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Abstract: This paper addresses the identification of Switched Nonlinear AutoRegressive
eXogenous (SNARX) systems characterized as a collection of nonlinear dynamical systems
(modes), each one described via a discrete time NARX model, indexed by a discrete-valued
variable (switching signal). We propose a novel approach which, given a realization of the
input/output signals collected from the system, jointly classifies the data attributing them
to the different modes, and identifies the model structure and parameters for each mode. The
involved optimization problem is partly combinatorial due to the data classification over modes
and the model structure selection, and partly continuous due to the parameter estimation
required to complete the identification of the dynamical models assigned to the different modes.
A probabilistic framework is employed to address the problem, where Categorical and Bernoulli
distributions are respectively used for the assignment of modes over time and for the structure
selection of the NARX models describing the modes. A randomized procedure is then proposed
to solve the problem, based on a sample-and-evaluate strategy that progressively refines the
induced SNARX model probability distribution. The approach is tested on a numerical example
taken from the literature, where it shows promising results.
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1. INTRODUCTION

Hybrid systems are dynamical systems characterized by in-
terleaved continuous and discrete dynamics. Most research
regarding the identification of hybrid systems has focused
on switched affine (SA) and piecewise affine (PWA) models
which are both characterized by a finite set of affine con-
tinuous dynamics (modes) and a discrete-valued switching
signal that dictates the switching between modes. In SA
systems, the switching signal is an exogenous input, while
in PWA systems it is an endogenous signal generated by
the system evolution. Matching input-output formalisms
have also been introduced, namely the Switched ARX
(SARX) and the PieceWise affine ARX (PWARX) mod-
els, respectively. In general terms, the identification task
requires to jointly classify the data (assigning samples to
modes) and estimating the model parameters (for each
mode). This task can be accomplished by solving a mixed-
integer optimization problem over the model structure
and parameters, and the discrete variables governing the
assignment of the samples. The complexity of the opti-
mization problem stems from its underlying combinatorial
nature, related to both the sample assignment to modes
and the model structure selection.

Many approaches have been proposed over the last two
decades for the case of linear local models, (Paoletti et al.,
2007), (Garulli et al., 2012). Far fewer works have tackled
the extension to nonlinear local models, which is often
required in complex modeling applications. Indeed, if the
underlying hybrid system has nonlinear dynamics, using a
hybrid model with linear local models generally induces an

unnecessary multiplication of the modes (multiple linear
local models are required to adequately reproduce the
nonlinear dynamics) and consequently of the switching
instants, aggravating the combinatorial nature of the iden-
tification problem, and impairing the interpretation of the
switching signal in terms of actual physical phenomena. A
first attempt in this direction is documented in (Lauer and
Bloch, 2008), where a method based on kernel regression
and Support Vector Machine (SVM) is discussed. This
method however suffers from the curse-of-dimensionality
problem since it optimizes over a set of variables that
grows with the number of data N and the number of
modesNM . This work was extended in (Lauer et al., 2011),
leading to a method that can be applied to large datasets
thanks to a reduced-size kernel function, (Le et al., 2011).
However, the resulting continuous optimization problem is
non-convex and thus global convergence is not guaranteed.
In (Bako et al., 2010) a method is proposed instead, which
ultimately results in a convex minimization problem after
a relaxation step. However, a sufficient condition guaran-
teeing the optimality of the relaxed convex problem solu-
tion was provided only under a noiseless assumption. The
most recent contribution dealing with nonlinear hybrid
systems was proposed in (Le et al., 2013) as an extension
to the sparse optimization based method, (Bako et al.,
2010). Specifically, a kernel expansion was introduced as
in (Le et al., 2011) to deal with nonlinearities and the
notion of robust sparsity was introduced to treat noisy
data. This approach results in a sequence of relaxed convex
optimization programs, each equivalently formulated as
a Support Vector Regression (SVR) problem that can



be solved efficiently even for large data sets. However,
this method still relies on a convex relaxation strategy,
which does not guarantee the equivalence with the original
problem. Furthermore, it requires the careful setting of
several parameters, which appears to be far from trivial
(e.g., factor C, which defines the trade-off between model
complexity and accuracy, or the weights wi adopted to
improve the sparsity of the solution).

This paper introduces an iterative randomized ap-
proach for the identification of Switched Nonlinear ARX
(SNARX) models. The optimization problem is reformu-
lated in a probabilistic framework by introducing Categor-
ical and Bernoulli distributions governing respectively the
attribution of the samples to the modes and the selection
of the model structures of the local models. More in de-
tail, a Categorical distribution is associated to represent
the mode assigned to each time instant, and a Bernoulli
distribution models the presence of a given term in a local
model. The optimization problem can be tackled by means
of an iterative sample-and-evaluate approach which allows
to progressively refine the overall probability distribution
representing the hybrid model. Specifically, at each step
one samples the Categorical distributions associated to
the time instants to generate instances of the switching
signal and (independently) extracts instances of the local
models from the Bernoulli distributions. This sampling
process is used to gather information to tune the prob-
ability distribution by reinforcing the probability of the
most promising mode assignments and local model terms.
The progressive refinement of the probability distribution
ultimately tends to a limit distribution representing a
precise hybrid model. Under the assumption that there
exists only one optimal switched model, one can prove that
the solution of the reformulated problem equals that of the
original optimization problem. The method requires few a-
priori assumptions and design parameters. Furthermore, it
is capable of operating with noisy data and medium-large
datasets.

2. PRELIMINARIES

Consider a data-set of N input-output pairs
{(u(t), y(t)), t = 1, . . . , N} collected from a single-input
single-output system. The objective of the identification
problem is to determine a relationship between past
observations {u(t − 1), u(t − 2), . . . , y(t − 1), y(t − 2), . . .}
and future predicted output ŷ(t), in the form of an
input-output recursive model:

ŷ(t) = g(u(t− 1), u(t− 2), . . . , y(t− 1), y(t− 2), . . .),

so as to best fit the observations in the data-set.

2.1 The NARX model class

In this work we assume that the nonlinear dynamics of
each mode can be represented by a NARX model of the
type:

y(t) = g (x(t);ϑ) + e(t)

where x(t) = [y(t−1), . . . , y(t−ny), u(t−1), . . . , u(t−nu)]
is a finite-dimensional vector of the most recent past obser-
vations (ny and nu being suitable maximum lags), e(t) is a
stochastic process characterized as a sequence of i.i.d. zero
mean random variables, and g(·) is an unknown nonlinear

function parameterized via a vector ϑ = [ϑ1, . . . ϑn]T

of coefficients. NARX models are the natural extension
of ARX models to the nonlinear case, and have earned
widespread interest in the literature in view of their flexi-
bility and representation capabilities, (Billings, 2013). The
corresponding prediction form is given by:

ŷ(t) = g (x(t);ϑ) . (1)

In NARX models, the nonlinear mapping g(·) is often
expressed as a linear combination of (nonlinear) basis
functions ϕj , j = 1, . . . , n:

g (x(t);ϑ) =

n∑
j=1

ϑjϕj(t),

so that the predictor can be reduced to the following
compact notation:

ŷ(t) = ϕ(t)Tϑ, (2)

where all basis functions are collected in the regression
vector ϕ = [ϕ1, . . . ϕn]T . Accordingly, the elements of the
regression vector are called regressors. Parameter estima-
tion is carried out with the least squares (LS) algorithm
followed by a statistical Student’s t-test to determine the
statistical relevance of each regressor, and if some regressor
turns out not to be statistically relevant, it is classified as
redundant.

A popular choice for the representation of g(·) is the poly-
nomial functional expansion, whereby the regressors are
monomials of elements in x(t) up to a given order nd. This
functional expansion extends gracefully from linear models
and typically allows an easier model interpretation but it
suffers from the curse of dimensionality. However, one is
not bound to use full polynomial expansions and, indeed,
models with few selected terms can provide highly accurate
and robust models. A crucial component of NARX model
identification methods is therefore the selection of the
essential terms of a model.

2.2 The SNARX model class

A SNARX system is a collection of NARX systems (2)
indexed by a finite-valued switching signal σ. Given a
regression vector ϕ of size n, the output predictor of a
SNARX model is defined as

ŷ(t) = ϕ(t)Tϑ(σ(t)), (3)

where σ(t) ∈ {1, . . . , NM} is the value taken by the
switching signal at time t and defines which mode is active

at that time instant, NM is the number of modes, and ϑ(i)

is the parameter vector defining the dynamics of the i-th

NARX mode, including its structure (ϑ(i) has zero entries
for the regressors that are not present in the i-th mode).

The identification problem for a SNARX model (3) con-
sists in estimating from a data-set of N input-output pairs
{(y(t), u(t)) , t = 1, . . . , N}, the number of modes NM
and the corresponding model parameterizations ϑ(i), i =
1, . . . , NM , as well the switching signal σ(t), t = 1, . . . , N .
Consistently with most of the literature on switched sys-
tem identification, we here address the case where Assump-
tion 1 holds.

Assumption 1. The number of modes NM is known.



Under Assumption 1, one may tackle the identification
problem by adopting a classical prediction error approach
and solving the following optimization problem 1 :

min{{βi(t)}Nt=1,ϑ
(i)}NM

i=1

N∑
t=1

NM∑
i=1

βi(t) ·
(
y(t)−ϕ(t)Tϑ(i)

)2

subject to: (4)
NM∑
i=1

βi(t) = 1, βi(t) ∈ {0, 1}, t = 1, . . . N, i = 1, . . . , NM ,

where βi(t) is a binary variable which encodes the assign-
ment of sample t to mode i, from which the switching
signal σ(t), t = 1, . . . , N , can be reconstructed according
to:

σ(t) = i⇐⇒ βi(t) = 1. (5)

Unfortunately, the optimization problem (4) is a mixed
integer program which is typically computationally in-
tractable due to its combinatorial nature.

Motivated by this observation, and inspired by the Ran-
domized Model Structure Selection (RaMSS) method,
(Falsone et al., 2015), we propose in the next section a
probabilistic approach to determine a solution to (4).

3. A PROBABILISTIC APPROACH TO SNARX
IDENTIFICATION

Let S = {0, 1}n be the set of all possible NARX
model structures s compatible with the set of regressors
{ϕ1, · · · , ϕn}, such that s(k) = 1 if ϕk belongs to it,
and s(k) = 0 otherwise. If a SNARX model (3) has NM
modes, then its structure can be defined as a collection s =(
s(1), . . . , s(NM )

)
of NM NARX structures, with s(i) ∈ S,

i = 1, . . . , NM . Let also σ = [σ(1), . . . , σ(N)] denote the
switching signal along [1, N ], and Σ = {1, . . . , NM}N the
set where σ takes values.

We can now associate a candidate SNARX model to a
pair λ = (σ, s) taking values in Λ = Σ× SNM and rate it
according to the performance index L : Λ→ [0, 1] defined
as

J (λ) = e−KλL(λ), (6)

where Kλ > 0 is a design parameter and

L(λ) = min
{ϑ(i)}NM

i=1

1

N

N∑
t=1

NM∑
i=1

βi(t) · ε2
i (t). (7)

Note that for a given λ = (σ, s), βi(t) in (7) is uniquely
determined by σ through (5), whereas εi(t) = y(t)−ŷs(i)(t)
is the prediction error associated to mode i with structure

s(i) and parameters ϑ(i).

Computing L(λ) in (7) involves segmenting the data-
set in multiple data-sets associated with the different
NARX modes and then computing the parameters of each
NARX mode i with structure s(i) solving a LS problem.
Indeed, given a switching signal σ (or, equivalently, the
corresponding βi(t) variables, see (5)), we can define the
number of pairs in the data-set that are associated with

mode i as Ni =
∑N
t=1 βi(t).

1 Unselected and redundant regressors are set to 0 in ϑ(i), for all
modes i = 1, . . . , NM .

Then, L(λ) with λ = (σ, (s(1), . . . , s(NM )) can be rewritten
as

L(λ) =
1

N

∑
i:Ni 6=0

Ni · Li(σ, s(i)), (8)

where Li(σ, s(i)) measures the accuracy of the model of
the ith mode, when assuming structure s(i) and with
the switching signal σ. Index Li(σ, s(i)) is well-defined if
Ni 6= 0 and is given by:

Li(σ, s(i)) = min
ϑ(i)

1

Ni

N∑
t=1

βi(t) · ε2
i (t). (9)

According to the introduced notation, the SNARX iden-
tification problem can be formalized as that of finding,
among all the possible λ = (σ, s) values, the one which
maximizes the performance index J (λ) in (6) and does
not have redundant terms in s, i.e., the mode parameter

ϑ(i) identified on the dataset given the data classification

and SNARX structure specified by λ satisfies ϑ
(i)
k 6= 0

for any k ∈ {1, . . . , n} such that s
(i)
k = 1, for all modes

i = 1, . . . , NM . Under the assumption that there exists
only one such λ, this can be written as:

λ? = arg max
λ∈Λ
J (λ), (10)

where, with a slight abuse of notation, Λ denotes the
set of all non redundant λ values. The so-obtained λ? =
(σ?, s?) defines the switching signal σ? and the structure
s? =

(
s(1)?, . . . , s(NM )?

)
of all the modes in the identified

SNARX model. The parameters of each mode i are the
solutions of the following LS problems:

ϑ(i)? = arg min
ϑ(i)

N∑
t=1

β?i (t) · (y(t)− ŷs(i)?(t))
2
, (11)

where β?i (t) is recovered from σ? based on (5).

Problem (10) is computationally intractable since in prin-
ciple one should explore exhaustively the set of all possible
candidate models Λ whose cardinality grows with the size
N of the data-set, the number NM of modes and the
number n of the regressors. In analogy with what done
with the RaMSS algorithm (Falsone et al., 2015), we recast
the problem in a probabilistic framework by introducing
a discrete random variable Φ which takes values in Λ
according to some probability distribution PΦ. The proba-
bility distribution PΦ will be iteratively updated based on
the data-set starting from a tentative distribution, until
convergence. Ideally, the tuning procedure should make
PΦ converge to a point mass probability concentrated on
the best SNARX model describing the actual system.

The average performance of Φ with probability distribu-
tion PΦ is given by:

E [J (Φ)] =
∑
λ∈Λ

PΦ(λ)J (λ), (12)

which is a convex combination of the performance of all
SNARX models and possible switching sequences in Λ.
Then the value λ? that maximizes J (λ) in (10) can be
also obtained as:

λ? = arg max
λ∈Λ

P?Φ(λ), (13)

where P?Φ = arg maxPΦ
E [J (Φ)]. Indeed, if PΦ varies over

all the possible distributions on Λ then the maximum of



the average performance in equation (12) is obtained by
making all the probability mass concentrate on the best
SNARX model.

A key point is to choose a suitable parametrization for the
probability distribution PΦ and an appropriate tuning of
such a parametrization based on the data-set processing
so as to make the probability mass of PΦ concentrate on
λ? in (10). We here assume independence between the
switching signal and the structure of the SNARX model
when defining PΦ and express it as:

PΦ (λ) = Pξ(σ) · Pς(s), (14)

where ξ is the random vector associated with the switching
signal and taking values in Σ according to the probability
distribution Pξ and ς is the random vector associated with
the SNARX structure and taking values in SNM according
to Pς .

3.1 Parametrization of Pξ

We allow for switching to possibly occur at speci-
fied time instants in a sequence Ts = {tk}Nsk=1, with
1 = t1 < t2 < · · · < tNs ≤ N , and encode this a-priori in-
formation within Pξ(σ) by attributing zero probability to
the values of σ such that σ /∈ ΣTs , where

ΣTs = {σ : σ(t) = σ(tk), t ∈ [tk, tk+1), k = 1, . . . , Ns}
with tNs+1 = N + 1. Note that the case when no a-priori
information on the switching times is available can be
embedded in this framework by setting tk = k and making
k range from 1 to Ns = N .

Let σ(tk), k = 1, . . . , Ns, be independent and distributed
according to a Categorical distribution

ξ(tk) ∼ Categorical (p(tk)) ,

where vector p(tk) = [η
(1)
tk
, . . . , η

(NM )
tk

] collects the proba-

bilities η
(i)
tk

, i = 1, . . . , NM , of drawing any of the modes
at time instant tk (denoted Mode Extraction Probabilities

(MEPs) in the following). Clearly,
∑NM
i=1 η

(i)
tk

= 1.

Recalling the relationship (5) between σ(t) and βi(t), the

probability distribution of ξ with switching times {tk}Nsk=1
is given by

Pξ(σ) =


Ns∏
k=1

NM∏
i=1

(
η

(i)
tk

)βi(tk)

, σ ∈ ΣTs

0, otherwise.

(15)

3.2 Parametrization of Pς

Consider now the problem of choosing a suitable
parametrization for Pς(s), where s =

(
(s(1), . . . , s(NM )

)
,

s(i) ∈ S describing a possible model structure for mode i.
Following the approach introduced in (Falsone et al., 2015)
we associate to each mode i a random vector ρ(i) which

collects the Bernoulli random variables ρ
(i)
k ∼ Be

(
µ

(i)
k

)
,

k = 1, · · · , n, where the success probability µ
(i)
k (denoted

Regressor Inclusion Probability (RIP)) represents the be-
lief that the regressor belongs to the true model . This
induces a probability distribution:

Pρ(i)(s(i)) =
∏

j:ϕj∈s(i)

µ
(i)
j

∏
j:ϕj /∈s(i)

(
1− µ(i)

j

)
.

Under the assumption of independence between the mode
structures, we then have

Pς(s) =

NM∏
i=1

Pρ(i)(s(i)).

3.3 Update of PΦ

We parameterized the probability distribution PΦ through

some scalar parameters η
(i)
tk

and µ
(i)
j , k = 1, . . . , Ns,

j = 1, . . . , n, i = 1, . . . , NM . We next formulate tuning

rules for η
(i)
tk

and µ
(i)
j aiming at concentrating the proba-

bility distribution PΦ in equation (14) on λ?. The tuning
rules are implemented via a randomized procedure that
involves extracting sample values λ = (σ, s) of Φ = (ξ, ς)
and evaluating the performance of the extracted SNARX
structure s based on the dataset segmentation induced by
the extracted switching signal realization σ.

To this purpose we define

δ
(i)
tk

= EPΦ
[J (Φ)|ξ(tk) = i]− EPΦ

[J (Φ)|ξ(tk) 6= i] , (16)

which compares the average performance of Φ (switching
signal and SNARX structure) where mode i is assigned
to time instant tk with the average performance of the

remaining Φ’s. Index δ
(i)
tk

can be used directly to update

η
(i)
tk

at the next iteration, according to:

η
(i)
tk
← η

(i)
tk

+ χδ
(i)
tk
, (17)

where the step size χ > 0 is a design parameter.

A similar formulation applies also to the update of the RIP

µ
(i)
j indicating the likelihood of having regressor ϕj in the

structure of the ith mode. Specifically, we define:

`
(i)
j = EPΦ

[
Ji(ξ, ς(i))|ϕj ∈ ς(i) ∧ ϑ(i)

j 6= 0
]

(18)

− EPΦ

[
Ji(ξ, ς(i))|ϕj /∈ ς(i) ∨ ϑ(i)

j = 0
]
,

where we set

Ji(σ, s(i)) =

{
e−KρLi(σ,s

(i)), Ni 6= 0

0, Ni = 0
(19)

with Li defined in (9). This leads to

µ
(i)
j ← µ

(i)
j + γi`

(i)
j , (20)

where γi > 0 is the step size for mode i.

The update of µ
(i)
j is based on the difference between

the average performance of structures for mode i where
ϕj appears and that of the remaining structures. Such
an average performance is assessed on the segments of
the data-set that are assigned to mode i in the switching
signal.

An exact computation of the expected values in (16)
and (18) cannot be obtained in practice, since it would
require to consider exhaustively all the possible sequences
and structures. We then adopt a Monte Carlo approach
to estimate such values by drawing a multi-sample of Φ
based on the current PΦ distribution. The representation
of PΦ as the product of Pξ and Pς simplifies the extraction
procedure. In practice, we obtain a sample of Φ by ex-
tracting separately a sample of the switching signal ξ and a
sample of the SNARX structure ς. The update rules in (17)



and (20) are then implemented based on the estimated

expected values, and the updated sequences η
(i)
tk

and µ
(i)
j

are renormalized in order to represent valid probabilities.

3.4 Implementation issues

The choice of the step sizes χ and γi, i = 1, . . . , NM , in (17)
and (20), is crucial since it influences the convergence
of the algorithm. Following (Falsone et al., 2015), we
adaptively tune χ and γi, i = 1, . . . , NM , taking into
account the dispersion of the performance of the associated
SNARX model for χ, and the NARX mode i for γi, as
induced by PΦ. Specifically,

χ =
(
10
(
Jbest − J

)
+ 0.1

)−1
(21)

and
γi =

(
10
(
Ji,best − J i

)
+ 0.1

)−1
(22)

where Jbest and Ji,best, J and J i are, respectively, the
best and mean values of J and Ji, evaluated on the
extracted samples for Φ. The idea underlying expressions
(21–22) is that in its early stages the algorithm has to
collect information by freely exploring the solution space
and thus the correction terms should have a low weight.
As the algorithm proceeds, the parameter corrections will
become more reliable and convergence will be sped up (the
lower is the dispersion in the performance of the extracted
models, the higher the value of the step sizes).

The convergence of the algorithm is also influenced by the
choice of Kλ and Kρ in (6) and (19). Specifically, high
values increase the convergence speed but they can trap
the algorithm into local minima.

A suitable initialization of the algorithm is obtained by

setting equal small probabilities µ
(i)
j , thus encouraging

the extraction of small models at the early stages of the
algorithm. With a similar rationale, the mode extraction

probabilities η
(i)
tk

are initially set equal.

4. SIMULATION RESULTS

In the following tests we will consider the SNARX system
presented in (Lauer and Bloch, 2008), which switches
between mode 1

y(t) = −0.905y(t− 1) + 0.9u(t− 1) + e(t),

and mode 2

y(t) = −0.4y(t− 1)2 + 0.5u(t− 1) + e(t),

where e(t) is a zero mean Gaussian noise of variance
0.012 and u(t) is uniformly distributed in the interval [0, 1].

4.1 Example 1: Single switching

The first example illustrates a typical run of the algorithm.
An observation window of length N = 1200 is considered,
which contains a single switching event at t = 400 from
mode 1 to mode 2. The a-priori information about the
switching time is employed to divide the observation
window into two time periods, before and after the switch,
obtaining Σ = {(1, 1), (1, 2), (2, 1), (2, 2)}. Notice that the
algorithm is only given the information that t = 400
is a possible switching instant, and has to determine

based on the input–output data if a switching actually
took place at that time. Because of this, the sequences
{(1, 1), (2, 2)} are also admissible (otherwise, the problem
could have been easily separated into two independent
NARX identification problems). The design parameters
have been set to ny = nu = nd = 2 (for a total of 15
possible regressors), Np = 200, Kρ = Kλ = 10, and the
initial MEPs equally probable, whereas the initial RIPs
are all set to 0.05.

Figures 1 and 2 illustrate, respectively, the evolution of
the RIPs associated to the two modes. Similarly, Figure 3,
shows the evolution of the MEPs for the two time-periods,
i.e. [1, 399] and [400, 1200]. At the onset of the algorithm,
the two modes are equally probable and consequently
also the respective model structures are similar. The
algorithm initially assigns more probability to mode 1 for
the first period (this is actually an arbitrary choice), but
still remains unresolved regarding the assignment of the
second period. After a first exploration phase, lasting 15–
20 iterations, the algorithm operates a first selection on
the model structures of the two modes. More in detail,
the linear regressors u(t − 1) and y(t − 1) are picked for
both modes (their RIPs rapidly rise to 1). Shortly after,
the algorithm recognizes a more complex behavior in the
data and selects an additional (nonlinear) regressor for
the second mode (y(t− 1)2). At the same time, it decides
that the two time periods actually correspond to different
dynamics (i.e. there is an actual mode switching at t =
400), and gradually assigns the second one with greater
probability to mode 2. At iteration 25, the assignment
of the time periods to the modes is final, as well as the
structure of mode 1 (all RIPs are set to 0, except those
pertaining to the previously selected linear terms). It takes
the algorithm a few more iterations to finalize also the
structure of the 2nd mode (when the RIP of y(t − 1)2

reaches 1, the last two redundant regressors are dropped).
By iteration 38 the two modes have been assigned the
correct structure. The corresponding identified parameters
are [−0.8928, 0.9063] for mode 1, and [−0.4233, 0.5084]
for mode 2.

It is worth mentioning that the algorithm was capable of
inferring from the data the existence of both linear and
nonlinear dynamics without any prior knowledge, while
in (Lauer and Bloch, 2008) a linear kernel and a RBF
kernel had been chosen specifically for the two modes.

4.2 Example 2: Multiple switchings

In this second example, an observation window of N =
2000 is considered, which contains four switchings at times
t = 400 (from mode 1 to mode 2), t = 1500 (from mode
2 to mode 1), t = 1600 (from mode 1 to mode 2), and
t = 1700 (from mode 2 to mode 1). This time, the only a
priori information available to the identification algorithm
is that switchings may possibly occur at times tk = 100(k−
1), k = 2, 3, . . . , 20. To give an idea of the underlying
complexity of the combinatorial problem, this amounts
to 20 sub-periods, which corresponds to 220 = 1048576
possible switching signals. The same design parameters of
Example 1 have been used.

Table 1 reports the aggregated results obtained from
100 runs of the algorithm on the same data realization.
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Fig. 1. Example 1: Evolution of the
RIPs for the first mode (u(t− 1):
square, y(t − 1): star, y(t − 1)2:
circle).
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Fig. 2. Example 1: Evolution of the
RIPs for the second mode (u(t −
1): square, y(t−1): star, y(t−1)2:
circle, y(t− 1)u(t− 2): diamond).
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Fig. 3. Example 1: Evolution of the
MEPs (circle for mode 1 and cross
for mode 2), first (top) and second
(bottom) time periods.

The proposed algorithm performs well in both the mode
assignment and the model identification by exploring a
small fraction of the total number of possible switching
signals (220 = 1048576) and models (215 − 1 = 32767).
Both the switching sequence and the model for mode 1
were identified correctly in all runs. As for mode 2, it
happened sporadically (2 times) that regressor y(t− 1)
was selected instead of y(t− 1)2, with a slight performance
loss. As already seen in Figure 2 for Example 1, nonlinear
terms tend to be selected after the linear ones, causing
the algorithm to be trapped in a local minimum of the
loss function (9). Indeed, Li takes the value 0.0120 for
the wrong model and 0.0118 for the correct one, leading
to an almost negligible difference of 0.0015 between the
corresponding Ji values. This could explain the occasional
inability to escape from the local minimum, particularly
in view of (22), if there were few correct models in the
extracted population.

It is worth noticing that despite this occasional failure, the
algorithm has always been able to capture from the data
the existence of two different modes, and to assign them
correctly to the subperiods.

Table 1. Ex. 2: Monte Carlo simulation results.

Average # of iterations 123.9
Average elapsed time [s] 39.14
Percentage of correct sequence selection 100%
Average # of explored sequences 16795
Percentage of correct model selection (mode 1) 100%
Average # of explored models (mode 1) 687
Percentage of correct model selection (mode 2) 98%
Average # of explored models (mode 2) 684

5. CONCLUSIONS

A randomized batch method has been presented for the
identification of switched nonlinear systems, based on the
NARX model family. It recasts the optimization problem
which characterizes the identification of the system in a
probabilistic framework by defining a probability distribu-
tion over the space of possible switched models.

The initial results with the proposed algorithm empha-
size its capability of assigning correctly the time periods
between switchings to the modes and in choosing the

correct model structures for the different modes, which
is a valuable aspect considering the non trivial interaction
between these two tasks. Future work will focus on the
study of the robustness of the presented approach to noise,
considering also the case when the input signal is not fully
exciting. Furthermore, the dependencies between modes
could be modeled to improve the sampling procedure (e.g.,
introducing a minimum dwell time), thereby allowing to
address also the case with no a priori information on the
switching times at an affordable computational cost.
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