘𝑘+2 + ℳ𝑥𝑥𝑘𝑘+2(𝛿𝛿𝑥𝑥𝑘𝑘) 

and can be repeated for each integration step from 𝑥𝑥0 up 
to the desired integration interval 𝑁𝑁 , so that the final 
result is: [𝑥𝑥𝑁𝑁] = 𝑥𝑥𝑁𝑁 + ℳ𝑥𝑥𝑁𝑁(𝛿𝛿𝑥𝑥0) . This result comes 
from the fact that propagating ODE system in the DA 
framework only requires evaluations of the right-hand 
side, algebraic operations and composition of DA 
polynomials. This result holds its validity for multi-
variable functions propagated through higher order ODE 
schemes. In HDDP, this is exploited for estimating the 
partials removing the STM computation step. During the 
forward sweep of the algorithm, the variables at step 𝑘𝑘 
are initialized as their value on the reference trajectory 
plus their DA identity, one per each independent variable 
needed (i.e. controls, states, Lagrange multipliers). 
 
[𝑥𝑥𝑘𝑘] = 𝑥𝑥𝑘𝑘 + 𝛿𝛿𝑥𝑥𝑘𝑘;
[𝑢𝑢𝑘𝑘] = 𝑢𝑢𝑘𝑘 + 𝛿𝛿𝑢𝑢𝑘𝑘;
[𝜔𝜔] = 𝜔𝜔 + 𝛿𝛿𝜔𝜔;
[𝜆𝜆] = 𝜆𝜆 + 𝛿𝛿𝜆𝜆;

    (3) 

 
Then the dynamic transition function of the system is 

applied to these DA objects and the result is: 
 
[𝑥𝑥𝑘𝑘+1] = 𝐹𝐹([𝑥𝑥𝑘𝑘], [𝑢𝑢𝑘𝑘], [𝜔𝜔]) = 𝑥𝑥𝑘𝑘+1 +
ℳ𝑥𝑥𝑘𝑘+1(𝛿𝛿𝑥𝑥𝑘𝑘 , 𝛿𝛿𝑢𝑢𝑘𝑘, 𝛿𝛿𝜔𝜔)     (4) 
 

Notice how, regardless of the shape of 𝐹𝐹 , being it 
analytical or numerically integrated via ODE, this 

expression retains its value and guarantees the correct 
partials. This equation represents the nominal value of 
the new state and its high order polynomial expansion 
ℳ𝑥𝑥𝑘𝑘+1 as a high order polynomial of 𝛿𝛿𝑥𝑥𝑘𝑘 , 𝛿𝛿𝑢𝑢𝑘𝑘, 𝛿𝛿𝜔𝜔 about 
the reference starting condition at instant 𝑘𝑘. At each stage 
these maps are stored, they contain all the information on 
partial derivatives needed for propagation of partials of 
the cost function. 
 
2.2 Backward Sweep on Stages 

When treating the backward sweep across the stages 
of a phase, the index of the phase is removed to reduce 
notation complexity. At the beginning of the backward 
sweep, the state 𝑥𝑥𝑁𝑁+1 is available as well as the value of 
Lagrange multipliers λ, and they are augmented with 
their DA identity functions generating [𝑥𝑥𝑁𝑁+1]  and [𝜆𝜆] . 
Without loss of generality, the final cost can be expressed 
as: 

 
�𝜙𝜙

~
� = 𝜙𝜙

~
([𝑥𝑥𝑁𝑁+1], [𝜆𝜆], [𝜔𝜔]) = 𝜙𝜙

~
+ ℳ𝜙𝜙(𝛿𝛿𝑥𝑥𝑁𝑁+1, 𝛿𝛿𝜆𝜆, 𝛿𝛿𝜔𝜔);  (5) 

 
In the forward sweep, the transition maps 𝛿𝛿𝑥𝑥𝑘𝑘+1 =

ℳ𝑥𝑥𝑘𝑘+1(𝛿𝛿𝑥𝑥𝑘𝑘 , 𝛿𝛿𝑢𝑢𝑘𝑘, 𝛿𝛿𝜔𝜔)  were stored, therefore it is 
possible to retrieve the last map ℳ𝑥𝑥𝑁𝑁+1  for usage. To 
start the backward sweep, this polynomial map is 
composed with that of 𝜙𝜙�, allowing for the expression of: 
 
[𝐽𝐽𝑁𝑁+1] = 𝜙𝜙

~
+ ℳ𝜙𝜙(𝛿𝛿𝑥𝑥𝑁𝑁+1, 𝛿𝛿𝜆𝜆, 𝛿𝛿𝜔𝜔) =

= 𝜙𝜙
~

+ ℳ𝜙𝜙(ℳ𝑁𝑁+1(𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝑢𝑢𝑁𝑁 , 𝛿𝛿𝜔𝜔), 𝛿𝛿𝜆𝜆, 𝛿𝛿𝜔𝜔);
[𝐽𝐽𝑁𝑁+1] = 𝐽𝐽𝑁𝑁+1 + ℳ𝐽𝐽𝑁𝑁+1(𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝑢𝑢𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆);

  (6) 

 
To the last term of this equation, the last stage cost 

(provided there is one) must be added [𝐿𝐿𝑁𝑁] = 𝐿𝐿𝑁𝑁 +
ℳ𝐿𝐿𝑁𝑁(𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝑢𝑢𝑁𝑁, 𝛿𝛿𝜔𝜔). 
 
[𝐽𝐽𝑁𝑁] = [𝐽𝐽𝑁𝑁+1] + [𝐿𝐿𝑁𝑁] = 𝐽𝐽𝑁𝑁 + ℳ𝐿𝐿𝑁𝑁(𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝑢𝑢𝑁𝑁 , 𝛿𝛿𝜔𝜔); (7) 
 

The next step of the algorithm, is to solve he 
optimization problem: the gradient of 𝐽𝐽𝑁𝑁 with respect to 
𝑢𝑢𝑁𝑁  must be set to 0. Therefore, a control law can be 
retrieved by exploiting DA maps inversion. The 
derivatives of 𝐽𝐽𝑁𝑁 with respect to 𝑢𝑢𝑁𝑁 can be taken in the 
neighbourhood of 𝑢𝑢𝑁𝑁  thanks to the differentiation 
operator available in DACE, and then they can be set to 
zero: 
 
[𝐽𝐽𝑢𝑢,𝑁𝑁] = 𝐽𝐽𝑢𝑢,𝑁𝑁 + ℳ𝐽𝐽𝑢𝑢,𝑁𝑁(𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝑢𝑢𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆) = 0;  (8) 
 

The feedback law 𝛿𝛿𝑢𝑢𝑁𝑁(𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆) is now obtained 
via map inversion as in Equation (9). To guarantee the 
feasibility of this inversion, some identity polynomial 
maps have been introduced to exploit the inversion 
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operator available in DACE. Such operator is based on 
reducing the inversion problem to a fixed-point problem. 

 
𝛿𝛿𝐽𝐽𝑢𝑢,𝑁𝑁 = ℳ𝐽𝐽𝑢𝑢,𝑁𝑁(𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝑢𝑢𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆); 
𝛿𝛿𝑢𝑢𝑁𝑁 = ℳ𝐽𝐽𝑢𝑢,𝑁𝑁

−1 (𝛿𝛿𝐽𝐽𝑢𝑢,𝑁𝑁 , 𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆);    (9) 
𝛿𝛿𝑢𝑢𝑁𝑁 = 𝛿𝛿𝑢𝑢𝑁𝑁�𝛿𝛿𝐽𝐽𝑢𝑢,𝑁𝑁 , 𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆�; 
 

The polynomials relative to 𝛿𝛿𝑢𝑢𝑁𝑁  are extracted and 
their coefficients stored for usage in the forward sweep, 
after their evaluation in 𝛿𝛿𝐽𝐽𝑢𝑢,𝑁𝑁 = −𝐽𝐽𝑢𝑢,𝑁𝑁 to guarantee that 
the feedback law extremizes the cost. The final input 
expression is, therefore, Equation (10). 
 
𝛿𝛿𝑢𝑢𝑁𝑁∗ = 𝛿𝛿𝑢𝑢𝑁𝑁∗ (𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆);               (10) 
 

Recovering now the DA function 𝐽𝐽𝑁𝑁, it is possible to 
compose the polynomial [𝐽𝐽𝑁𝑁]  with these maps of 𝛿𝛿𝑢𝑢𝑁𝑁∗  
and obtain the optimized cost as Equation (11). 
 
[𝐽𝐽𝑁𝑁∗ ] = 𝐽𝐽𝑁𝑁 + ℳ𝐽𝐽𝑁𝑁(𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝑢𝑢𝑁𝑁∗ (𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆), 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆) =
𝐽𝐽𝑁𝑁∗ + ℳ𝐽𝐽𝑁𝑁

∗ (𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆);                 (11) 
  

The expected reduction can now be estimated by 
evaluating on the reference trajectory: 

 
𝐸𝐸𝑅𝑅𝑁𝑁 = [𝐽𝐽𝑁𝑁] − [𝐽𝐽𝑁𝑁∗ ] = 𝐽𝐽𝑁𝑁 − 𝐽𝐽𝑁𝑁∗ ;                (12) 
 

Once the step 𝑁𝑁 is performed, the cost is propagated 
backward:  
 
[𝐽𝐽𝑁𝑁−1] = 𝐿𝐿𝑁𝑁−1 + ℳ𝐿𝐿𝑁𝑁−1(𝛿𝛿𝑥𝑥𝑁𝑁−1, 𝛿𝛿𝑢𝑢𝑁𝑁−1, 𝛿𝛿𝜔𝜔) + 𝐽𝐽𝑁𝑁∗

+ ℳ𝐽𝐽𝑁𝑁
∗ (𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆); 

= 𝐿𝐿𝑁𝑁−1 + ℳ𝐿𝐿𝑁𝑁−1(𝛿𝛿𝑥𝑥𝑁𝑁−1, 𝛿𝛿𝑢𝑢𝑁𝑁−1, 𝛿𝛿𝜔𝜔) + 𝐽𝐽𝑁𝑁∗ +
ℳ𝐽𝐽𝑁𝑁

∗ �ℳ𝑥𝑥𝑁𝑁(𝛿𝛿𝑥𝑥𝑁𝑁−1, 𝛿𝛿𝑢𝑢𝑁𝑁−1, 𝛿𝛿𝜔𝜔), 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆� =   (13) 
= 𝐽𝐽𝑁𝑁−1 + ℳ𝐽𝐽𝑁𝑁−1(𝛿𝛿𝑥𝑥𝑁𝑁−1, 𝛿𝛿𝑢𝑢𝑁𝑁−1, 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆); 
 

Having shown how to start the iteration process, at the 
generic step k the process performs the following steps: 
 

• [𝐽𝐽𝑘𝑘] = [𝐿𝐿𝑘𝑘] + [𝐽𝐽𝑘𝑘+1∗ ] is composed with the 
dynamic mappings obtained during the forward 
sweep and stored as 𝛿𝛿𝑥𝑥𝑘𝑘+1 =
ℳ𝑥𝑥𝑘𝑘+1(𝛿𝛿𝑥𝑥𝑘𝑘 , 𝛿𝛿𝑢𝑢𝑘𝑘, 𝛿𝛿𝜔𝜔)  to obtain [𝐽𝐽𝑘𝑘] = 𝐽𝐽𝑘𝑘 +
ℳ𝐽𝐽𝑘𝑘(𝛿𝛿𝑥𝑥𝑘𝑘 , 𝛿𝛿𝑢𝑢𝑘𝑘, 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆). 

• Derivatives of [𝐽𝐽𝑘𝑘]  are extracted and the 
gradient with respect to the controls is equated 
to zero as in Equation (8). 

• The gradient 𝛿𝛿𝐽𝐽𝑢𝑢,𝑘𝑘  is augmented with identity 
maps to guarantee inversion and inverted as in 
Equation (9). 

• The feedback law in polynomial form is 
evaluated in 𝛿𝛿𝐽𝐽𝑢𝑢,𝑘𝑘 = −𝐽𝐽𝑢𝑢,𝑘𝑘  and the feedback 
polynomial law is substituted in 𝐽𝐽𝑘𝑘 to obtain 𝐽𝐽𝑘𝑘∗ 
as in Equation (11). 

• The expected reduction is obtained by 
extracting the difference between the nominal 
value of 𝐽𝐽𝑘𝑘  and 𝐽𝐽𝑘𝑘∗  on the reference trajectory 
(i.e. 𝛿𝛿𝑥𝑥𝑘𝑘 = 0, 𝛿𝛿𝜔𝜔 = 0, 𝛿𝛿𝜆𝜆 = 0 ), the algorithm 
proceeds to 𝑘𝑘 − 1. 

 
The process can be repeated per each step until step 0 

of the phase. It is important to notice how this method, 
when the arbitrary order is set to 𝑚𝑚 =  2, retrieves the 
same partials mapping and linear feedback law as pure 
HDDP, without the cumbersome formulation of partial 
derivatives of dynamic functions, or integration of a 
system of ODEs of size 𝑁𝑁 + 𝑁𝑁2 + 𝑁𝑁3 , where 𝑁𝑁 is the 
number of variables. 
 
2.3 Constraints Handling Techniques 

The constraint handling techniques are the same as 
HDDP but with slight modifications. To enforce null-
space methods as in the standard HDDP for control 
bounds, the nominal polynomial feedback is evaluated on 
the reference trajectory (i.e.𝛿𝛿𝑥𝑥𝑘𝑘 = 0, 𝛿𝛿𝜔𝜔 = 0, 𝛿𝛿𝜆𝜆 = 0). If 
a constraint is violated, the polynomial function is 
substituted with a constant 𝛿𝛿𝑢𝑢𝑘𝑘 that fixes the controls at 
the next iteration on the control bounds, the control is 
removed from the set of active controls and the process 
is repeated with the remaining constraints (e.g. Mono-
Dimensional Landing Problem in section 3.2). The 
treatment of nonlinear constraints requires the 
introduction of other DA variables, the Lagrange 
multipliers of stage nonlinear active constraints 𝜈𝜈𝑘𝑘. The 
set of active constraints are estimated by checking if the 
nominal 𝛿𝛿𝑢𝑢𝑘𝑘  violates them exactly as in HDDP. Then, 
the Lagrangian ℒ is constructed adding the term 𝜈𝜈𝑘𝑘(𝑔𝑔𝑘𝑘) 
to the cost function, and it is minimized with respect to 
𝛿𝛿𝑢𝑢𝑘𝑘 and 𝛿𝛿𝜈𝜈𝑘𝑘. 

 

�
𝛿𝛿ℒ𝑢𝑢,𝑘𝑘
𝛿𝛿ℒ𝜈𝜈,𝑘𝑘

� = �
ℳℒ𝑢𝑢,𝑘𝑘

ℳℒ𝜈𝜈,𝑘𝑘
�

⎝

⎜
⎛

𝛿𝛿𝑥𝑥𝑘𝑘
𝛿𝛿𝑢𝑢𝑘𝑘
𝛿𝛿𝜔𝜔
𝛿𝛿𝜆𝜆
𝛿𝛿𝜈𝜈𝑘𝑘⎠

⎟
⎞

;

𝛿𝛿𝑢𝑢𝑘𝑘 = �
ℳℒ𝑢𝑢,𝑘𝑘

ℳℒ𝜈𝜈,𝑘𝑘
�
−1

⎝

⎜
⎛

𝛿𝛿ℒ𝑢𝑢,𝑘𝑘
𝛿𝛿ℒ𝜈𝜈,𝑘𝑘
𝛿𝛿𝑥𝑥𝑘𝑘
𝛿𝛿𝜔𝜔
𝛿𝛿𝜆𝜆 ⎠

⎟
⎞

;

               (14) 

 
The optimal constrained feedback is obtained by 

evaluating 𝛿𝛿𝑢𝑢𝑘𝑘  in 𝛿𝛿ℒ𝑢𝑢,𝑘𝑘 = −ℒ𝑢𝑢,𝑘𝑘  and 𝛿𝛿ℒ𝜈𝜈,𝑘𝑘 = −ℒ𝜈𝜈,𝑘𝑘 . 
The process can then continue as before, noting that there 
is no need to store these Lagrange multipliers as they are 
not needed during the iteration. 
 
2.4 Backward Sweep on Phases 

To extend the backward sweep across phases after all 
the stages on phase 𝑖𝑖  have been minimized, another 
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composition of maps is necessary. At the end of a phase, 
it is necessary to initialize other variables as DA 
variables, adding their identity polynomials. There are 
𝛿𝛿𝜔𝜔𝑖𝑖 , 𝛿𝛿𝜔𝜔𝑖𝑖−1, 𝛿𝛿𝜆𝜆𝑖𝑖 , 𝛿𝛿𝜆𝜆𝑖𝑖−1  and 𝛿𝛿𝑥𝑥𝑖𝑖 . The notation is here 
simplified again, values indexed − refer to multipliers, 
controls and states pertinent to phase 𝑖𝑖 − 1, whereas the 
index + refers to the same quantities at phase 𝑖𝑖. First, the 
initial conditions of a stage are exploited. At the end of 
the sweep on phase 𝑖𝑖, the cost is: 

 
[𝐽𝐽+∗ ] = 𝐽𝐽+∗ + ℳ𝐽𝐽+∗ (𝛿𝛿𝑥𝑥+, 𝛿𝛿𝜔𝜔+, 𝛿𝛿𝜆𝜆+);               (15) 

 
 To this cost, it is necessary to add the termination 

cost of phase 𝑖𝑖 − 1 which, thanks to DA, is expressed as: 
 

[𝜙𝜙
~
−] = 𝜙𝜙

~
− + ℳ

𝜙𝜙
~
−

(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝑥𝑥+, 𝛿𝛿𝜔𝜔+, 𝛿𝛿𝜆𝜆−);           (16) 
 
Therefore, in a similar way as for HDDP, applying 

[Γ(𝜔𝜔+)] = [𝑥𝑥+] and composing the cost function with it, 
gives: 

 
[𝐽𝐽−] = 𝐽𝐽+∗ + 𝜙𝜙

~
− + ℳ

𝜙𝜙
~
−

(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝑥𝑥+, 𝛿𝛿𝜔𝜔+, 𝛿𝛿𝜆𝜆−) +
ℳ𝐽𝐽+∗ (𝛿𝛿𝑥𝑥+, 𝛿𝛿𝜔𝜔+, 𝛿𝛿𝜆𝜆+) = 𝐽𝐽− +
ℳ𝐽𝐽−(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝜔𝜔+, 𝛿𝛿𝜆𝜆−, 𝛿𝛿𝜆𝜆+);                 (17) 
 

This substitution effectively removes the dependency 
from 𝛿𝛿𝑥𝑥+ . To retain the same scheme of HDDP and 
obtaining the same results when the order of the problem 
is set to 2, the problem is uncoupled as it was done in 
HDDP. The derivatives with respect to 𝛿𝛿𝜆𝜆+  will only 
present mixed terms with 𝛿𝛿𝜔𝜔+ as the only component of 
Equation (17) in which 𝛿𝛿𝜆𝜆+  appears is Equation (15). 
Therefore, the following solution is setup by equating the 
gradient of this equation with respect to 𝛿𝛿𝜆𝜆+ to zero. 

 
𝛿𝛿𝐽𝐽𝜆𝜆+,− = ℳ𝐽𝐽𝜆𝜆+,−

(𝛿𝛿𝜆𝜆+, 𝛿𝛿𝜔𝜔+);

𝛿𝛿𝜆𝜆+ = ℳ𝐽𝐽𝜆𝜆+,−
−1 (𝛿𝛿𝐽𝐽𝜆𝜆+,−, 𝛿𝛿𝜔𝜔+);

                            (18) 

 
This equation retrieves a feedback law for 𝛿𝛿𝜆𝜆+(𝛿𝛿𝜔𝜔+) 

by evaluating it in 𝛿𝛿𝐽𝐽𝜆𝜆+,− = −𝐽𝐽𝜆𝜆+,−. By composing this 
polynomial map with Equation (17), Equation (19) is 
retrieved.  

 
[𝐽𝐽−∗1] = 𝐽𝐽−∗1 + ℳ𝐽𝐽−

∗1(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝜔𝜔+, 𝛿𝛿𝜆𝜆−);                      (19) 
 
Once again, the feedback law for 𝛿𝛿𝜔𝜔+ is obtained by 

equating to zero the gradient of Equation (19) with 
respect to these variables: 

 
𝛿𝛿𝐽𝐽𝜔𝜔+,−

∗1 = ℳ𝐽𝐽𝜔𝜔+,−
∗1 (𝛿𝛿𝜔𝜔+, 𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝜆𝜆−);

𝛿𝛿𝜔𝜔+ = ℳ𝐽𝐽𝜔𝜔+,−
∗1
−1 �𝛿𝛿𝐽𝐽𝜔𝜔+,−

∗1 , 𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝜆𝜆−�;
               (20) 

 

This is the final step in the phase optimization 
procedures, as now the feedback law of 
𝛿𝛿𝜔𝜔+(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝜆𝜆−)  can be retrieved by imposing 
𝛿𝛿𝐽𝐽𝜔𝜔+,−

∗1 = −𝐽𝐽𝜔𝜔+,−
∗1 . If this feedback law is substituted into 

Equation (19), the optimal function at the beginning of 
phase 𝑖𝑖 − 1 is found, and the stages backward sweep can 
re-start: 

 
[𝐽𝐽−∗ ] = 𝐽𝐽−∗1 +
ℳ𝐽𝐽−

∗1(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝜔𝜔+(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜆𝜆−, 𝛿𝛿𝜔𝜔−), 𝛿𝛿𝜆𝜆−) = 𝐽𝐽−∗ +
ℳ𝐽𝐽−∗ (𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝜆𝜆−);                 (21) 

 
The expected reduction of this step can still be 

computed as the difference between Equation (21) and 
Equation (19) after substituting the optimal 𝛿𝛿𝜔𝜔+∗  
feedback law and evaluating it on the reference trajectory 
(all variations set to 0). 

 
𝐸𝐸𝑅𝑅− = [𝐽𝐽−] − [𝐽𝐽−∗ ];                 (22) 

 
Moreover, the feedback law for 𝛿𝛿𝜔𝜔+  is now 

available, and the updating scheme of the Lagrange 
multipliers can be obtained as composition of: 

 
𝛿𝛿𝜆𝜆+(𝛿𝛿𝜔𝜔+);
𝛿𝛿𝜔𝜔+(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜆𝜆−, 𝛿𝛿𝜔𝜔−);
𝛿𝛿𝜆𝜆+ = 𝛿𝛿𝜆𝜆+(𝛿𝛿𝜔𝜔+(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜆𝜆−, 𝛿𝛿𝜔𝜔−));

               (23) 

 
2.5 Trust Region Algorithm 

For the treatment of Trust Region limitation and to 
guarantee a descent direction, the same approach as 
standard HDDP is used. The TRQP algorithm is applied 
on the Hessians and gradient. Afterwards, the cost 
function is modified by adding a shift of 𝛾𝛾  to the 
coefficients of second order of the cost function 𝐽𝐽, so that 
the new modified cost 𝐽𝐽𝑚𝑚  has the same Hessian as the 
shifted cost. To conclude, the gradient of the modified 
cost is taken equal to 0, and the feedback laws are 
retrieved. For example, to shift the input Hessian the 
procedure is the following: 

 
• Starting from [𝐽𝐽𝑘𝑘], the derivatives with respect to 𝛿𝛿𝑢𝑢𝑘𝑘 

are stored in the gradient and the Hessian matrix. 
• These matrices are used in the TRQP procedure. 
• The [𝐽𝐽𝑚𝑚] function is obtained: [𝐽𝐽𝑚𝑚] = 𝐽𝐽𝑘𝑘 + 𝛾𝛾𝛿𝛿𝑢𝑢𝑘𝑘𝑇𝑇𝛿𝛿𝑢𝑢𝑘𝑘 
• This modified 𝐽𝐽 is used to obtain the feedback law, by 

imposing the gradient to be zero. 
• The algorithm proceeds by substituting this feedback 

into the cost function [𝐽𝐽𝑘𝑘] to obtain [𝐽𝐽𝑘𝑘∗]. 
 
This algorithm poses a limitation on the size of the 

quadratic trust-region, even for higher orders. Future 
research directions aim at modifying this step to exploit 
the full potential of DA and higher orders. 
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3. Study Cases 
Three example applications are here reported, a first 

validation example, one application of mono-
dimensional landing and a test case for orbital 
perturbations. 

 
3.1 Linear-Quadratic Problem 

The solution of this exercise is implemented 
according to Lantoine and Russell [31] with some minor 
modifications. This example is known to converge for 
HDDP and the preliminary test is to assess whether DA 
introduction spoiled convergence. This kind of problems 
is linear in the controls and quadratic in cost, moreover it 
has linear constraints. This structure makes it possible to 
retain quadratic augmented cost, thanks to the linearity of 
the constraints. Therefore, these problems should 
converge in only one iteration for methods based on 
augmented Lagrangian. 

Similarly to the test case in [31], this example exploits 
2 phases (𝑀𝑀 = 2) and 5 stages per each phase (𝑁𝑁1 =
𝑁𝑁2 = 5). The transition functions 𝐹𝐹𝑖𝑖,𝑗𝑗 are defined as: 

  

𝑥𝑥𝑖𝑖,𝑗𝑗+1 = 𝐹𝐹𝑖𝑖,𝑗𝑗(𝑥𝑥𝑖𝑖,𝑗𝑗 ,𝑢𝑢𝑖𝑖,𝑗𝑗) = �
𝑟𝑟𝑖𝑖,𝑗𝑗+1
𝑣𝑣𝑖𝑖,𝑗𝑗+1� = �

𝑟𝑟𝑖𝑖,𝑗𝑗 + 𝑣𝑣𝑖𝑖,𝑗𝑗
𝑣𝑣𝑖𝑖,𝑗𝑗 + 𝑢𝑢𝑖𝑖,𝑗𝑗

� ;       (24) 

 
The stage constraints 𝑔𝑔𝑖𝑖,𝑗𝑗  are not present, on the 

contrary the phase constraints  𝜓𝜓1 at the end of phase 1 
and  𝜓𝜓2 at the end of phase 2 are defined as follows: 

 

 
𝜓𝜓1 = 𝑥𝑥2,1 − 𝑥𝑥1,6 = 0;
𝜓𝜓2 = 𝑥𝑥2,6 − 𝑥𝑥𝑡𝑡 = 0;                  (25) 

 
The final objective state here is defined by 𝑥𝑥𝑡𝑡 and it is 

a targeted point at the end of the second phase. The first 
phase constraint is just imposing continuity between the 
last stage of the first phase and the starting stage of the 
second phase. The constant controls 𝜔𝜔 are defined only 
on the second phase, as in the first phase every parameter 
is fixed. 𝜔𝜔2 are used to parametrize the initial conditions 
of the second phase as 𝑥𝑥2,1 = Γ(𝜔𝜔2) = 𝜔𝜔2. Finally, the 
stage cost function is formulated as 𝐿𝐿𝑖𝑖,𝑗𝑗 = �𝑢𝑢𝑖𝑖,𝑗𝑗�

2
. 

 
3.2 Mono-Dimensional Landing 

The dynamic formulation of this problem is reprised 
from Lantoine and Russell [34]. The objective function 
is formulated as  𝐽𝐽1 =  −𝑚𝑚𝑓𝑓 , hence with only one phase 
whose cost is −𝑚𝑚�𝑡𝑡𝑓𝑓�  and no stage cost 𝐿𝐿𝑘𝑘 . The 
dynamics that need to be integrated are: 

 

�
�̇�𝑥
�̇�𝑣
�̇�𝑚
� = �

𝑣𝑣
−𝑔𝑔 + 𝑇𝑇

𝑚𝑚

− 𝑇𝑇
𝑔𝑔0𝐼𝐼𝐼𝐼𝐼𝐼

� ;  (26) 

The number of stages considered are ten, and the 
constraints on those are control bounds with 𝑢𝑢𝑈𝑈 = 1.227 
and 𝑢𝑢𝐿𝐿 = 0.0 . They can be treated with null space 
method or with range space active set method. The phase 
constraint   is: 

 

�
𝑥𝑥�𝑡𝑡𝑓𝑓�
𝑣𝑣�𝑡𝑡𝑓𝑓�

� = �0.0
0.0� ;                               (27) 

Finally, the initial conditions and parameters are: 
 

⎣
⎢
⎢
⎢
⎢
⎡ 𝑥𝑥

(0)
𝑣𝑣(0)
𝑚𝑚(0)
𝑇𝑇𝑇𝑇𝐹𝐹
𝑔𝑔0𝐼𝐼𝐼𝐼𝐼𝐼
𝑔𝑔 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

1.0
0.783

1.0
1.397
2.349

1.0 ⎦
⎥
⎥
⎥
⎥
⎤

;                         (28) 

The provided model of the system is already scaled 
for improved convergence. The integration scheme used 
for the dynamics is a direct Euler first order method, 
which proved to be sufficient for this example. 

 
3.3 Satellite Constellation Rephasing 

The last application of modified HDDP, is to a case 
of large satellite constellations. The orbital data selected 
for this example is the one of IRIDIUM–NEXT 
constellation. The source of Keplerian elements for this 
satellite was the Air Force Space Command. The case 
studied is the rephasing of 32° of one of the 
constellation’s satellite. The initial guess for the 
algorithm was created using MATLAB. The time of 
flight guess was retrieved by using a Lambert arc 
approach. Indeed, a sampling of the orbit in 100 points 
was made. Then, for each of these sampled positions, a 
Lambert arc was created, with a TOF in a range between 
0 and the orbital period. The final target position could 
be evaluated propagating in time the position of the target 
satellite for a time equal to the TOF considered plus the 
time of departure. A Porkchop graph was produced (SEE 
Fig. 6), where only one period in the departure time range 
is considered. To estimate the minimum Δv budget 
necessary to reach one satellite, a manoeuvre of two 
impulses was studied and their total contribute is reported. 
The initial guess for the time of flight obtained is TOF = 
1.516 h. This initial guess was introduced in the modified 
HDDP algorithm. The problem was scaled with the same 
scheme as the Earth-Mars Transfer case. The problem is 
divided in 100 stages. The dynamics that need to be 
integrated are reported in Equation (29). 
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

�̇�𝑥 = �̇�𝑥;
�̇�𝑦 = �̇�𝑦;
�̇�𝑧 = �̇�𝑧;

�̈�𝑥 = − 𝜇𝜇
𝑟𝑟3
𝑥𝑥 + 𝑇𝑇𝑥𝑥

𝑚𝑚
;

�̈�𝑦 = − 𝜇𝜇
𝑟𝑟3
𝑦𝑦 + 𝑇𝑇𝑦𝑦

𝑚𝑚
;

�̈�𝑧 = − 𝜇𝜇
𝑟𝑟3
𝑧𝑧 + 𝑇𝑇𝑧𝑧

𝑚𝑚
;

�̇�𝑚 = − 𝑇𝑇
𝐼𝐼𝑠𝑠𝑠𝑠𝑔𝑔0

;

;                 (29) 

The integration scheme used is a 7/8 Dormand-Prince 
(8th order solution for propagation, 7th order solution for 
step size control) Runge-Kutta scheme and the initial 
conditions to this problem, as obtained from the 
preliminary Porkchop graph study, are reported in 
Equation 30. 
 
𝐫𝐫𝟎𝟎 = [1085.028 −241.357 −7071.888]km;
𝐯𝐯𝟎𝟎 = [−5.922 4.407 −1.0743]km s−1;   (30) 

 
The target position of the satellite is reported in 

Equation (31). 
 
𝐫𝐫𝐭𝐭 = [1444.3563 509.9112 6992.1188]km;
𝐯𝐯𝐭𝐭 = [5.8468 4.3874 1.5421]km s−1;   (31) 

 
The cost function is again an augmented Lagrangian 

one, which minimizes the energy as formulated in 
Equation (32). 
 
𝐽𝐽 = � (||𝑢𝑢𝑘𝑘||2) + 𝜆𝜆𝑇𝑇(𝑥𝑥(𝑡𝑡𝑓𝑓) − 𝑥𝑥𝑡𝑡) + 𝜎𝜎0||𝑥𝑥(𝑡𝑡𝑓𝑓) −𝑁𝑁

𝑘𝑘=0
𝑥𝑥𝑡𝑡||2 ;       (32) 
 

The phase constraint function is the violation of the 
target   𝝍𝝍�𝑡𝑡𝑓𝑓� = 𝒙𝒙�𝑡𝑡𝑓𝑓� − 𝒙𝒙𝒕𝒕, while there is no final phase 
cost. 
Additionally, the stage cost from Equation (32) is 𝐿𝐿𝑘𝑘 =
‖𝒖𝒖𝑘𝑘2‖. 

The maximum thrust available for the system is 
𝑇𝑇𝑚𝑚𝑚𝑚𝑥𝑥  =  310 N to guarantee sufficient thrust to achieve 
the target in the selected TOF. Again, the constraint to be 
imposed on stages is a nonlinear one, it requires that the 
amplitude of the thrust is smaller than the maximum 
allowed value ‖𝒖𝒖𝑘𝑘‖ < 𝑇𝑇𝑚𝑚𝑚𝑚𝑥𝑥 . 

After optimizing this first case, a second case is 
developed to show the flexibility of this algorithm. This 
case considers the presence of the J2 perturbation effect 
in the dynamic model, which, is reformulated as Equation 
(33).  

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

�̇�𝑥 = �̇�𝑥;
�̇�𝑦 = �̇�𝑦;
�̇�𝑧 = �̇�𝑧;

�̈�𝑥 = − 𝜇𝜇
𝑟𝑟3
𝑥𝑥 + 𝑇𝑇𝑥𝑥

𝑚𝑚
−

3𝐽𝐽2𝜇𝜇𝑅𝑅⊕
2

2𝑟𝑟5
(1 − 5 𝑧𝑧2

𝑟𝑟2
)𝑥𝑥;

�̈�𝑦 = − 𝜇𝜇
𝑟𝑟3
𝑦𝑦 + 𝑇𝑇𝑦𝑦

𝑚𝑚
−

3𝐽𝐽2𝜇𝜇𝑅𝑅⊕
2

2𝑟𝑟5
(1 − 5 𝑧𝑧2

𝑟𝑟2
)𝑦𝑦;

�̈�𝑧 = − 𝜇𝜇
𝑟𝑟3
𝑧𝑧 + 𝑇𝑇𝑧𝑧

𝑚𝑚
−

3𝐽𝐽2𝜇𝜇𝑅𝑅⊕
2

2𝑟𝑟5
(3 − 5 𝑧𝑧2

𝑟𝑟2
)𝑧𝑧;

�̇�𝑚 = − 𝑇𝑇
𝐼𝐼𝑠𝑠𝑠𝑠𝑔𝑔0

;

;   (33) 

4. Results and Discussion 
 

4.1 Linear-Quadratic Problem 
The algorithm converges in exactly one iteration. The 

problem is set up in a way to permit the user modification 
of number of phases and stages in the process. The results 
are shown with 2 phases and 5 stages each, but this 
number can be modified accordingly. As the time step is 
fixed, increasing 𝑁𝑁 or 𝑀𝑀  corresponds to increasing the 
total time of the process, yielding smaller input and 
therefore smaller cost function. The target point is 𝑥𝑥𝑡𝑡 =
[2.0;  4.0;  1.0;  −0.5;  1.5;  −2.5] , whereas the initial 
point of the algorithm is set to 𝑥𝑥0 =
[1.0;  1.0;  1.0;  1.0;  1.0;  1.0], while the first guess for 
inputs and Lagrange multipliers is all zeros. Also, the 
initial conditions for constant controls on phase 2, that 
corresponds to the initial condition of the states of phase 
2, are set to zero. As it can be observed in Fig. 1, the 
continuity constraints between phases are respected, 
moreover the final target is achieved in one iteration only. 
The result is consistent if the number of stages or phases 
is changed and the convergence is achieved in exactly 
one iteration. Several trials with different target points, 
different 𝑀𝑀 and 𝑁𝑁 have reported the same result. Finally, 
the input trajectory is reported in the following Fig. 2. For 
completeness, also the value of the Lagrange multipliers 
for the phase constraints are reported in Table 1. 

 
Table 1. Value of the Lagrange multipliers for the Linear-
Quadratic Problem 

Phase Lagrange Multipliers 
1 [0.0545455; 0.224242; -0.139394; 

0.327273; 0.0121212; 0.630303] 
2 [0.0545455; 0.224242; -0.139394; 

0.0545455; -1.10909; 1.32727] 
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Fig.  1. Evolution of states for the linear-quadratic 
Problem. 

 
Fig.  2. Evolution of controls for the linear-quadratic 
Problem. 

4.2 Mono-Dimensional Landing Problem 
The final norm of constraint violation is 𝑓𝑓 =

7.6952 X 10−6, while the final mass is 𝑚𝑚𝑓𝑓 = 0.392. 
First, the results for second order are reported, which 

yield the same results as in [55] and [90]. The evolution 
of the height ℎ and the velocity 𝑣𝑣 is represented in Fig. 3, 
whereas the control input is reported in Fig.5.  

The next step is to analyse the behaviour of the 
solution for different orders of expansion. This task is 
performed in Table 2. Orders higher than 6 do not 
converge for this problem. Heuristics and experience 
indicate that a high-order feedback controller behaves 
better when close to the solution of the problem.  

Bearing in mind that the starting position is far 
enough from the optimal solution, while looking at Fig. 
4 it is possible to observe that order 2 behaves better than 
the others. While at the beginning of the algorithm the 
solver is far from the solution, higher-order exhibits 

greater violation of constraints. On the other hand, after 
some iterations, the higher orders tend to have smaller 
violation of constraints, due to the proximity to the 
optimal trajectory. For really high orders, numerical 
difficulties arise, spoiling the convergence. As it can be 
already seen for order 6, feedback terms of high order 
tend to render the constraint violation reduction noisier. 
Probably, order 6 is used outside the convergence radius 
of the polynomial, resulting in this behaviour. On the 
contrary, the examples up to order 4 show quite a good 
result. To conclude, if the polynomials are used properly 
(inside their region of convergence), some improvements 
with respect to order 2 may arise. However, these 
enhancements were not significant in this case, therefore 
the use of higher than second order is not justified. 

 
Table 2. High order effects on the mono-dimensional 
landing problem. 

Ord
er 

Iteratio
ns 

Accept
ed 

Iteratio
ns 

Total 

Constrai
nt 

Violatio
n 

Computatio
nal time 

[s] 

2 87 124 7.7E-6 3.7 
3 91 137 8.6E-6 3.4 
4 71 83 8.5E-6 2.8 
6 213 258 8.9E-6 23.6 
  

 
Fig.  3. Evolution of states for the mono-dimensional 
landing problem. 
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Fig.  5. Evolution of control for the mono-dimensional 
landing problem. 

4.3 Satellite Rephasing 
Starting from the unperturbed results, the trajectory 

of the transfer is reported in Fig. 7. The control trajectory 
for this example is reported in Fig. 8. 

After the solution has been retrieved, the perturbation 
J2 is included in the dynamics, and the study is repeated. 
The solution is extremely close to the unperturbed one, 
as the time of flight (~ 2 h) is not sufficiently large for the 
effects of the perturbation to appear on the final solution. 
The only modification necessary to run this example with 
respect to the previous one is the change in dynamics for 
the ODE propagation, as DA will automatically compute 
the higher order derivatives. The most significant 
differences can be observed in the thrust magnitude in 
Fig. 9. Moreover, a discrepancy can be observed in the 
different Lagrange parameters reached at convergence in 
Table 3. 

 
Fig.  6. Porkchop graph for the generation of the initial 
guess of the rephasing problem. 

  

Fig.  7. Optimal transfer path for the Satellite 
Constellation Refueling Problem. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
on

tro
l T

Control Input

-4000-5000
-20000

x [km]

0

y [km]

6000

4000

z 
[k

m
]

2000

5000

0

2000

-2000

-4000

Transfer Path

-6000

4000

Reference Trajectory
Transfer Trajectory
Target Position
Starting Position

10 20 30 40 50 60 70
Iteration Number

10-4

10-2

100

N
or

m
 o

f C
on

st
ra

in
t V

io
la

tio
n

2ndOrder

10 20 30 40 50 60 70 80 90
Iteration Number

10-4

10-2

100

N
or

m
 o

f C
on

st
ra

in
t V

io
la

tio
n

3rdOrder

10 20 30 40 50 60 70
Iteration Number

10-4

10-2

100

N
or

m
 o

f C
on

st
ra

in
t V

io
la

tio
n

4thOrder

20 40 60 80 100 120 140 160 180 200
Iteration Number

10-4

10-2

100

N
or

m
 o

f C
on

st
ra

in
t V

io
la

tio
n

6thOrder

Fig.  4. Norm of constraint violation f for the mono-dimensional landing problem for orders 2(a), 3(b), 4(c) and 6(d). 



69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.  
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-18-F1.2.3                           Page 13 of 15 

 

Fig.  8. Optimal control evolution for the Satellite 
Constellation Refueling Problem. 
 
Table 3. Value of the Lagrange multipliers for the 
Perturbed and Unperturbed Rephasing Problem 

 Lagrange Multipliers 
Unperturbed [-0.860903; 0.509705; 1.52568; 

1.47022; -1.03679; -0.469851] 
Perturbed [-0.938731; 0.554697; 1.6653; 

1.61168; -1.12907; -0.512154] 
 

 
Fig.  9. Control differences between perturbed and 
unperturbed Rephasing Problem 

 
5. Conclusions 

This paper investigated the problem of low-thrust 
optimal control through the combination of Differential 
Algebra and Differential Dynamic Programming. The 
use of DA in HDDP grants the possibility of computing 
higher order feedback and approximations in the 
neighbourhood of the reference trajectory. The 
hypothesis formulated at the beginning of this study is 
that high order feedback and expansions could enlarge 
the convergence region of the algorithm, leading to a 
faster convergence with respect to standard second order 

methods. Nonetheless, this hypothesis seems to be 
disproved. Through the examples, a clear improvement 
in the number of iterations for higher orders is not 
verified. In addition, the higher order feedback terms 
seem to worsen numerical errors of the algorithm. In 
particular, the constraint violation is smoother for lower 
orders and becomes noisy for higher orders. Moreover, 
even though in some cases the number of iterations 
necessary for convergence of the algorithm does not 
change substantially, the computational time increases 
(see Table 2). Having addressed this issue, the thesis 
improves the HDDP algorithm by relieving some of the 
workload on the user. The difficulty in implementing the 
model for perturbed dynamics arises when the necessary 
partial derivatives of the dynamics need to be computed. 
The problems are evidenced by Pellegrini [45]. For 
complicated dynamical models, the partials required for 
the propagation of the dynamics must be computed with 
a symbolic manipulator software and sometimes they are 
not even possible to obtain. Moreover, these partials need 
to be converted into useful code (i.e. C++, Fortran etc.). 
Usually, these symbolic manipulators yield inefficient 
code, largely due to insufficient factoring. The use of DA 
to reduce the user’s effort is demonstrated in this work, 
and completely removes these difficulties as DA will 
automatically take care of computing the higher order 
partials. An example is given in this study by introducing 
the J2 dynamical perturbation, which is handled by the 
same algorithm as the unperturbed case. 

As any preliminary study, this work may suffer from 
several limitations. First of all, the algorithm still relies 
on a Hessian shifting technique to guarantee a convex 
objective function. This technique is based on a quadratic 
trust region procedure. Secondly, the algorithm does not 
improve the standard limitations of HDDP as far as 
tuning is concerned. In fact, a lot of tuning parameters 
must be set accurately, in order for this solver to converge 
to a solution. Finally, the scaling is performed via a non-
automatic procedure, which slows down solution 
considerably. On the other hand, this work provides 
several contributions. First, it provides a first attempt to 
apply Differential Algebraic techniques in the 
Differential Dynamic Programming. By doing this, it 
creates the first building block for further research in this 
direction. In addition, it adds to the current Differential 
Dynamic Programming literature by exploiting high 
order nonlinear optimal feedback controls, capable of 
dealing with constraints. Lastly, this paper improves the 
user’s experience with HDDP software by removing the 
tedious step of obtaining partials from symbolic external 
software and interfacing it with Fortan/C code. Finally, 
taking into consideration the above-mentioned 
limitations and contributions, future researches might 
obtain enhanced results, taking this thesis as a starting 
point. For example, an alternative to the Hessian shifting 
problem could be formulated exploiting high-orders. 

0 1000 2000 3000 4000 5000
TOF [s]

50

100

150

200

250

300

Th
ru

st
 [N

]
Optimal Control Input

Maximum Thrust

0 1000 2000 3000 4000 5000
TOF [s]

-12

-10

-8

-6

-4

-2

0

T-
T J 2[N

]



69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.  
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-18-F1.2.3                           Page 14 of 15 

Indeed, the cost function is not quadratic, therefore, an 
optimal expansion point where the Hessian is positive 
definite could be located. Afterwards, the trajectory 
could be re-expanded about this new reference condition, 
so that a descent direction is guaranteed. Furthermore, the 
high-order terms could be better exploited by using the 
convergence radius of the cost function to estimate the 
elliptical region of convergence automatically. This 
improvement could, at the same time, remove several 
tuning parameters from the algorithm. 
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