
69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-F1.2.3 Page 1 of 15

IAC-18,C1,9,13,x47354

Hybrid Differential Dynamic Programming Algorithm for Low-Thrust Trajectory Design Using Exact
High-Order Transition Maps

Michele Maestrinia, Pierluigi Di Liziab, Roberto Armellinc, Ryan P. Russelld

a Department of Aerospace Science and Technology, Politecnico di Milano, 34 Via Giuseppe La Masa, Milano, MI,
Italia 20156, michele.maestrini@polimi.it
b Department of Aerospace Science and Technology, Politecnico di Milano, 34 Via Giuseppe La Masa, Milano, MI,
Italia 20156, pierluigi.dilizia@polimi.it
c Surrey Space Centre, University of Surrey, BA Building, Guildford GU2 7XH, UK, r.armellin@surrey.ac.uk
d Department of Aerospace Engineering and Engineering Mechanics, Cockrell School of Engineering, University of
Texas at Austin, 301 E. Dean Keeton Street, Austin, Texas, United States 78712-2100,
ryan.russell@austin.utexas.edu

Abstract

Optimal orbital trajectories are obtained through the solution of highly nonlinear large-scale problems. In the case
of low-thrust propulsion applications, the spacecraft benefits from high specific impulses and, hence, greater payload
mass. However, these missions require a high count of orbital revolutions and, therefore, display augmented sensitivity
to many disturbances. Solutions to such problems can be tackled via a discrete approach, using optimal feedback
control laws. Historically, differential dynamic programming (DDP) has shown outstanding results in tackling these
problems. A state of the art software that implements a variation of DDP has been developed by Whiffen (2006) and
it is used by NASA’s DAWN mission. One of the latest techniques implemented to deal with these discrete constrained
optimizations is the Hybrid Differential Dynamic Programming (HDDP) algorithm, introduced by Lantoine and
Russell (2012). This method complements the reliability and efficiency of classic nonlinear programming techniques
with the robustness to poor initial guesses and the reduced computational effort of DDP. The key feature of the
algorithm is the exploitation of a second order state transition matrix procedure to propagate the needed partials,
decoupling the dynamics from the optimization. In doing so, it renders the integration of dynamical equations suitable
for parallelization. Together with the possibility to treat constrained problems, this represents the greatest improvement
of classic DDP. Nevertheless, the major limitation of this approach is the high computational cost to evaluate the
required state transition matrices. Analytical derivatives, when available, have shown a significant reduction in the
computational cost and time for HDDP application. This work applies differential algebra (DA) to HDDP to cope with
this limitation. DA is introduced to obtain state transition matrices as polynomial maps. These maps come directly
from the integration of the dynamics of the system, removing the dedicated algorithmic step and reducing its
computational cost. Moreover, by operating on polynomial maps, all the solutions of local optimization problems are
treated through differential algebraic techniques. This approach allows users to deal with higher order expansions of
the cost, without modifying the algorithm. From the examples provided, it emerges that increasing the order of the
expansions does not yield a better convergence rate. Additionally, it causes numerical instability of the algorithm to
arise, as well as a noticeable increase on computational time due to the number of polynomial coefficients that ought
to be computed.

Nomenclature

• 𝑥𝑥𝑖𝑖,𝑗𝑗 ∈ ℝ𝑛𝑛𝑥𝑥,𝑖𝑖 vector of states of dimension ℝ𝑛𝑛𝑥𝑥,𝑖𝑖
at phase 𝑖𝑖 and stage 𝑗𝑗;

• 𝑢𝑢𝑖𝑖,𝑗𝑗 ∈ ℝ𝑛𝑛𝑢𝑢,𝑖𝑖 dynamic controls of dimension
ℝ𝑛𝑛𝑢𝑢,𝑖𝑖 at phase 𝑖𝑖 and stage 𝑗𝑗;

• 𝑤𝑤𝑖𝑖 ∈ ℝ𝑛𝑛𝜔𝜔,𝑖𝑖 static controls of dimension ℝ𝑛𝑛𝜔𝜔,𝑖𝑖 at
phase 𝑖𝑖 and stage 𝑗𝑗;

• Γ𝑖𝑖:ℝ𝑛𝑛𝜔𝜔,𝑖𝑖 → ℝ𝑛𝑛𝑥𝑥,𝑖𝑖 functions describing initial
states of phase 𝑖𝑖;

• 𝐹𝐹𝑖𝑖,𝑗𝑗:ℝ𝑛𝑛𝑥𝑥,𝑖𝑖 × ℝ𝑛𝑛𝑢𝑢,𝑖𝑖 × ℝ𝑛𝑛𝜔𝜔,𝑖𝑖 → ℝ𝑛𝑛𝑥𝑥,𝑖𝑖 transition
functions that propagate the states from stage 𝑗𝑗
to stage 𝑗𝑗 + 1 of phase 𝑖𝑖;

• 𝐿𝐿𝑖𝑖,𝑗𝑗:ℝ𝑛𝑛𝑥𝑥,𝑖𝑖 × ℝ𝑛𝑛𝑢𝑢,𝑖𝑖 × ℝ𝑛𝑛𝜔𝜔,𝑖𝑖 → ℝ stage cost
functions at phase 𝑖𝑖 and stage 𝑗𝑗;

• 𝑔𝑔𝑖𝑖,𝑗𝑗:ℝ𝑛𝑛𝑥𝑥,𝑖𝑖 × ℝ𝑛𝑛𝑢𝑢,𝑖𝑖 × ℝ𝑛𝑛𝜔𝜔,𝑖𝑖 → ℝ𝑛𝑛𝑔𝑔,𝑖𝑖 stage
constraints at phase 𝑖𝑖 and stage 𝑗𝑗;

• 𝜓𝜓𝑖𝑖,𝑗𝑗:ℝ𝑛𝑛𝑥𝑥,𝑖𝑖 × ℝ𝑛𝑛𝜔𝜔,𝑖𝑖 × ℝ𝑛𝑛𝑥𝑥,𝑖𝑖+1 × ℝ𝑛𝑛𝜔𝜔,𝑖𝑖+1 → ℝ𝑛𝑛𝜓𝜓,𝑖𝑖
boundary phase constraints between phase
𝑖𝑖 and 𝑖𝑖 + 1;

• 𝜙𝜙𝑖𝑖,𝑗𝑗:ℝ𝑛𝑛𝑥𝑥,𝑖𝑖 × ℝ𝑛𝑛𝜔𝜔,𝑖𝑖 × ℝ𝑛𝑛𝑥𝑥,𝑖𝑖+1 × ℝ𝑛𝑛𝜔𝜔,𝑖𝑖+1 → ℝ𝑛𝑛𝜙𝜙,𝑖𝑖
terminal cost of phase between phase

• 𝑖𝑖 phase 𝑖𝑖 + 1;

mailto:michele.maestrini@polimi.it
mailto:pierluigi.dilizia@polimi.it
mailto:r.armellin@surrey.ac.uk
mailto:ryan.russell@austin.utexas.edu

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-F1.2.3 Page 2 of 15

• 𝐽𝐽: = ∑ �� (𝐿𝐿𝑖𝑖,𝑗𝑗(𝑥𝑥𝑖𝑖,𝑗𝑗 ,𝑢𝑢𝑖𝑖,𝑗𝑗 ,𝜔𝜔𝑖𝑖)) +
𝑁𝑁𝑖𝑖

𝑗𝑗=1

𝑀𝑀
𝑖𝑖=1

𝜙𝜙𝑖𝑖(𝑥𝑥𝑖𝑖,𝑁𝑁𝑖𝑖+1,𝜔𝜔𝑖𝑖 , 𝑥𝑥𝑖𝑖+1,1,𝜔𝜔𝑖𝑖+1)� generic

formulation of the cost function;
• 𝜙𝜙

~
𝑖𝑖�𝑥𝑥𝑖𝑖,𝑁𝑁𝑖𝑖+1,𝜔𝜔𝑖𝑖 , 𝑥𝑥𝑖𝑖+1,1,𝜔𝜔𝑖𝑖+1, 𝜆𝜆𝑖𝑖� ≔

𝜙𝜙𝑖𝑖�𝑥𝑥𝑖𝑖,𝑁𝑁𝑖𝑖+1,𝜔𝜔𝑖𝑖 , 𝑥𝑥𝑖𝑖+1,1,𝜔𝜔𝑖𝑖+1� +
𝜆𝜆𝑖𝑖𝑇𝑇𝜓𝜓𝑖𝑖�𝑥𝑥𝑖𝑖,𝑁𝑁𝑖𝑖+1,𝜔𝜔𝑖𝑖 , 𝑥𝑥𝑖𝑖+1,1,𝜔𝜔𝑖𝑖+1� +
𝜎𝜎||𝜓𝜓𝑖𝑖(𝑥𝑥𝑖𝑖,𝑁𝑁𝑖𝑖+1,𝜔𝜔𝑖𝑖 , 𝑥𝑥𝑖𝑖+1,1,𝜔𝜔𝑖𝑖+1)||2 Augmented
cost function as formulated in HDDP.

• 𝑚𝑚𝑚𝑚𝑥𝑥
𝜆𝜆𝑖𝑖

𝑚𝑚𝑖𝑖𝑚𝑚
𝑢𝑢𝑖𝑖,𝑗𝑗,𝜔𝜔𝑖𝑖

� [𝑀𝑀
𝑖𝑖=1 � (𝐿𝐿𝑖𝑖,𝑗𝑗(𝑥𝑥𝑖𝑖,𝑗𝑗 ,𝑢𝑢𝑖𝑖,𝑗𝑗 ,𝜔𝜔𝑖𝑖)) +

𝑁𝑁𝑖𝑖

𝑗𝑗=1

𝜙𝜙
~
𝑖𝑖(𝑥𝑥𝑖𝑖,𝑁𝑁𝑖𝑖+1,𝜔𝜔𝑖𝑖 , 𝑥𝑥𝑖𝑖+1,1,𝜔𝜔𝑖𝑖+1, 𝜆𝜆𝑖𝑖)] Formulation of

the cost function in HDDP

While in the framework of DA operations:

• 𝛿𝛿𝑥𝑥 represents the infinitesimal variation of a
variable;

• ℳ represents the polynomial map at high order
(i.e. all the coefficients of a series expansion
except the one of order 0);

• [𝑥𝑥] Represent the DA object obtained via series
expansion of the quantity 𝑥𝑥 including its
infinitesimal and constant part.

1. Introduction

Low thrust optimal control has found growing interest
among researchers and practitioners thanks to its
remarkable mass savings. With respect to chemical
propulsion, ion-thrusters allow for higher specific
impulses, yielding greater useful mass. For example, a
solar sail mission could reduce the propellant mass stored
virtually to zero, as the thrust is provided by solar wind.
The downsides in the design of these methods are
twofold. First, they increase the size of the problem that
needs to be solved due to the large amount of decision
variables that must be chosen. Secondly, it causes an
accumulation of errors due to the large actuation times
needed to produce significant delta-V’s [1]. The aim of
this thesis is to add to the current literature regarding
optimal control for low-thrust trajectory design. In order
to do so, the focus is placed on implementing DA
techniques for the treatment of a well validated DDP-
based technique: HDDP [2]. The work starts by
addressing the question whether higher than second order
expansions could lead to an improvement on
convergence speed of the algorithm. This enhancement
in speed can be seen as an augmented convergence region
of the algorithm. In particular, HDDP is based on a trust
region quadratic programming (TRQP) algorithm,
whereas this work attempts at using higher orders. The
increase in order of the expansion allows also for the
evaluation of nonlinear optimal feedback. To these

purposes, this paper starts by replicating HDDP
algorithm, which is then enhanced by the addition of DA
techniques implemented in the software DACE
developed in Politecnico di Milano’s Department of
Aerospace Science and Technology. Four test cases are
provided at the end of this work in order of growing
complexity: I) a validation Linear-Quadratic problem; II)
a Mono-Dimensional Landing problem; III) an
interplanetary Earth-Mars Transfer and, to conclude, IV)
a Satellite Constellation Refueling Problem.

The expected improvement of the algorithm is tested
on the Satellite Constellation Refueling case. The
dynamic model for the system is modified by adding the
effect of Earth’s zonal harmonic perturbation J2 to the
system of dynamical equations. The algorithm achieves
convergence without need for the user to compute and
assemble complicated partials via a symbolic external
software (e.g. MAPLE). Overall, this work provides a
first attempt at the application of DA techniques in the
Differential Dynamic Programming framework. By
doing so, it creates the first building block for further
research in this field. Moreover, it adds to the current
Differential Dynamic Programming literature by
exploiting high order nonlinear optimal feedback
controls, also dealing with constraints. Furthermore, it
tries to improve the user’s capability of exploiting HDDP
software by removing the tedious step of obtaining
partials from symbolic external software and interfacing
it with Fortan/C code.

1.1 Literature Review

In the past, several approaches have been
implemented to find optimal trajectories. Among the
many solutions, particularly challenging is the case of
low-thrust propulsion. Approaches to these optimization
challenges are classically divided in two main categories:
indirect methods and direct methods [3].

1.1.1 Indirect Methods

These methods rely on calculus of variation or
Pontryagin’s Maximum Principle [4] to retrieve the
necessary optimality conditions. The problem is then
reduced to a two-point boundary value problem (TPBVP)
and solved. Indirect approaches introduce additional
states, the so called “co-states” (or adjoint states), that
have little physical meaning most of the time.
Additionally, the equations and gradients of co-states,
needed to retrieve necessary conditions for optimality,
are not easily formulated. Therefore, one of the main
disadvantages of indirect methods, is the necessity of the
user to have deep knowledge of the problem [4]. Their
solution is obtained when, for each time instant, the
adjoint states (Lagrange multipliers) extremize the
Hamiltonian. Moreover, the boundary conditions
together with the dynamics of state and adjoint states
must be satisfied. The classical approaches to solution of

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-F1.2.3 Page 3 of 15

these problems include single-shooting and multiple-
shooting techniques. Single shooting methods solve a
TPBVP with a first guess on the initial conditions, then
this trial guess is updated as a function of the final error,
details can be found in [5]. Keeping this in mind, a first
guess on Lagrange multipliers is also necessary,
subsequently this guess is evaluated and iterated until
optimality is achieved. The major downside of these
techniques is that the first guess on Lagrange multipliers
is not always obvious and the solution of the problem is
strongly affected by it, as shown in [3,6,7]. Multiple
shooting techniques attempt to solve the TPBVP by
splitting the time interval in a succession of subintervals.
Then, single-shooting is applied between the subintervals
and continuity is then ensured via linking constraints.
The main advantage of multiple shooting, is the reduction
of sensitivity to bad initial conditions and the possibility
to parallelize the computations, being the subintervals
independent as shown by Betts and Huffmann [8]. On the
other hand, the number of decision variables increases
quite rapidly with the number of subintervals, causing an
increase of computational effort.

1.1.2 Direct Methods

In direct methods, the problem is reformulated from
an optimal control problem to a nonlinear (often
quadratic) programming problem. To reformulate it as
NLP problem, the optimal control problem is discretized
and parametrized with polynomials or other functions
whose coefficients become the new decision variables.
The idea behind this method, is that the research for the
approximating function of the solution is restricted in a
finite dimensional space of functions. Such
approximations are usually piecewise polynomials as
explained by Von Stryck and Bulirsch in [4]. Usually,
direct methods rely on physical quantities rather than
abstract Lagrange multipliers, and their solutions are only
approximated. The reformulation is based on a selected
decision vector and an iterative procedure which adjusts
it during iterations until all convergence criteria are met.
The key step of the NLP procedures is the assembly of a
Hessian containing all the second order pure and mixed
partial derivatives of the cost function with respect to the
decision variables. After it is assembled, the Hessian is
inverted, however the size of the Hessian grows rapidly
with the number of decision variables as explained in [2].
In fact, decision vectors for classic NLP increase linearly
with the number of discretization points, while the size of
the Hessian grows with the square of the discretized
variables (sometimes with the cube) [9]. This causes an
increase in computational effort which is twofold. First,
inverting the sparse Hessian matrix is notoriously
computationally expensive. Secondly, the process of
assembling large Hessians is expensive per se. This is
owed to the repeated chain rule applications needed to
compute all the necessary sensitivities with respect to

decision variables [10]. Regardless their broad usage,
direct methods are in general less accurate than the
indirect ones, and they may converge to a local minimum
as shown by Kraft [11]. The main advantage of these
direct methods over indirect ones, is the reduced
dependence of the solution on initial choice of adjoint
variables. This allows for less expert users to tackle the
problems, as reduced insight is needed. An additional
note should be made regarding Differential dynamic
programming. This method is classified as a direct one,
but if implemented in a first order version, it retrieves the
same equations of calculus of variations, minimizing the
Hamiltonian at each iteration [12,13]. The necessary
conditions for optimality may not be formulated by DDP
as they were for indirect methods, however its solution is
influenced by them.

1.1.3 Constrained Optimization

Methods requiring constraint handling, introduce
Lagrange multipliers in their cost and new conditions
necessary for optimality, i.e. Karush-Kuhn-Tucker
conditions [14]. These conditions make it possible to
treat linear constraint, therefore nonlinear constraints
must be linearized to be addressed. The typical solution
to these equality constrained problems, are based on
elimination methods (also called primal methods) [15].
These approaches restrict the number of inputs in a subset,
so that the optimization problem to be solved becomes
unconstrained. The optimal solution is then found in this
subset which is compliant with the constraints. Such
methods are for example the null-space method and the
range space method [16]. The approach of linearizing the
constraints is widely used also in methods where the
Lagrangian function has a quadratic order expansion
such as the Sequential Quadratic Programming [17].
Some methods implement a quadratic approximation of
the constraints [18], but they require also quadratic
control feedback implementation. Another category of
constraint handling procedures is Penalty Methods,
which are only approximate solutions to the optimization
problem. They include in the objective function a penalty
term for the violation of constraints. In this way, the
problem is treated as unconstrained and the quality of the
constraint satisfaction is dictated by the entity of the
penalty. However, penalty methods require the penalty
term to be raised to infinity to give exactly zero constraint
violation. This characteristic of penalty methods, results
in conditioning problems of the Hessian matrix [19].
The necessity to accurately treat inequality constraints,
has led to many other solution approaches. A first
approach, is to add slack variables so that an inequality
can be transformed into an equality, adding to the set of
tuning parameters of the problem. The second approach
is, instead, to use an active set of constraints to determine
whether a constraint is active or not during optimization
[16,20]. Finally, an Augmented Lagrangian method can

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-F1.2.3 Page 4 of 15

be used [21,22]. These strategies constitute a hybrid
between the Lagrangian approach and the penalty
function method. The gist of this method is that the
Lagrangian is augmented with a penalty function which
increases with the violation of constraints. The
introduction of the Lagrange multipliers solves the
conditioning problem posed by pure penalty methods
[23]. The strategy for solving these problems is by
primal-dual approach. This means dividing the problem
into an inner loop and an outer loop. The inner loop, is
where the decision variables are updated to minimize the
cost function. Whereas, the outer loop updates the
Lagrange multipliers, after the internal loop has
converged, to maximize the cost function. For this reason,
these problems are known also as minimax problems. It
is paramount to have a correct Lagrange multipliers
update formulation, which can be linear as well as
nonlinear [2]. The inner loop rigorous convergence is not
necessary for the complete algorithm to converge and
some problems showed convergence also when the inner
loop is only approximately solved as in [24]. The
prevalence of one of these methods on another is yet to
be proven, however the tendency of penalty function
method to increase nonlinearity and slow down
convergence rates is well known and documented [23].
An improved method, based on a mixed approach of
augmented Lagrangian and range space active set method,
was implemented by Yakowitz [25] and reprised by
Lantoine and Russell in HDDP [2].

1.1.4 Differential Dynamic Programming

To solve larger problems with an admissible amount
of computational power, DDP was introduced. DDP is a
technique available for problems that can be
reformulated as a dynamic optimization problem. What
DDP does is discretizing the optimization into smaller
subproblems, dividing the decision vector in smaller sub
vectors that only influence local and future optimization
steps. Optimizing for each stage on the control variables
of that stage, yields a linear scaling of the problem with
the number of control variables [26,27]. The founding
assumption of DDP is Bellman’s Principle of Optimality
developed for pure Dynamic Programming [28]. This
solution method allows for the computation of an optimal
feedback control law from the trajectory for any initial
conditions. Unfortunately, this requires prohibitive
amount of computational power/storage, hence
generating the so-called "curse of dimensionality". DDP
is, therefore, a development of pure Dynamic
Programming based on a quadratic expansion of the cost
in the neighbourhood of a reference trajectory,
effectively rendering the minimization a localized
problem, hence sacrificing globality. The reference
trajectory is then updated iteratively and so are its second
order expansions. A feedback law, based on the
perturbations of states, is generated during a process

called "backward-sweep" so as to improve the following
iterate. Instead, during the "forward-sweep", the
dynamics of the system subject to this feedback law is re-
computed. Analytical quadratic expansions, moreover,
allow for improved convergence with respect to previous
linear problems or to numerically approximated second
order problems. However, DDP is mainly suitable for
smooth, unconstrained problems. This is, in fact, the
original form in which it was formulated [26]. Several
attempts were made at applying DDP also to constrained
problems, and an overview of the spectrum of different
approaches is presented by Yakowit [29]. The latest
methods have started to include well validated NLP
techniques in DDP, for example in the work of Lantoine
and Russell [2,31]. The state of the art in low-thrust
optimal control is Mystic software developed by Whiffen
[31,32] and it is based on a DDP variant. Mystic exploits
a Hessian shifting technique to enforce convexity of the
optimization problems and has a penalty function for
treating constraints. Another method that relies on DDP
is HDDP [2,31,33,34] which is a multi-phase, multi-stage
method that uses augmented Lagrangian technique to
treat phase constraints. On the other hand, each stage is
constrained via null-space methods directly during
optimization. Moreover, instead of a generic Hessian
shifting technique, HDDP implements a trust region
algorithm to guarantee boundedness of the solution and
convexity of the cost function. Being this algorithm
multiple-phase but non multiple-shooting, the
subproblems are solved in a succession and not
independently in parallel. The attempt at applying
multiple shooting principles to HDDP was made by
Pellegrini [35].

1.1.5 Robust Control

Especially in space applications, the uncertainties are
many and they have a great impact on the mission’s
outcome. The impact of unmodeled dynamical
perturbations, as well as the scarce knowledge of the
system initial state, produces a very rapid error
accumulation in the trajectory. Together with the
accumulation of uncertainties on system parameters,
non-deterministic constraints and terminal condition can
be detrimental to the mission’s reference path [1]. Instead
of using empirical margins to estimate the propellant
necessary for corrections, there has been a growing
interest in a robust optimal low-thrust trajectory design
strategy. The main benefit coming from this technique
would be the possibility to reduce the modelling cost for
small satellites, allowing for some errors, which would
reduce the cost for research rendering it more accessible
[36]. Classical approaches to the solution of optimization
problems under uncertainties, rely on the assumption of
linearity both of dynamics and feedback control [37]. To
face also nonlinear problems, Theodorou et al. [38] have
exploited Stochastic Differential Dynamic Programming

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-F1.2.3 Page 5 of 15

(SDDP) to minimize the expected value of the cost
function. Finally, a new set of optimization techniques is
introduced. They do not rely on any statistical hypothesis
on the uncertainties and they belong to the so-called
semi-analytic methods. They try to add to this debate by
introducing new mathematical tools to treat uncertainties.
One of the possible approaches is Interval Analysis, a
mathematical tool developed by Moore [39]. The main
idea of Interval Analysis is the substitution of real
numbers with intervals of real numbers. Arithmetic and
analysis of intervals are substituted to the usual ones
acting on real numbers. Therefore, acting on the interval
of all possible initial values will yield all possible final
values as outputs. This technique can be exploited to
propagate effectively errors and uncertainties, but it may
as well result in an artificially high overestimation of the
solution (i.e. “wrapping effect”) [40]. Following this train
of thoughts has led to the development of a substitute for
interval analysis that still retains the idea of propagating
more than a single state vector. Differential algebra (DA)
guarantees such an instrument. After reducing the
optimization problem to a two-point boundary value
problem, DA is used to expand the solution of the optimal
problem with respect to initial and terminal conditions
about a reference trajectory. In doing so, the optimal
trajectory and feedback law are computed only once as
polynomial maps, and the retrieval of the optimal
feedback control policy is obtained as simple polynomial
evaluation when different final or initial conditions are
imposed [41]. The feedback laws obtained with this
approach can be evaluated to an arbitrarily high order.

1.1.6 Differential Algebra

In this framework, an introduction to differential
algebra is paramount for the following work. The reason
why DA was invented in the first place, was to obtain the
solution to analytical problems applying algebraic
techniques [42]. The application of DA was extended by
Berz [43] for the solution of differential equations and
partial differential equations. DA’s founding assumption
is that it is possible to convey more information about
functions than just their values at specific points, being
this extra information the Taylor expansion of the
function at a certain location up to arbitrary order.
Historically, numerical treatment of functions was, in
fact, based on floating point arithmetic operations at
some specific evaluation points. To achieve the same
goal for functions, computer programs were developed,
so that they could implement operations between them in
a similar way as they are implemented for real numbers.
The key feature of DA is in fact its ability to efficiently
represent functions in a computer environment in a way
that they can be easily manipulated via usual arithmetic
expressions. For each operation defined between
functions, an equivalent one is coded to act on their
Taylor expansions. In this way, the Taylor expansion of

the result of an operation between functions is equivalent
to applying a corresponding operator to the operands and
vice versa. The computer implementation of differential
algebra, allows for the computation of a function’s values
and its Taylor expansion coefficients up to an arbitrary
order with a fixed amount of computational effort.
Similarly to floating points numbers, elementary
operators and algorithm to perform more complex tasks
can be implemented in computer environment [42,44].

1.2 Work Outline

In this work, the application of DA for the
improvement of some aspects of HDDP is studied. DA is
exploited for its ability to retrieve precise high order
derivatives of functions along with the functions values.
These properties are exploited to propagate the needed
partials of the cost function and to obtain feedback laws
as inversion of polynomial maps at arbitrarily high order.
Additionally, this allows to consider perturbed dynamics
with little to no effort. After the theoretical setup has been
laid, the methodology is introduced in section 2, in which
a clear explanation of the application of DA techniques
in HDDP is provided. Following this section, some
examples are provided in section 3 and 4, where models
and their results are detailed. Finally, the discussion of
the results and conclusions are presented in the final
section 5, where further research directions are also
suggested.

2. Material and methods

A general overview of DDP has been given by
Yakowitz [29], the reader is directed to his work for
details. This technique is paramount to understand the
work of Lantoine and Russell [2] in HDDP which is a
stepping stone for this paper. The reader is encouraged to
go through the referenced texts to better understand this
work, which is not reviewed here in order to avoid
repetition.

2.1 HDDP Based on Polynomial Maps

The general outline of the modifications implemented
to HDDP is given in this section. The DA makes it
possible to compute the derivatives of a function f in v
variables up to order n along with the computation of the
function’s value.

This has important consequences when the dynamical
function that maps the states from stage k to stage k+1 is
obtained via numerical integration. Without a loss of
generality, one can express the expansion of an ODE in
one variable as:

�
�̇�𝑥 = 𝑓𝑓(𝑥𝑥)
𝑥𝑥(𝑡𝑡0) = 𝑥𝑥0

 (1)

The solution of this ODE equation requires algebraic

operations to be performed, together with the evaluation

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-F1.2.3 Page 6 of 15

of f at several time instants. Thanks to this, if the initial
point is initialized as its constant part plus the DA identity
(i.e. the Taylor expansion of its identity function) [𝑥𝑥0] =
 𝑥𝑥0 + 𝛿𝛿𝑥𝑥0, then the Taylor expansion of the solution at
each integration step is obtained as a function of variation
from reference initial conditions. The procedure is
described with a first order Euler integration scheme, but
any ODE scheme ideally exploits the same algebraic
operations. Using a first order scheme as 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 +
𝑓𝑓(𝑥𝑥𝑘𝑘)Δ𝑡𝑡 , then by the properties of DA [42] this new
value can be expressed as [𝑥𝑥𝑘𝑘+1] = [𝑥𝑥𝑘𝑘] + 𝑓𝑓([𝑥𝑥𝑘𝑘])Δ𝑡𝑡 .
The extraction of the operator 𝑓𝑓([𝑥𝑥𝑘𝑘]) gives the Taylor
expansion of the function f about the starting condition
𝑥𝑥𝑘𝑘 as a function of 𝛿𝛿𝑥𝑥𝑘𝑘, expressed as 𝑓𝑓(𝑥𝑥𝑘𝑘) + ℳ𝑓𝑓(𝛿𝛿𝑥𝑥𝑘𝑘)
(constant and differential part of the expansion). The
remaining algebraic operations help to compute [𝑥𝑥𝑘𝑘+1] =
𝑥𝑥𝑘𝑘+1 + ℳ𝑥𝑥𝑘𝑘+1(𝛿𝛿𝑥𝑥𝑘𝑘) which represents the expansion of
𝑥𝑥𝑘𝑘+1 with respect to the initial value 𝑥𝑥𝑘𝑘 about the
reference point 𝑥𝑥𝑘𝑘+1. If the procedure is continued, then
at the step 𝑘𝑘 + 2 :

[𝑥𝑥𝑘𝑘+2] = [𝑥𝑥𝑘𝑘+1] + Δ𝑡𝑡𝑓𝑓([𝑥𝑥𝑘𝑘+1]) =
= 𝑥𝑥𝑘𝑘+1 + ℳ𝑥𝑥𝑘𝑘+1(𝛿𝛿𝑥𝑥𝑘𝑘) + Δ𝑡𝑡𝑓𝑓(𝑥𝑥𝑘𝑘+1 + ℳ𝑥𝑥𝑘𝑘+1(𝛿𝛿𝑥𝑥𝑘𝑘));
[𝑥𝑥𝑘𝑘+2] = 𝑥𝑥𝑘𝑘+1 + ℳ𝑥𝑥𝑘𝑘+2(𝛿𝛿𝑥𝑥𝑘𝑘);

 (2)

This procedure gives, [𝑥𝑥𝑘𝑘+2] = 𝑥𝑥𝑘𝑘+2 + ℳ𝑥𝑥𝑘𝑘+2(𝛿𝛿𝑥𝑥𝑘𝑘)

and can be repeated for each integration step from 𝑥𝑥0 up
to the desired integration interval 𝑁𝑁 , so that the final
result is: [𝑥𝑥𝑁𝑁] = 𝑥𝑥𝑁𝑁 + ℳ𝑥𝑥𝑁𝑁(𝛿𝛿𝑥𝑥0) . This result comes
from the fact that propagating ODE system in the DA
framework only requires evaluations of the right-hand
side, algebraic operations and composition of DA
polynomials. This result holds its validity for multi-
variable functions propagated through higher order ODE
schemes. In HDDP, this is exploited for estimating the
partials removing the STM computation step. During the
forward sweep of the algorithm, the variables at step 𝑘𝑘
are initialized as their value on the reference trajectory
plus their DA identity, one per each independent variable
needed (i.e. controls, states, Lagrange multipliers).

[𝑥𝑥𝑘𝑘] = 𝑥𝑥𝑘𝑘 + 𝛿𝛿𝑥𝑥𝑘𝑘;
[𝑢𝑢𝑘𝑘] = 𝑢𝑢𝑘𝑘 + 𝛿𝛿𝑢𝑢𝑘𝑘;
[𝜔𝜔] = 𝜔𝜔 + 𝛿𝛿𝜔𝜔;
[𝜆𝜆] = 𝜆𝜆 + 𝛿𝛿𝜆𝜆;

 (3)

Then the dynamic transition function of the system is

applied to these DA objects and the result is:

[𝑥𝑥𝑘𝑘+1] = 𝐹𝐹([𝑥𝑥𝑘𝑘], [𝑢𝑢𝑘𝑘], [𝜔𝜔]) = 𝑥𝑥𝑘𝑘+1 +
ℳ𝑥𝑥𝑘𝑘+1(𝛿𝛿𝑥𝑥𝑘𝑘 , 𝛿𝛿𝑢𝑢𝑘𝑘, 𝛿𝛿𝜔𝜔) (4)

Notice how, regardless of the shape of 𝐹𝐹 , being it
analytical or numerically integrated via ODE, this

expression retains its value and guarantees the correct
partials. This equation represents the nominal value of
the new state and its high order polynomial expansion
ℳ𝑥𝑥𝑘𝑘+1 as a high order polynomial of 𝛿𝛿𝑥𝑥𝑘𝑘 , 𝛿𝛿𝑢𝑢𝑘𝑘, 𝛿𝛿𝜔𝜔 about
the reference starting condition at instant 𝑘𝑘. At each stage
these maps are stored, they contain all the information on
partial derivatives needed for propagation of partials of
the cost function.

2.2 Backward Sweep on Stages

When treating the backward sweep across the stages
of a phase, the index of the phase is removed to reduce
notation complexity. At the beginning of the backward
sweep, the state 𝑥𝑥𝑁𝑁+1 is available as well as the value of
Lagrange multipliers λ, and they are augmented with
their DA identity functions generating [𝑥𝑥𝑁𝑁+1] and [𝜆𝜆] .
Without loss of generality, the final cost can be expressed
as:

�𝜙𝜙

~
� = 𝜙𝜙

~
([𝑥𝑥𝑁𝑁+1], [𝜆𝜆], [𝜔𝜔]) = 𝜙𝜙

~
+ ℳ𝜙𝜙(𝛿𝛿𝑥𝑥𝑁𝑁+1, 𝛿𝛿𝜆𝜆, 𝛿𝛿𝜔𝜔); (5)

In the forward sweep, the transition maps 𝛿𝛿𝑥𝑥𝑘𝑘+1 =

ℳ𝑥𝑥𝑘𝑘+1(𝛿𝛿𝑥𝑥𝑘𝑘 , 𝛿𝛿𝑢𝑢𝑘𝑘, 𝛿𝛿𝜔𝜔) were stored, therefore it is
possible to retrieve the last map ℳ𝑥𝑥𝑁𝑁+1 for usage. To
start the backward sweep, this polynomial map is
composed with that of 𝜙𝜙�, allowing for the expression of:

[𝐽𝐽𝑁𝑁+1] = 𝜙𝜙

~
+ ℳ𝜙𝜙(𝛿𝛿𝑥𝑥𝑁𝑁+1, 𝛿𝛿𝜆𝜆, 𝛿𝛿𝜔𝜔) =

= 𝜙𝜙
~

+ ℳ𝜙𝜙(ℳ𝑁𝑁+1(𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝑢𝑢𝑁𝑁 , 𝛿𝛿𝜔𝜔), 𝛿𝛿𝜆𝜆, 𝛿𝛿𝜔𝜔);
[𝐽𝐽𝑁𝑁+1] = 𝐽𝐽𝑁𝑁+1 + ℳ𝐽𝐽𝑁𝑁+1(𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝑢𝑢𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆);

 (6)

To the last term of this equation, the last stage cost

(provided there is one) must be added [𝐿𝐿𝑁𝑁] = 𝐿𝐿𝑁𝑁 +
ℳ𝐿𝐿𝑁𝑁(𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝑢𝑢𝑁𝑁, 𝛿𝛿𝜔𝜔).

[𝐽𝐽𝑁𝑁] = [𝐽𝐽𝑁𝑁+1] + [𝐿𝐿𝑁𝑁] = 𝐽𝐽𝑁𝑁 + ℳ𝐿𝐿𝑁𝑁(𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝑢𝑢𝑁𝑁 , 𝛿𝛿𝜔𝜔); (7)

The next step of the algorithm, is to solve he
optimization problem: the gradient of 𝐽𝐽𝑁𝑁 with respect to
𝑢𝑢𝑁𝑁 must be set to 0. Therefore, a control law can be
retrieved by exploiting DA maps inversion. The
derivatives of 𝐽𝐽𝑁𝑁 with respect to 𝑢𝑢𝑁𝑁 can be taken in the
neighbourhood of 𝑢𝑢𝑁𝑁 thanks to the differentiation
operator available in DACE, and then they can be set to
zero:

[𝐽𝐽𝑢𝑢,𝑁𝑁] = 𝐽𝐽𝑢𝑢,𝑁𝑁 + ℳ𝐽𝐽𝑢𝑢,𝑁𝑁(𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝑢𝑢𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆) = 0; (8)

The feedback law 𝛿𝛿𝑢𝑢𝑁𝑁(𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆) is now obtained
via map inversion as in Equation (9). To guarantee the
feasibility of this inversion, some identity polynomial
maps have been introduced to exploit the inversion

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-F1.2.3 Page 7 of 15

operator available in DACE. Such operator is based on
reducing the inversion problem to a fixed-point problem.

𝛿𝛿𝐽𝐽𝑢𝑢,𝑁𝑁 = ℳ𝐽𝐽𝑢𝑢,𝑁𝑁(𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝑢𝑢𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆);
𝛿𝛿𝑢𝑢𝑁𝑁 = ℳ𝐽𝐽𝑢𝑢,𝑁𝑁

−1 (𝛿𝛿𝐽𝐽𝑢𝑢,𝑁𝑁 , 𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆); (9)
𝛿𝛿𝑢𝑢𝑁𝑁 = 𝛿𝛿𝑢𝑢𝑁𝑁�𝛿𝛿𝐽𝐽𝑢𝑢,𝑁𝑁 , 𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆�;

The polynomials relative to 𝛿𝛿𝑢𝑢𝑁𝑁 are extracted and
their coefficients stored for usage in the forward sweep,
after their evaluation in 𝛿𝛿𝐽𝐽𝑢𝑢,𝑁𝑁 = −𝐽𝐽𝑢𝑢,𝑁𝑁 to guarantee that
the feedback law extremizes the cost. The final input
expression is, therefore, Equation (10).

𝛿𝛿𝑢𝑢𝑁𝑁∗ = 𝛿𝛿𝑢𝑢𝑁𝑁∗ (𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆); (10)

Recovering now the DA function 𝐽𝐽𝑁𝑁, it is possible to
compose the polynomial [𝐽𝐽𝑁𝑁] with these maps of 𝛿𝛿𝑢𝑢𝑁𝑁∗
and obtain the optimized cost as Equation (11).

[𝐽𝐽𝑁𝑁∗] = 𝐽𝐽𝑁𝑁 + ℳ𝐽𝐽𝑁𝑁(𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝑢𝑢𝑁𝑁∗ (𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆), 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆) =
𝐽𝐽𝑁𝑁∗ + ℳ𝐽𝐽𝑁𝑁

∗ (𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆); (11)

The expected reduction can now be estimated by
evaluating on the reference trajectory:

𝐸𝐸𝑅𝑅𝑁𝑁 = [𝐽𝐽𝑁𝑁] − [𝐽𝐽𝑁𝑁∗] = 𝐽𝐽𝑁𝑁 − 𝐽𝐽𝑁𝑁∗ ; (12)

Once the step 𝑁𝑁 is performed, the cost is propagated
backward:

[𝐽𝐽𝑁𝑁−1] = 𝐿𝐿𝑁𝑁−1 + ℳ𝐿𝐿𝑁𝑁−1(𝛿𝛿𝑥𝑥𝑁𝑁−1, 𝛿𝛿𝑢𝑢𝑁𝑁−1, 𝛿𝛿𝜔𝜔) + 𝐽𝐽𝑁𝑁∗

+ ℳ𝐽𝐽𝑁𝑁
∗ (𝛿𝛿𝑥𝑥𝑁𝑁 , 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆);

= 𝐿𝐿𝑁𝑁−1 + ℳ𝐿𝐿𝑁𝑁−1(𝛿𝛿𝑥𝑥𝑁𝑁−1, 𝛿𝛿𝑢𝑢𝑁𝑁−1, 𝛿𝛿𝜔𝜔) + 𝐽𝐽𝑁𝑁∗ +
ℳ𝐽𝐽𝑁𝑁

∗ �ℳ𝑥𝑥𝑁𝑁(𝛿𝛿𝑥𝑥𝑁𝑁−1, 𝛿𝛿𝑢𝑢𝑁𝑁−1, 𝛿𝛿𝜔𝜔), 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆� = (13)
= 𝐽𝐽𝑁𝑁−1 + ℳ𝐽𝐽𝑁𝑁−1(𝛿𝛿𝑥𝑥𝑁𝑁−1, 𝛿𝛿𝑢𝑢𝑁𝑁−1, 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆);

Having shown how to start the iteration process, at the
generic step k the process performs the following steps:

• [𝐽𝐽𝑘𝑘] = [𝐿𝐿𝑘𝑘] + [𝐽𝐽𝑘𝑘+1∗] is composed with the
dynamic mappings obtained during the forward
sweep and stored as 𝛿𝛿𝑥𝑥𝑘𝑘+1 =
ℳ𝑥𝑥𝑘𝑘+1(𝛿𝛿𝑥𝑥𝑘𝑘 , 𝛿𝛿𝑢𝑢𝑘𝑘, 𝛿𝛿𝜔𝜔) to obtain [𝐽𝐽𝑘𝑘] = 𝐽𝐽𝑘𝑘 +
ℳ𝐽𝐽𝑘𝑘(𝛿𝛿𝑥𝑥𝑘𝑘 , 𝛿𝛿𝑢𝑢𝑘𝑘, 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜆𝜆).

• Derivatives of [𝐽𝐽𝑘𝑘] are extracted and the
gradient with respect to the controls is equated
to zero as in Equation (8).

• The gradient 𝛿𝛿𝐽𝐽𝑢𝑢,𝑘𝑘 is augmented with identity
maps to guarantee inversion and inverted as in
Equation (9).

• The feedback law in polynomial form is
evaluated in 𝛿𝛿𝐽𝐽𝑢𝑢,𝑘𝑘 = −𝐽𝐽𝑢𝑢,𝑘𝑘 and the feedback
polynomial law is substituted in 𝐽𝐽𝑘𝑘 to obtain 𝐽𝐽𝑘𝑘∗
as in Equation (11).

• The expected reduction is obtained by
extracting the difference between the nominal
value of 𝐽𝐽𝑘𝑘 and 𝐽𝐽𝑘𝑘∗ on the reference trajectory
(i.e. 𝛿𝛿𝑥𝑥𝑘𝑘 = 0, 𝛿𝛿𝜔𝜔 = 0, 𝛿𝛿𝜆𝜆 = 0), the algorithm
proceeds to 𝑘𝑘 − 1.

The process can be repeated per each step until step 0

of the phase. It is important to notice how this method,
when the arbitrary order is set to 𝑚𝑚 = 2, retrieves the
same partials mapping and linear feedback law as pure
HDDP, without the cumbersome formulation of partial
derivatives of dynamic functions, or integration of a
system of ODEs of size 𝑁𝑁 + 𝑁𝑁2 + 𝑁𝑁3 , where 𝑁𝑁 is the
number of variables.

2.3 Constraints Handling Techniques

The constraint handling techniques are the same as
HDDP but with slight modifications. To enforce null-
space methods as in the standard HDDP for control
bounds, the nominal polynomial feedback is evaluated on
the reference trajectory (i.e.𝛿𝛿𝑥𝑥𝑘𝑘 = 0, 𝛿𝛿𝜔𝜔 = 0, 𝛿𝛿𝜆𝜆 = 0). If
a constraint is violated, the polynomial function is
substituted with a constant 𝛿𝛿𝑢𝑢𝑘𝑘 that fixes the controls at
the next iteration on the control bounds, the control is
removed from the set of active controls and the process
is repeated with the remaining constraints (e.g. Mono-
Dimensional Landing Problem in section 3.2). The
treatment of nonlinear constraints requires the
introduction of other DA variables, the Lagrange
multipliers of stage nonlinear active constraints 𝜈𝜈𝑘𝑘. The
set of active constraints are estimated by checking if the
nominal 𝛿𝛿𝑢𝑢𝑘𝑘 violates them exactly as in HDDP. Then,
the Lagrangian ℒ is constructed adding the term 𝜈𝜈𝑘𝑘(𝑔𝑔𝑘𝑘)
to the cost function, and it is minimized with respect to
𝛿𝛿𝑢𝑢𝑘𝑘 and 𝛿𝛿𝜈𝜈𝑘𝑘.

�
𝛿𝛿ℒ𝑢𝑢,𝑘𝑘
𝛿𝛿ℒ𝜈𝜈,𝑘𝑘

� = �
ℳℒ𝑢𝑢,𝑘𝑘

ℳℒ𝜈𝜈,𝑘𝑘
�

⎝

⎜
⎛

𝛿𝛿𝑥𝑥𝑘𝑘
𝛿𝛿𝑢𝑢𝑘𝑘
𝛿𝛿𝜔𝜔
𝛿𝛿𝜆𝜆
𝛿𝛿𝜈𝜈𝑘𝑘⎠

⎟
⎞

;

𝛿𝛿𝑢𝑢𝑘𝑘 = �
ℳℒ𝑢𝑢,𝑘𝑘

ℳℒ𝜈𝜈,𝑘𝑘
�
−1

⎝

⎜
⎛

𝛿𝛿ℒ𝑢𝑢,𝑘𝑘
𝛿𝛿ℒ𝜈𝜈,𝑘𝑘
𝛿𝛿𝑥𝑥𝑘𝑘
𝛿𝛿𝜔𝜔
𝛿𝛿𝜆𝜆 ⎠

⎟
⎞

;

 (14)

The optimal constrained feedback is obtained by

evaluating 𝛿𝛿𝑢𝑢𝑘𝑘 in 𝛿𝛿ℒ𝑢𝑢,𝑘𝑘 = −ℒ𝑢𝑢,𝑘𝑘 and 𝛿𝛿ℒ𝜈𝜈,𝑘𝑘 = −ℒ𝜈𝜈,𝑘𝑘 .
The process can then continue as before, noting that there
is no need to store these Lagrange multipliers as they are
not needed during the iteration.

2.4 Backward Sweep on Phases

To extend the backward sweep across phases after all
the stages on phase 𝑖𝑖 have been minimized, another

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-F1.2.3 Page 8 of 15

composition of maps is necessary. At the end of a phase,
it is necessary to initialize other variables as DA
variables, adding their identity polynomials. There are
𝛿𝛿𝜔𝜔𝑖𝑖 , 𝛿𝛿𝜔𝜔𝑖𝑖−1, 𝛿𝛿𝜆𝜆𝑖𝑖 , 𝛿𝛿𝜆𝜆𝑖𝑖−1 and 𝛿𝛿𝑥𝑥𝑖𝑖 . The notation is here
simplified again, values indexed − refer to multipliers,
controls and states pertinent to phase 𝑖𝑖 − 1, whereas the
index + refers to the same quantities at phase 𝑖𝑖. First, the
initial conditions of a stage are exploited. At the end of
the sweep on phase 𝑖𝑖, the cost is:

[𝐽𝐽+∗] = 𝐽𝐽+∗ + ℳ𝐽𝐽+∗ (𝛿𝛿𝑥𝑥+, 𝛿𝛿𝜔𝜔+, 𝛿𝛿𝜆𝜆+); (15)

 To this cost, it is necessary to add the termination

cost of phase 𝑖𝑖 − 1 which, thanks to DA, is expressed as:

[𝜙𝜙
~
−] = 𝜙𝜙

~
− + ℳ

𝜙𝜙
~
−

(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝑥𝑥+, 𝛿𝛿𝜔𝜔+, 𝛿𝛿𝜆𝜆−); (16)

Therefore, in a similar way as for HDDP, applying

[Γ(𝜔𝜔+)] = [𝑥𝑥+] and composing the cost function with it,
gives:

[𝐽𝐽−] = 𝐽𝐽+∗ + 𝜙𝜙

~
− + ℳ

𝜙𝜙
~
−

(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝑥𝑥+, 𝛿𝛿𝜔𝜔+, 𝛿𝛿𝜆𝜆−) +
ℳ𝐽𝐽+∗ (𝛿𝛿𝑥𝑥+, 𝛿𝛿𝜔𝜔+, 𝛿𝛿𝜆𝜆+) = 𝐽𝐽− +
ℳ𝐽𝐽−(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝜔𝜔+, 𝛿𝛿𝜆𝜆−, 𝛿𝛿𝜆𝜆+); (17)

This substitution effectively removes the dependency
from 𝛿𝛿𝑥𝑥+ . To retain the same scheme of HDDP and
obtaining the same results when the order of the problem
is set to 2, the problem is uncoupled as it was done in
HDDP. The derivatives with respect to 𝛿𝛿𝜆𝜆+ will only
present mixed terms with 𝛿𝛿𝜔𝜔+ as the only component of
Equation (17) in which 𝛿𝛿𝜆𝜆+ appears is Equation (15).
Therefore, the following solution is setup by equating the
gradient of this equation with respect to 𝛿𝛿𝜆𝜆+ to zero.

𝛿𝛿𝐽𝐽𝜆𝜆+,− = ℳ𝐽𝐽𝜆𝜆+,−

(𝛿𝛿𝜆𝜆+, 𝛿𝛿𝜔𝜔+);

𝛿𝛿𝜆𝜆+ = ℳ𝐽𝐽𝜆𝜆+,−
−1 (𝛿𝛿𝐽𝐽𝜆𝜆+,−, 𝛿𝛿𝜔𝜔+);

 (18)

This equation retrieves a feedback law for 𝛿𝛿𝜆𝜆+(𝛿𝛿𝜔𝜔+)

by evaluating it in 𝛿𝛿𝐽𝐽𝜆𝜆+,− = −𝐽𝐽𝜆𝜆+,−. By composing this
polynomial map with Equation (17), Equation (19) is
retrieved.

[𝐽𝐽−∗1] = 𝐽𝐽−∗1 + ℳ𝐽𝐽−

∗1(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝜔𝜔+, 𝛿𝛿𝜆𝜆−); (19)

Once again, the feedback law for 𝛿𝛿𝜔𝜔+ is obtained by

equating to zero the gradient of Equation (19) with
respect to these variables:

𝛿𝛿𝐽𝐽𝜔𝜔+,−

∗1 = ℳ𝐽𝐽𝜔𝜔+,−
∗1 (𝛿𝛿𝜔𝜔+, 𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝜆𝜆−);

𝛿𝛿𝜔𝜔+ = ℳ𝐽𝐽𝜔𝜔+,−
∗1
−1 �𝛿𝛿𝐽𝐽𝜔𝜔+,−

∗1 , 𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝜆𝜆−�;
 (20)

This is the final step in the phase optimization
procedures, as now the feedback law of
𝛿𝛿𝜔𝜔+(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝜆𝜆−) can be retrieved by imposing
𝛿𝛿𝐽𝐽𝜔𝜔+,−

∗1 = −𝐽𝐽𝜔𝜔+,−
∗1 . If this feedback law is substituted into

Equation (19), the optimal function at the beginning of
phase 𝑖𝑖 − 1 is found, and the stages backward sweep can
re-start:

[𝐽𝐽−∗] = 𝐽𝐽−∗1 +
ℳ𝐽𝐽−

∗1(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝜔𝜔+(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜆𝜆−, 𝛿𝛿𝜔𝜔−), 𝛿𝛿𝜆𝜆−) = 𝐽𝐽−∗ +
ℳ𝐽𝐽−∗ (𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜔𝜔−, 𝛿𝛿𝜆𝜆−); (21)

The expected reduction of this step can still be

computed as the difference between Equation (21) and
Equation (19) after substituting the optimal 𝛿𝛿𝜔𝜔+∗
feedback law and evaluating it on the reference trajectory
(all variations set to 0).

𝐸𝐸𝑅𝑅− = [𝐽𝐽−] − [𝐽𝐽−∗]; (22)

Moreover, the feedback law for 𝛿𝛿𝜔𝜔+ is now

available, and the updating scheme of the Lagrange
multipliers can be obtained as composition of:

𝛿𝛿𝜆𝜆+(𝛿𝛿𝜔𝜔+);
𝛿𝛿𝜔𝜔+(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜆𝜆−, 𝛿𝛿𝜔𝜔−);
𝛿𝛿𝜆𝜆+ = 𝛿𝛿𝜆𝜆+(𝛿𝛿𝜔𝜔+(𝛿𝛿𝑥𝑥−, 𝛿𝛿𝜆𝜆−, 𝛿𝛿𝜔𝜔−));

 (23)

2.5 Trust Region Algorithm

For the treatment of Trust Region limitation and to
guarantee a descent direction, the same approach as
standard HDDP is used. The TRQP algorithm is applied
on the Hessians and gradient. Afterwards, the cost
function is modified by adding a shift of 𝛾𝛾 to the
coefficients of second order of the cost function 𝐽𝐽, so that
the new modified cost 𝐽𝐽𝑚𝑚 has the same Hessian as the
shifted cost. To conclude, the gradient of the modified
cost is taken equal to 0, and the feedback laws are
retrieved. For example, to shift the input Hessian the
procedure is the following:

• Starting from [𝐽𝐽𝑘𝑘], the derivatives with respect to 𝛿𝛿𝑢𝑢𝑘𝑘

are stored in the gradient and the Hessian matrix.
• These matrices are used in the TRQP procedure.
• The [𝐽𝐽𝑚𝑚] function is obtained: [𝐽𝐽𝑚𝑚] = 𝐽𝐽𝑘𝑘 + 𝛾𝛾𝛿𝛿𝑢𝑢𝑘𝑘𝑇𝑇𝛿𝛿𝑢𝑢𝑘𝑘
• This modified 𝐽𝐽 is used to obtain the feedback law, by

imposing the gradient to be zero.
• The algorithm proceeds by substituting this feedback

into the cost function [𝐽𝐽𝑘𝑘] to obtain [𝐽𝐽𝑘𝑘∗].

This algorithm poses a limitation on the size of the

quadratic trust-region, even for higher orders. Future
research directions aim at modifying this step to exploit
the full potential of DA and higher orders.

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-F1.2.3 Page 9 of 15

3. Study Cases
Three example applications are here reported, a first

validation example, one application of mono-
dimensional landing and a test case for orbital
perturbations.

3.1 Linear-Quadratic Problem

The solution of this exercise is implemented
according to Lantoine and Russell [31] with some minor
modifications. This example is known to converge for
HDDP and the preliminary test is to assess whether DA
introduction spoiled convergence. This kind of problems
is linear in the controls and quadratic in cost, moreover it
has linear constraints. This structure makes it possible to
retain quadratic augmented cost, thanks to the linearity of
the constraints. Therefore, these problems should
converge in only one iteration for methods based on
augmented Lagrangian.

Similarly to the test case in [31], this example exploits
2 phases (𝑀𝑀 = 2) and 5 stages per each phase (𝑁𝑁1 =
𝑁𝑁2 = 5). The transition functions 𝐹𝐹𝑖𝑖,𝑗𝑗 are defined as:

𝑥𝑥𝑖𝑖,𝑗𝑗+1 = 𝐹𝐹𝑖𝑖,𝑗𝑗(𝑥𝑥𝑖𝑖,𝑗𝑗 ,𝑢𝑢𝑖𝑖,𝑗𝑗) = �
𝑟𝑟𝑖𝑖,𝑗𝑗+1
𝑣𝑣𝑖𝑖,𝑗𝑗+1� = �

𝑟𝑟𝑖𝑖,𝑗𝑗 + 𝑣𝑣𝑖𝑖,𝑗𝑗
𝑣𝑣𝑖𝑖,𝑗𝑗 + 𝑢𝑢𝑖𝑖,𝑗𝑗

� ; (24)

The stage constraints 𝑔𝑔𝑖𝑖,𝑗𝑗 are not present, on the

contrary the phase constraints 𝜓𝜓1 at the end of phase 1
and 𝜓𝜓2 at the end of phase 2 are defined as follows:

𝜓𝜓1 = 𝑥𝑥2,1 − 𝑥𝑥1,6 = 0;
𝜓𝜓2 = 𝑥𝑥2,6 − 𝑥𝑥𝑡𝑡 = 0; (25)

The final objective state here is defined by 𝑥𝑥𝑡𝑡 and it is

a targeted point at the end of the second phase. The first
phase constraint is just imposing continuity between the
last stage of the first phase and the starting stage of the
second phase. The constant controls 𝜔𝜔 are defined only
on the second phase, as in the first phase every parameter
is fixed. 𝜔𝜔2 are used to parametrize the initial conditions
of the second phase as 𝑥𝑥2,1 = Γ(𝜔𝜔2) = 𝜔𝜔2. Finally, the
stage cost function is formulated as 𝐿𝐿𝑖𝑖,𝑗𝑗 = �𝑢𝑢𝑖𝑖,𝑗𝑗�

2
.

3.2 Mono-Dimensional Landing

The dynamic formulation of this problem is reprised
from Lantoine and Russell [34]. The objective function
is formulated as 𝐽𝐽1 = −𝑚𝑚𝑓𝑓 , hence with only one phase
whose cost is −𝑚𝑚�𝑡𝑡𝑓𝑓� and no stage cost 𝐿𝐿𝑘𝑘 . The
dynamics that need to be integrated are:

�
�̇�𝑥
�̇�𝑣
�̇�𝑚
� = �

𝑣𝑣
−𝑔𝑔 + 𝑇𝑇

𝑚𝑚

− 𝑇𝑇
𝑔𝑔0𝐼𝐼𝐼𝐼𝐼𝐼

� ; (26)

The number of stages considered are ten, and the
constraints on those are control bounds with 𝑢𝑢𝑈𝑈 = 1.227
and 𝑢𝑢𝐿𝐿 = 0.0 . They can be treated with null space
method or with range space active set method. The phase
constraint is:

�
𝑥𝑥�𝑡𝑡𝑓𝑓�
𝑣𝑣�𝑡𝑡𝑓𝑓�

� = �0.0
0.0� ; (27)

Finally, the initial conditions and parameters are:

⎣
⎢
⎢
⎢
⎢
⎡ 𝑥𝑥

(0)
𝑣𝑣(0)
𝑚𝑚(0)
𝑇𝑇𝑇𝑇𝐹𝐹
𝑔𝑔0𝐼𝐼𝐼𝐼𝐼𝐼
𝑔𝑔 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

1.0
0.783

1.0
1.397
2.349

1.0 ⎦
⎥
⎥
⎥
⎥
⎤

; (28)

The provided model of the system is already scaled
for improved convergence. The integration scheme used
for the dynamics is a direct Euler first order method,
which proved to be sufficient for this example.

3.3 Satellite Constellation Rephasing

The last application of modified HDDP, is to a case
of large satellite constellations. The orbital data selected
for this example is the one of IRIDIUM–NEXT
constellation. The source of Keplerian elements for this
satellite was the Air Force Space Command. The case
studied is the rephasing of 32° of one of the
constellation’s satellite. The initial guess for the
algorithm was created using MATLAB. The time of
flight guess was retrieved by using a Lambert arc
approach. Indeed, a sampling of the orbit in 100 points
was made. Then, for each of these sampled positions, a
Lambert arc was created, with a TOF in a range between
0 and the orbital period. The final target position could
be evaluated propagating in time the position of the target
satellite for a time equal to the TOF considered plus the
time of departure. A Porkchop graph was produced (SEE
Fig. 6), where only one period in the departure time range
is considered. To estimate the minimum Δv budget
necessary to reach one satellite, a manoeuvre of two
impulses was studied and their total contribute is reported.
The initial guess for the time of flight obtained is TOF =
1.516 h. This initial guess was introduced in the modified
HDDP algorithm. The problem was scaled with the same
scheme as the Earth-Mars Transfer case. The problem is
divided in 100 stages. The dynamics that need to be
integrated are reported in Equation (29).

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-F1.2.3 Page 10 of 15

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

�̇�𝑥 = �̇�𝑥;
�̇�𝑦 = �̇�𝑦;
�̇�𝑧 = �̇�𝑧;

�̈�𝑥 = − 𝜇𝜇
𝑟𝑟3
𝑥𝑥 + 𝑇𝑇𝑥𝑥

𝑚𝑚
;

�̈�𝑦 = − 𝜇𝜇
𝑟𝑟3
𝑦𝑦 + 𝑇𝑇𝑦𝑦

𝑚𝑚
;

�̈�𝑧 = − 𝜇𝜇
𝑟𝑟3
𝑧𝑧 + 𝑇𝑇𝑧𝑧

𝑚𝑚
;

�̇�𝑚 = − 𝑇𝑇
𝐼𝐼𝑠𝑠𝑠𝑠𝑔𝑔0

;

; (29)

The integration scheme used is a 7/8 Dormand-Prince
(8th order solution for propagation, 7th order solution for
step size control) Runge-Kutta scheme and the initial
conditions to this problem, as obtained from the
preliminary Porkchop graph study, are reported in
Equation 30.

𝐫𝐫𝟎𝟎 = [1085.028 −241.357 −7071.888]km;
𝐯𝐯𝟎𝟎 = [−5.922 4.407 −1.0743]km s−1; (30)

The target position of the satellite is reported in

Equation (31).

𝐫𝐫𝐭𝐭 = [1444.3563 509.9112 6992.1188]km;
𝐯𝐯𝐭𝐭 = [5.8468 4.3874 1.5421]km s−1; (31)

The cost function is again an augmented Lagrangian

one, which minimizes the energy as formulated in
Equation (32).

𝐽𝐽 = � (||𝑢𝑢𝑘𝑘||2) + 𝜆𝜆𝑇𝑇(𝑥𝑥(𝑡𝑡𝑓𝑓) − 𝑥𝑥𝑡𝑡) + 𝜎𝜎0||𝑥𝑥(𝑡𝑡𝑓𝑓) −𝑁𝑁

𝑘𝑘=0
𝑥𝑥𝑡𝑡||2 ; (32)

The phase constraint function is the violation of the
target 𝝍𝝍�𝑡𝑡𝑓𝑓� = 𝒙𝒙�𝑡𝑡𝑓𝑓� − 𝒙𝒙𝒕𝒕, while there is no final phase
cost.
Additionally, the stage cost from Equation (32) is 𝐿𝐿𝑘𝑘 =
‖𝒖𝒖𝑘𝑘2‖.

The maximum thrust available for the system is
𝑇𝑇𝑚𝑚𝑚𝑚𝑥𝑥 = 310 N to guarantee sufficient thrust to achieve
the target in the selected TOF. Again, the constraint to be
imposed on stages is a nonlinear one, it requires that the
amplitude of the thrust is smaller than the maximum
allowed value ‖𝒖𝒖𝑘𝑘‖ < 𝑇𝑇𝑚𝑚𝑚𝑚𝑥𝑥 .

After optimizing this first case, a second case is
developed to show the flexibility of this algorithm. This
case considers the presence of the J2 perturbation effect
in the dynamic model, which, is reformulated as Equation
(33).

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

�̇�𝑥 = �̇�𝑥;
�̇�𝑦 = �̇�𝑦;
�̇�𝑧 = �̇�𝑧;

�̈�𝑥 = − 𝜇𝜇
𝑟𝑟3
𝑥𝑥 + 𝑇𝑇𝑥𝑥

𝑚𝑚
−

3𝐽𝐽2𝜇𝜇𝑅𝑅⊕
2

2𝑟𝑟5
(1 − 5 𝑧𝑧2

𝑟𝑟2
)𝑥𝑥;

�̈�𝑦 = − 𝜇𝜇
𝑟𝑟3
𝑦𝑦 + 𝑇𝑇𝑦𝑦

𝑚𝑚
−

3𝐽𝐽2𝜇𝜇𝑅𝑅⊕
2

2𝑟𝑟5
(1 − 5 𝑧𝑧2

𝑟𝑟2
)𝑦𝑦;

�̈�𝑧 = − 𝜇𝜇
𝑟𝑟3
𝑧𝑧 + 𝑇𝑇𝑧𝑧

𝑚𝑚
−

3𝐽𝐽2𝜇𝜇𝑅𝑅⊕
2

2𝑟𝑟5
(3 − 5 𝑧𝑧2

𝑟𝑟2
)𝑧𝑧;

�̇�𝑚 = − 𝑇𝑇
𝐼𝐼𝑠𝑠𝑠𝑠𝑔𝑔0

;

; (33)

4. Results and Discussion

4.1 Linear-Quadratic Problem
The algorithm converges in exactly one iteration. The

problem is set up in a way to permit the user modification
of number of phases and stages in the process. The results
are shown with 2 phases and 5 stages each, but this
number can be modified accordingly. As the time step is
fixed, increasing 𝑁𝑁 or 𝑀𝑀 corresponds to increasing the
total time of the process, yielding smaller input and
therefore smaller cost function. The target point is 𝑥𝑥𝑡𝑡 =
[2.0; 4.0; 1.0; −0.5; 1.5; −2.5] , whereas the initial
point of the algorithm is set to 𝑥𝑥0 =
[1.0; 1.0; 1.0; 1.0; 1.0; 1.0], while the first guess for
inputs and Lagrange multipliers is all zeros. Also, the
initial conditions for constant controls on phase 2, that
corresponds to the initial condition of the states of phase
2, are set to zero. As it can be observed in Fig. 1, the
continuity constraints between phases are respected,
moreover the final target is achieved in one iteration only.
The result is consistent if the number of stages or phases
is changed and the convergence is achieved in exactly
one iteration. Several trials with different target points,
different 𝑀𝑀 and 𝑁𝑁 have reported the same result. Finally,
the input trajectory is reported in the following Fig. 2. For
completeness, also the value of the Lagrange multipliers
for the phase constraints are reported in Table 1.

Table 1. Value of the Lagrange multipliers for the Linear-
Quadratic Problem

Phase Lagrange Multipliers
1 [0.0545455; 0.224242; -0.139394;

0.327273; 0.0121212; 0.630303]
2 [0.0545455; 0.224242; -0.139394;

0.0545455; -1.10909; 1.32727]

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-F1.2.3 Page 11 of 15

Fig. 1. Evolution of states for the linear-quadratic
Problem.

Fig. 2. Evolution of controls for the linear-quadratic
Problem.

4.2 Mono-Dimensional Landing Problem
The final norm of constraint violation is 𝑓𝑓 =

7.6952 X 10−6, while the final mass is 𝑚𝑚𝑓𝑓 = 0.392.
First, the results for second order are reported, which

yield the same results as in [55] and [90]. The evolution
of the height ℎ and the velocity 𝑣𝑣 is represented in Fig. 3,
whereas the control input is reported in Fig.5.

The next step is to analyse the behaviour of the
solution for different orders of expansion. This task is
performed in Table 2. Orders higher than 6 do not
converge for this problem. Heuristics and experience
indicate that a high-order feedback controller behaves
better when close to the solution of the problem.

Bearing in mind that the starting position is far
enough from the optimal solution, while looking at Fig.
4 it is possible to observe that order 2 behaves better than
the others. While at the beginning of the algorithm the
solver is far from the solution, higher-order exhibits

greater violation of constraints. On the other hand, after
some iterations, the higher orders tend to have smaller
violation of constraints, due to the proximity to the
optimal trajectory. For really high orders, numerical
difficulties arise, spoiling the convergence. As it can be
already seen for order 6, feedback terms of high order
tend to render the constraint violation reduction noisier.
Probably, order 6 is used outside the convergence radius
of the polynomial, resulting in this behaviour. On the
contrary, the examples up to order 4 show quite a good
result. To conclude, if the polynomials are used properly
(inside their region of convergence), some improvements
with respect to order 2 may arise. However, these
enhancements were not significant in this case, therefore
the use of higher than second order is not justified.

Table 2. High order effects on the mono-dimensional
landing problem.

Ord
er

Iteratio
ns

Accept
ed

Iteratio
ns

Total

Constrai
nt

Violatio
n

Computatio
nal time

[s]

2 87 124 7.7E-6 3.7
3 91 137 8.6E-6 3.4
4 71 83 8.5E-6 2.8
6 213 258 8.9E-6 23.6

Fig. 3. Evolution of states for the mono-dimensional
landing problem.

0 2 4 6 8 10
Time Instants

0

2

4

6
P

os
iti

on
s

Evolution of States r
Target
Phase 2
Phase 1

0 2 4 6 8 10
Time Instants

-4

-2

0

2

V
el

oc
iti

es

Evolution of States v

Target
Phase 2
Phase 1

0 1 2 3 4 5 6 7 8 9
Time Instants

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

In
pu

t M
ag

ni
tu

de

Input Trajectory

u1

u2

u3

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time

0

0.2

0.4

0.6

0.8

1

H
ei

gh
t h

Evolution of the States

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time

-1.5

-1

-0.5

0

Ve
lo

ci
ty

 v

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-F1.2.3 Page 12 of 15

Fig. 5. Evolution of control for the mono-dimensional
landing problem.

4.3 Satellite Rephasing
Starting from the unperturbed results, the trajectory

of the transfer is reported in Fig. 7. The control trajectory
for this example is reported in Fig. 8.

After the solution has been retrieved, the perturbation
J2 is included in the dynamics, and the study is repeated.
The solution is extremely close to the unperturbed one,
as the time of flight (~ 2 h) is not sufficiently large for the
effects of the perturbation to appear on the final solution.
The only modification necessary to run this example with
respect to the previous one is the change in dynamics for
the ODE propagation, as DA will automatically compute
the higher order derivatives. The most significant
differences can be observed in the thrust magnitude in
Fig. 9. Moreover, a discrepancy can be observed in the
different Lagrange parameters reached at convergence in
Table 3.

Fig. 6. Porkchop graph for the generation of the initial
guess of the rephasing problem.

Fig. 7. Optimal transfer path for the Satellite
Constellation Refueling Problem.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
on

tro
l T

Control Input

-4000-5000
-20000

x [km]

0

y [km]

6000

4000

z
[k

m
]

2000

5000

0

2000

-2000

-4000

Transfer Path

-6000

4000

Reference Trajectory
Transfer Trajectory
Target Position
Starting Position

10 20 30 40 50 60 70
Iteration Number

10-4

10-2

100

N
or

m
 o

f C
on

st
ra

in
t V

io
la

tio
n

2ndOrder

10 20 30 40 50 60 70 80 90
Iteration Number

10-4

10-2

100

N
or

m
 o

f C
on

st
ra

in
t V

io
la

tio
n

3rdOrder

10 20 30 40 50 60 70
Iteration Number

10-4

10-2

100

N
or

m
 o

f C
on

st
ra

in
t V

io
la

tio
n

4thOrder

20 40 60 80 100 120 140 160 180 200
Iteration Number

10-4

10-2

100

N
or

m
 o

f C
on

st
ra

in
t V

io
la

tio
n

6thOrder

Fig. 4. Norm of constraint violation f for the mono-dimensional landing problem for orders 2(a), 3(b), 4(c) and 6(d).

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-F1.2.3 Page 13 of 15

Fig. 8. Optimal control evolution for the Satellite
Constellation Refueling Problem.

Table 3. Value of the Lagrange multipliers for the
Perturbed and Unperturbed Rephasing Problem

 Lagrange Multipliers
Unperturbed [-0.860903; 0.509705; 1.52568;

1.47022; -1.03679; -0.469851]
Perturbed [-0.938731; 0.554697; 1.6653;

1.61168; -1.12907; -0.512154]

Fig. 9. Control differences between perturbed and
unperturbed Rephasing Problem

5. Conclusions

This paper investigated the problem of low-thrust
optimal control through the combination of Differential
Algebra and Differential Dynamic Programming. The
use of DA in HDDP grants the possibility of computing
higher order feedback and approximations in the
neighbourhood of the reference trajectory. The
hypothesis formulated at the beginning of this study is
that high order feedback and expansions could enlarge
the convergence region of the algorithm, leading to a
faster convergence with respect to standard second order

methods. Nonetheless, this hypothesis seems to be
disproved. Through the examples, a clear improvement
in the number of iterations for higher orders is not
verified. In addition, the higher order feedback terms
seem to worsen numerical errors of the algorithm. In
particular, the constraint violation is smoother for lower
orders and becomes noisy for higher orders. Moreover,
even though in some cases the number of iterations
necessary for convergence of the algorithm does not
change substantially, the computational time increases
(see Table 2). Having addressed this issue, the thesis
improves the HDDP algorithm by relieving some of the
workload on the user. The difficulty in implementing the
model for perturbed dynamics arises when the necessary
partial derivatives of the dynamics need to be computed.
The problems are evidenced by Pellegrini [45]. For
complicated dynamical models, the partials required for
the propagation of the dynamics must be computed with
a symbolic manipulator software and sometimes they are
not even possible to obtain. Moreover, these partials need
to be converted into useful code (i.e. C++, Fortran etc.).
Usually, these symbolic manipulators yield inefficient
code, largely due to insufficient factoring. The use of DA
to reduce the user’s effort is demonstrated in this work,
and completely removes these difficulties as DA will
automatically take care of computing the higher order
partials. An example is given in this study by introducing
the J2 dynamical perturbation, which is handled by the
same algorithm as the unperturbed case.

As any preliminary study, this work may suffer from
several limitations. First of all, the algorithm still relies
on a Hessian shifting technique to guarantee a convex
objective function. This technique is based on a quadratic
trust region procedure. Secondly, the algorithm does not
improve the standard limitations of HDDP as far as
tuning is concerned. In fact, a lot of tuning parameters
must be set accurately, in order for this solver to converge
to a solution. Finally, the scaling is performed via a non-
automatic procedure, which slows down solution
considerably. On the other hand, this work provides
several contributions. First, it provides a first attempt to
apply Differential Algebraic techniques in the
Differential Dynamic Programming. By doing this, it
creates the first building block for further research in this
direction. In addition, it adds to the current Differential
Dynamic Programming literature by exploiting high
order nonlinear optimal feedback controls, capable of
dealing with constraints. Lastly, this paper improves the
user’s experience with HDDP software by removing the
tedious step of obtaining partials from symbolic external
software and interfacing it with Fortan/C code. Finally,
taking into consideration the above-mentioned
limitations and contributions, future researches might
obtain enhanced results, taking this thesis as a starting
point. For example, an alternative to the Hessian shifting
problem could be formulated exploiting high-orders.

0 1000 2000 3000 4000 5000
TOF [s]

50

100

150

200

250

300

Th
ru

st
 [N

]
Optimal Control Input

Maximum Thrust

0 1000 2000 3000 4000 5000
TOF [s]

-12

-10

-8

-6

-4

-2

0

T-
T J 2[N

]

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-F1.2.3 Page 14 of 15

Indeed, the cost function is not quadratic, therefore, an
optimal expansion point where the Hessian is positive
definite could be located. Afterwards, the trajectory
could be re-expanded about this new reference condition,
so that a descent direction is guaranteed. Furthermore, the
high-order terms could be better exploited by using the
convergence radius of the cost function to estimate the
elliptical region of convergence automatically. This
improvement could, at the same time, remove several
tuning parameters from the algorithm.

References
[1] F. Bernelli-Zazzera, M. Lavagna, R. Armellin, P. Di

Lizia, A. Morselli, J. Olympio, D. Izzo, L.
Summerer, Trajectory optimisation under
uncertainties, ESA/ACT, Ariadna Final Report,
id:10/4101, Oct. 1, 2012, Contract Number:
4000103161.

[2] G. Lantoine, R.P. Russell, A hybrid differential
dynamic programming algorithm for constrained
optimal control problems. part 1: Theory, Journal of
Optimization Theory and Applications, 154 (2012)
382–417.

[3] J.D. Aziz, D. Scheeres, G. Lantoine, Differential
dynamic programming in the three-body problem,
28th Space Flight Mechanics Meeting, Kissimmee,
Florida, 2018, 8-12 January.

[4] O. Von Stryk, R. Bulirsch, Direct and indirect
methods for trajectory optimization, Annals of
Operations Research, 37(1992) 357–373.

[5] A. Betts, Practical methods for optimal control
using nonlinear programming, Applied Mechanics
Reviews, 55 (2002) 68-68.

[6] M. Osborne, On shooting methods for boundary
value problems, Journal of Mathematical Analysis
and Applications, 27 (1969) 417–433.

[7] A. Rao, K. Mease, Dichotomic basis approach to
solving hyper-sensitive optimal control problems,
Automatica, 35 (1999) 633–642.

[8] J.T. Betts, W.P. Huffman, Trajectory optimization
on a parallel processor, Journal of Guidance,
Control, and Dynamics, 14 (1991) 431–439.

[9] D. Murray, S. Yakowitz, The application of optimal
control methodology to nonlinear programming
problems, Mathematical Programming, 21 (1981)
331–347.

[10] G. Lantoine, A Methodology for Robust
Optimization of Low-thrust Trajectories in
Multibody Environments. Georgia Institute of
Technology, 2010.

[11] D. Kraft, On converting optimal control problems
into nonlinear programming problems, in:
Computational Mathematical Programming, K.
Schittkowski, Ed., ser. NATO ASI Series, Berlin,
Heidelberg: Springer Berlin Heidelberg, 1985, pp.
261–280.

[12] S. Dreyfus, Dynamic programming and the calculus
of variations, Journal of Mathematical Analysis and
Applications, 1 (1960) 228–239.

[13] A. Bryson, Dynamic Optimization., Addison-
Wesley Longman, California, 1999.

[14] H.W. Kuhn, A.W. Tucker, Nonlinear programming,
Proceedings of the Second Berkeley Symposium on
Mathematical Statistics and Probability, Berkeley,
California, 1950, 31 July-12 August.

[15] D.G. Luenberger, Y. Ye, Linear and nonlinear
programming, in, ser. International Series in
Operations Research & Management Science vol
116, Springer US, 2008.

[16] R. Fletcher, Practical Methods of Optimization,
Wiley, New York, 1987.

[17] M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear
programming: Theory and algorithms, Wiley, New
York, 2005.

[18] P. Patel, D.J. Scheeres, A second-order
optimization algorithm using quadric control
updates for multistage optimal control problems,
Optimal Control Applications and Methods, 30
(2009) 525–536.

[19] W. Murray, Analytical expressions for the
eigenvalues and eigenvectors of the Hessian
matrices of barrier and penalty functions, Journal of
Optimization Theory and Applications, 7 (1971)
189–196.

[20] D.M. Murray, S.J. Yakowitz, Constrained
differential dynamic programming and its
application to multireservoir control, Water
Resources Research, 15 (1979) 1017– 1027.

[21] M. Powell, Algorithms for nonlinear constraints
that use Lagrangian functions, Mathematical
Programming, 14 (1978) 224–248.

[22] M. Hestenes, Multiplier and gradient methods,
Journal of Optimization Theory and Applications, 4
(1969) 303–320.

[23] D. Bertsekas, Constrained Optimization and
Lagrange Multiplier Methods, Academic Press,
New York, 1982.

[24] A.R. Conn, N.I.M. Gould, P. Toint, A globally
convergent augmented Lagrangian algorithm for
optimization with general constraints and simple
bounds, SIAM Journal on Numerical Analysis, 28
(1991) 545–572.

[25] S. Yakowitz, The stagewise Kuhn-Tucker condition
and differential dynamic programming, IEEE
Transactions on Automatic Control, 31 (1986) 25–
30.

[26] D. Jacobson, D. Mayne, Differential Dynamic
Programming, American Elsevier Publ. Co., New
York, 1970.

[27] L. Liao, C. Shoemaker, Advantages of differential
dynamic programming over newton’s method for

69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved.

IAC-18-F1.2.3 Page 15 of 15

discrete-time optimal control problems, Cornell
University, New York, 1992.

[28] R. Bellman, Dynamic Programming, 1st ed.,
Princeton University Press, New Jersey, 1957.

[29] S. Yakowitz, Algorithms and computational
techniques in differential dynamic programming,
Advances in Aerospace Systems Dynamics and
Control Systems, 31 (1989) 75–91.

[30] G. Whiffen, Static/dynamic control for optimizing
a useful objective, US patent 6496741, Dec. 2002.

[31] G. Lantoine, R.P. Russell, A hybrid differential
dynamic programming algorithm for constrained
optimal control problems. part 2: Application,
Journal of Optimization Theory and Applications,
154 (2012) 418–442.

[32] G. Whiffen, Mystic: Implementation of the static
dynamic optimal control algorithm for high-
fidelity, low-thrust trajectory design, AAS/AIAA
Astrodynamics Specialist Conference, Keystone,
Colorado, 2006, 21-24 August.

[33] G. Lantoine, R.P. Russell, A fast second-order
algorithm for preliminary design of low-thrust
trajectories, IAC-08-C1.2.5, 59th International
Astronautical Congress, Glasgow, United
Kingdom, 2008, 29 September-3 October.

[34] G. Lantoine, R.P. Russell, A hybrid differential
dynamic programming algorithm for robust low-
thrust optimization, AIAA/AAS Astrodynamics
Specialist Conference and Exhibit, Honolulu,
Hawaii, 2008, 18-21 August.

[35] E. Pellegrini, R.P. Russell, A multiple-shooting
differential dynamic programming algorithm,
AAS/AIAA Space Flight Mechanics Meeting, San
Antonio, Texas, 2017, 5-9 February.

[36] N. Ozaki, S. Campagnola, C.H. Yam, R. Funase,
Differential dynamic programming approach for
robust-optimal low-thrust trajectory design
considering uncertainty, 25th International
Symposium on Space Flight Dynamics, Munich,
Germany, 2015, 19-23 October.

[37] J. Gil-Fernández, M. Graziano, M.A. Gómez-
Tierno, E. Milic, Autonomous low-thrust guidance:
Application to SMART-1 and BepiColombo,
Annals of the New York Academy of Sciences,
1017 (2004) 307–327.

[38] E. Theodorou, Y. Tassa, E. Todorov, Stochastic
differential dynamic programming, Proceedings of
the 2010 American Control Conference, Baltimore,
Maryland, 2010, 30 June-2 July.

[39] R. Moore, Interval Analysis. Prentice-Hall, New
Jersey, 1966.

[40] F. Bernelli-Zazzera, M. Vasile, M. Massari, P. Di
Lizia, M. Markót, Assessing the accuracy of
interval arithmetic estimates in space flight
mechanics, ESA/ACT, Ariadna Final Report

id:04/4105, Contract Number: 18851/05/NL/MV,
Jan. 8, 2006, pp. 1–189.

[41] P. Di Lizia, R. Armellin, F. Bernelli-Zazzera, M.
Berz, High order optimal control of space
trajectories with uncertain boundary conditions,
Acta Astronautica, 93 (2014) 217–229.

[42] M. Berz, Modern Map Methods in Particle Beam
Physics, Academic Press, United Kingdom, 1999.

[43] M. Berz, Differential algebraic treatment of beam
dynamics to very high orders including applications
to spacecharge, AIP Conference Proceedings, San
Diego, California, 1988, 19-21 January.

[44] M. Berz, K. Makino, COSY INFINITY version 8.1
user’s guide and reference manual, April 2001,
http://citeseerx.ist.psu.edu/viewdoc/download?doi
=10.1.1.201.2818&rep=rep1&type=pdf, (accessed
26.08.2018).

[45] E. Pellegrini, R.P. Russell, Multiple-shooting
differential dynamic programming with
applications to spacecraft trajectory optimization,
UT Electronic Theses and Dissertations, Austin,
Texas, 2017.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.201.2818&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.201.2818&rep=rep1&type=pdf

