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Abstract— This paper addresses the design of the control
input to a discrete time piecewise affine system so as to optimize
its performance along a finite time horizon. The system is
affected by some additive stochastic disturbance and is subject
to constraints that need to be appropriately accounted for in
the design. By enforcing constraints to be satisfied for almost
all disturbance realizations except for a set of probability ǫ,
we can decide to what extent trading robustness for improving
performance and also cope with the case of disturbance with
unbounded support. Inspired by the existing literature, we
propose a method to realize this trade-off, which combines
the scenario approach to chance-constrained optimization with
robust optimal control of piecewise affine systems. Interestingly,
no explicit knowledge of the disturbance distribution is needed
but only some disturbance realizations, thus resulting in a data-
driven design method.

I. INTRODUCTION

In this paper, we address control input design for a
discrete time PieceWise Affine (PWA) system affected by
a stochastic disturbance, possibly with unbounded support.
The probabilistic characteristics of the disturbance are known
indirectly, thought historical data, and the goal is to optimize
the controlled system performance over a finite time horizon,
while satisfying state and actuation constraints.

PWA systems are characterized by a polyhedral partition
of the state cross (control and disturbance) input space. Each
element in the partition is a mode and has associated a certain
affine dynamics. The mode – and, hence, the corresponding
affine dynamics – is active when the state and input belong
to that element of the partition.

The class of PWA systems have been extensively studied
in the literature, with reference to the analysis of proper-
ties like controllability and observability, and problems like
model reduction and minimal realization, identification, fault
detection and estimation, stabilization, and control, see, e.g.,
[1, Chapters 4 and 5]. This is partly motivated by the fact
that methods from linear systems theory can be adapted to
a PWA modeling framework. Moreover, various systems are
naturally described as PWA systems and nonlinear systems
can be approximated up to a desired accuracy level with
PWA models by means of suitable hybridization procedures
(see, e.g., [2]–[5]). In robust control and verification, the
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introduced approximation error can be accounted for as a
fictitious additive disturbance so that the obtained controller
performance or the outcome of the verification are guar-
anteed, although conservative. From a computational view-
point, verification and control design problems for PWA sys-
tems can be formulated as Mixed Integer Linear or Quadratic
Programming (MILP/ MIQP) problems, since PWA systems
are described by affine equations and inequalities, and mode
switching can be described by introducing integer variables.
The resulting optimization problems are NP hard to solve, but
many algorithms and software tools exist to tackle them. This
is in essence what is done when PWA systems are converted
into Mixed Logical and Dynamical (MLD) systems, [6]–[8],
which are equivalent to PWA systems under suitable well-
posedness conditions, [9].

Here, we are concerned with a PWA system that is
subject to a possibly unbounded disturbance, and address
the design of the control input that minimizes a given cost
function while satisfying actuation and state constraints. The
disturbance is stochastic and its probability distribution is not
known explicitly but only indirectly via some independent
realizations extracted at random from such a distribution,
which calls for a data-driven approach. Due to the state
constraints and the fact that the disturbance is possibly
unbounded, we cannot address the problem according to a
worst case, 100% robust, perspective where constraints must
hold for every and each disturbance realization. We instead
formulate the problem according to a probabilistic perspec-
tive, where state constraints are enforced and performance is
optimized over a set of disturbance realizations of probability
1 − ǫ, with the parameter ǫ ∈ (0, 1) setting the appropriate
compromise between performance and robustness. The re-
sulting chance-constrained optimization program is hard to
be solved, also because of the PWA dynamics. We then tackle
it via the two step procedure suggested in [10], where the
disturbance is first confined to a compact set of probability
1− ǫ, and then a robust optimization problem is formulated
over the obtained compact set. As for the first step, we resort
to the so-called scenario approach, [11]–[13], to define a
box of probability 1 − ǫ for the disturbance. Remarkably,
this approach requires only to know disturbance realizations
(scenarios) in order to compute the box, thus allowing for
a data-driven methodology. As for the second step, we
show that, if the cost function is linear in the state and
control input, and the state constraints are polytopic, then, the
resulting robust optimization problem for the PWA system
subject to the box disturbance can be reduced to a MILP
problem. This is achieved via a geometric interpretation



of the robust constraints as a set-containment condition as
suggested in [14] in the context of PWA systems testing and
verification. In [15], a similar robust optimization problem is
addressed but for linear systems and an LMI (Linear Matrix
Inequalities) reformulation is adopted. In [16], robust control
for PWA systems is performed but based on some robust
mode control restriction, [17], that makes the mode sequence
of the controlled system independent of the disturbance
realization.

The rest of the paper is organized as follows. We describe
the problem addressed and the resulting chance-constrained
optimization program formulation in Section II. In Section
III a data-driven MILP solution to the chance-constrained
optimization program is worked out by integrating scenario
and robust optimization. Section IV draws some concluding
remarks and outline further research directions.

II. PROBLEM FORMULATION

We consider a discrete time system with state x ∈ R
n and

control input v ∈ R
mv , which is affected by some stochastic

disturbance w ∈ R
mw with a possibly unbounded support.

The state of the system evolves according to a PieceWise
Affine (PWA) dynamics, that is its dynamics is affine and
given by

x(k + 1) = Aix(k) +Bv
i v(k) +Bw

i w(k) + fi, (1)

when
[

x′(k) v′(k)w′(k)
]′
∈ Ai, where Ai, Bv

i , and Bw
i are

matrices of appropriate dimension, fi is a constant vector,
and Ai is a polyhedron of dimension n+mv+mw described
by

Ai =
{

(x, v, w) :
[

Li
ax Li

av Li
aw

]

[x′ v′ w′]
′
≤ Li

b

}

, (2)

where Li
ax, Li

av, Li
aw, and Li

b define the H-representation of
Ai as an intersection of half-spaces, [18], i = 1, 2, . . . , s. The
collection {A}si=1 constitutes a polyhedral subdivision of the
space R

n ×R
mv ×R

mw , i.e., ∪s
i=1Ai = R

n ×R
mv ×R

mw

and the intersection Ai ∩ Aj , i 6= j, is either empty or a
common proper face of both polyhedra. Polyhedron Ai is
called mode i, and mode i is active at time k if x(k) ∈ Ai.
A numerical test for checking if the resulting PWA system
is well posed (its evolution is always well defined) can be
found in [8]. Since the modes define a partition of the state-
input-disturbance space, there is only one mode active at a
time.

Our goal is designing the control input vector over a time
horizon of finite length T : v = [v(0)′ v(1)′ . . . v(T −1)′]′ ∈
R

mvT so as to minimize the linear cost function

J(v) =

T−1
∑

k=0

(c′x(k + 1)x(k + 1) + c′v(k)v(k)) , (3)

when the system is initialized at x(0) = x0, subject to the
actuation constraints on the input v(k) ∈ [vk, vk] ⊂ R

mv ,
and (affine) state constraints of the form x(k) ∈ Xk, k =
1, 2, . . . , T , where Xk is a polytopic set described by

Xk = {x ∈ R
n : Hk

ax ≤ Hk
b }, (4)

with Hk
a and Hk

b denoting the matrices of the H-
representation of Xk, k = 1, 2, . . . , T .

Note that the cost J in (3) is actually uncertain since it
depends on the disturbance vector

w = [w(0)′ w(1)′ . . . w(T − 1)′]′ ∈ R
mwT

through the state evolution x(k + 1), k = 0, . . . , T − 1,
which is obtained via the PWA dynamics (1) initialized with
x(0) = x0. To recall this dependence on w, we shall use the
notation Jw and xw when needed.

In order to take into account the uncertainty w, we adopt
a probabilistic perspective and impose that an upper bound
ℓ on the cost (3) is minimized and constraints are satisfied
for all disturbance realizations except for a set of a priori
defined probability ǫ ∈ (0, 1). More precisely, we address
the following problem

min
v∈V,ℓ

ℓ (5)

subject to:

Pw{Jw(v) ≤ ℓ ∧ xw(k) ∈ Xk, k = 1, 2 . . . T } ≥ 1− ǫ,

where Pw is the probability induced on the system tra-
jectories by the uncertainty w, and V is the box with
lower and upper bounds v = [v′0 v′1 . . . v′T−1]

′ and
v = [v′0 v′1 . . . v′T−1]

′, respectively, that is, V = [v,v] =
[v0, v0]×[v1, v1]×· · ·×[vT−1, vT−1]. The minimizer (v⋆, ℓ⋆)
will provide the control input v⋆ ∈ V that guarantees the best
(lowest) value ℓ⋆ for Jw(v) over all disturbance realizations
except for a set of probability at most ǫ while satisfying the
state constraints.

It is worth noticing that the violation probability ǫ plays
the role of a tuning knob trading robustness for performance
in that if we increase ǫ we improve performance, but decrease
the guarantees that such a performance and also the state
constraints are satisfied. Depending on the application at
hand, ǫ can be appropriately set so as to get the desired
compromise and set the risk at some acceptable value.

Note that not all values for ǫ may be admissible for
the chance-constrained problem (3) to be feasible. This is
for instance the case when w has an unbounded support,
and the state is confined to some compact set Xk that is
not compatible with the available actuation effort and the
experienced extent of the disturbance w. In the following we
shall neglect this issue and assume feasibility. The interested
reader can refer to [19] for an effective solution to the state
feasibility issue, which could be adopted and captured in
our framework, but that we do not take into account here to
simplify the presentation of our approach.

III. PROBLEM SOLUTION

The chance-constrained optimization program (5) is gener-
ally hard to solve except for a few cases like when probability
Pw is Gaussian, [20], [21]. It is indeed even to solve in a
data-driven framework, where Pw is not known explicitly
but only indirectly through some independent extractions
w

(1),w(2), . . . ,w(N) of w (scenarios).



Following [10], we then propose a two step data-based
solution, where we first determine a compact set W for
vector w such that Pw{w ∈ W} ≥ 1 − ǫ, and we then
solve the following robust optimization problem

min
v∈V, ℓ∈L

ℓ (6)

subject to:

Jw(v) ≤ ℓ ∧ xw(k) ∈ Xk, k = 1, 2 . . . T, w ∈ W ,

L being the compact interval where ℓ can be confined given
that the system (1) is initialized at x0 and subject to compact
inputs w ∈ W and v ∈ V .

Given that probability Pw is known only indirectly,
through the collected scenarios, the first step is addressed
via randomization and an appropriate convex problem for-
mulation so as to guarantee that Pw{w ∈ W} ≥ 1− ǫ with
a certain (high) confidence 1 − β, β ∈ (0, 1). The solution
to the robust program (6), then, will inherit the probabilistic
guarantees of W , i.e., it will be feasible for the original
chance-constrained program (5) with confidence 1− β.

Note that we adopt a two step approach since the scenario
guarantees do not hold for the randomized version of the
original chance-constrained problem (5), because constraints
inside Pw are not convex in the optimization variable v due
to the PWA dynamics of the system.

We next explain in detail how the two steps are performed.

Step 1: bounding uncertainty via scenario optimization

Set W is chosen to be a box

W = [w,w],

with w = [w0 w1 . . . wT−1]
′ and w = [w0 w1 . . . wT−1]

′.
The problem of determining [w,w] based on the available

scenarios {w(i)}Ni=1 is addressed by solving the following
scenario optimization program

min
w,w

T−1
∑

h=0

‖wh − wh‖ (7)

subject to:

w
(i) ∈ [w,w], i = 1, 2, . . . , N.

The following proposition then can be directly derived
from [10, Section III].

Proposition 1: Let (w⋆,w⋆) be the solution to (7). If N
satisfies (1 + (N − 1)ǭ) (1− ǭ)

N−1 ≤ β̄, where ǭ = ǫ
T

and
β̄ = β

T
, then, it holds that Pw{w ∈ [w⋆,w⋆]} ≥ 1− ǫ, with

confidence larger than or equal to 1− β.

Step 2: control input design via robust optimization

We start by better formulating problem (6), making the
constraints that need to be robustly satisfied explicit as a
function of state and input variables:

min
v∈V,ℓ∈L

ℓ (8)

subject to:

T−1
∑

k=0

(c′x(k + 1)x(k + 1) + c′v(k)v(k)) ≤ ℓ (9)

Hk
ax(k) ≤ Hk

b , k = 1, 2, . . . T, (10)

x(k + 1) = Aix(k) +Bv
i v(k) +Bw

i w(k) + fi,

for
[

x′(k) v′(k) w′(k)
]′
∈ Ai, k = 0, . . . , T − 1,

w ∈ W .

According to (1) initialized with x(0) = x0, the state x(k)
can be expressed as follows:

x(k) =

k−1
∏

j=0

Ai(j)x0 +

k−1
∑

j=0









k−1
∏

h=j+1

Ai(h)



Bv
i(j)v(j)

+









k−1
∏

h=j+1

Ai(h)



Bw
i(j)w(j)



 + fi(j)



 ,

where i(j) ∈ {1, . . . , s} is the index of the mode ac-
tive at time j. The ordered collection of modes I =
{i(0), i(1), . . . , i(k − 1)} ∈ {1, . . . , s}k that are active dur-
ing the system evolution up to time k is called switching
sequence of the PWA system in the horizon [0, k].

A solution to (8) exists if we can find (ṽ, ℓ̃) ∈ V × L
such that the set of states that the system can reach within
the interval [1, T ] when its control input v is set equal to ṽ

is contained within the specified sets Xk, k = 1, 2 . . . , T and
J(ṽ) ≤ ℓ̃, when the disturbance w ranges in W . Once we
have characterized such feasible values (ṽ, ℓ̃), we can then
pick up one with the minimum value of ℓ̃, thus solving the
robust optimization problem (8).

The question is then how we shall characterize the feasi-
ble values (ṽ, ℓ̃). We next suggest a geometric perspective
resting on a set inclusion condition. To this purpose we first
introduce some compact notations.

Set m = mw +mv, and define the input vector u ∈ R
m:

u =
[

w′, v′
]′
. (11)

Fix a switching sequence Il = {i0, i1, . . . , iT−1}. The
evolution of the state of system (1) on the time interval [0, T ]

X =
[

x(0)′ x(1)′ x(2)′ . . . x(T )′
]′
,

starting from the initial condition x(0) = x0 and subject to
the input sequence

U =
[

u(0)′ u(1)′ u(2)′ . . . u(T − 1)′
]′
, (12)

can be written as:

X = B
(Il)U +G

(Il)F (Il) +A
(Il)x0, (13)

where we set

B
(Il) =



















0 0 0 0

Bi0 0 0 0

Ai1Bi0 Bi1 0 0

...
...

. . .
...

∏T−1
j=1 AijBi0

∏T−1
j=2 AijBi1 . . . BiT−1



















,



with Bi =
[

Bw
i Bv

i

]

,

G
(Il)=



















0 0 0 0

I 0 0 0

Ai1 I 0 0

...
...

...
...

∏T−1
j=1 Aij

∏T−1
j=2 Aij . . . I



















,

F (Il) =



















fi0

fi1

fi2
...

fiT−1



















, A
(Il)=



















I

Ai0

Ai1Ai0

...
∏T−1

j=0 Aij



















.

The constraints on the state-control input-disturbance pairs
to the modes activation in the switching sequence can be
written in the following compact form:

L
(Il)
ax X + L

(Il)
au U ≤ L

(Il)
b , (14)

where

L
(Il)
ax =











Li0
ax 0

. . .
...

L
iT−1
ax 0











L
(Il)
au =











Li0
au

. . .

L
iT−1
au











L
(Il)
b =

[

Li0
′

b , Li1
′

b , . . . L
iT−1

′

b

]′

,

with Li
au =

[

Li
av Li

aw

]

. By plugging (13) in (14) we get:

L
(Il)
ax (A(Il)x0 +B

(Il)U +G
(Il)F (Il)) + L

(Il)
au U ≤ L

(Il)
b ,

which becomes:
M

(Il)
a U ≤ M

(Il)
b , (15)

where M
(Il)
a = L

(Il)
ax B

(Il) + L
(Il)
au and M

(Il)
b = L

(Il)
b −

L
(Il)
ax A

(Il)x0 − L
(Il)
ax G

(Il)F (Il).

From now on, we will say that system (1) evolves in
the switching sequence Il if equation (15) is satisfied. We
also define the reach-set associated with Il in the enlarged
variables space U × L as follows

AAAl =
{

(U, ℓ) ∈ U × L : M(Il)
a U ≤ M

(Il)
b

}

,

where U = [u,u] with u = [w′
0 v′0 . . . w′

T−1 v′T−1]
′ and

u = [w′
0 v′0 . . . w′

T−1 v′T−1]
′.

Let SS denote the set of all possible switching sequences.
Then, we have that

⋃

Il∈SS

AAAl = U × L, (16)

since any value for u(k) is admissible at each time step k,
given that there always exists an active mode corresponding
to that input value as dictated by the polyhedral subdivision
defining the PWA dynamics.

The linear constraints in (9) and (10) can be rewritten as:
{

Cx(A
(Il)x0 +B

(Il)U +G
(Il)F (Il)) + CuU ≤ ℓ

Ha(A
(Il)x0 +B

(Il)U +G
(Il)F (Il)) ≤ Hb

(17)

where Cx = [0 c′x(1) c′x(2) . . . c′x(T )], Cu =
[0 c′v(0) 0 c′v(1) . . . 0 c′v(T − 1)],

Ha =









0 H1
a

...
. . .

0 HT
a









, Hb =
[

H1
b

′
, . . .HT

b

′
]′

.

We can rewrite the inequalities (17) in the compact form:

S
(Il)
a [U ′ ℓ]′ ≤ S

(Il)
b , (18)

where S
(Il)
a and S

(Il)
b are suitably defined matrices, and

introduce the spec-set

SpSpSpl = {(U, ℓ) ∈ U × L : S(Il)
a [U ′ ℓ]′ ≤ S

(Il)
b }. (19)

If AAAl ∩ SpSpSpl is not empty, its elements are input sequences
{u(0), u(1), . . . u(T − 1)} and values for ℓ that make the
state of the system satisfies the constraints (9) and (10) while
keeping its evolution in the switching sequence Il.

Let z̃ = (ṽ, ℓ̃) ∈ V × L, and denote with Πz̃ (AAAl) and
Πz̃(SpSpSpl) the slices of the reach-set AAAl and spec-set SpSpSpl
obtained by setting ℓ = ℓ̃ and fixing in U (see (11) and
(12)) the sequence {v(k)}T−1

k=0 to the value ṽ ∈ V . Problem
(8) is then feasible if there exist some value ṽ = {v(k)}T−1

k=0

for the control input and some value ℓ̃ for the upper bound
ℓ on the cost, such that the following condition holds:

Πz̃(AAAl) ⊆ Πz̃(SpSpSpl) ∀Il ∈ SS. (20)

This can be formulated as bilinear feasibility test, [22],
which is hard to be solved. Here we head for an approximate
MILP solution by over-approximatingAAAl by an outer box BBBl

so as to provide a sufficient condition for (20) to hold, i.e.,

Πz̃(BBBl) ⊆ Πz̃(SpSpSpl) ⇒ Πz̃(AAAl) ⊆ Πz̃(SpSpSpl). (21)

BBBl will be chosen as the minimum volume outer box ap-
proximation of AAAl. Note that the over-approximations Bi

and Bj of AAAi and AAAj associated to the switching sequences
Ii 6= Ij may partly overlap. In this case, the approach still
remains valid though it is clearly conservative. The upper
and lower limits b̄(Il) and b(Il) of BBBl can be computed via
LP as explained in [23] and BBBl can be expressed as

BBBl = [b(Il), b̄(Il)] = {(U, ℓ) ∈ U × L : B(Il)
a [U ′ℓ]′ ≤ B

(Il)
b }

with B
(Il)
a = [ImT+1, −ImT+1]

′ and B
(Il)
b =

[b̄(Il)
′

, −b(Il)
′

]′, where ImT+1 is the identity matrix of
mT + 1 dimension.

The set Πz̃(BBBl) obtained by slicing BBBl in correspondence
of z̃ can be written as:

Πz̃(BBBl) =
{

Uw ∈ W :
[

B
(Il)
a

]

w
Uw ≤ B

(Il)
b −

[

B
(Il)
a

]

v
z̃
}



=

{

[b(Il)w , b̄
(Il)
w ] if ṽ ∈

[

b(Il)v , b̄
(Il)
v

]

∅ otherwise,

where we denote with Uw the column vector obtained
by extracting from U the elements that correspond to the
disturbance {w(k)}T−1

k=0 , and, for ease of notation, we use
b(Il)w and b̄

(Il)
w for the vectors obtained extracting the scalar

elements of b(Il) and b̄(Il) that correspond to {w(k)}T−1
k=0 .

If the sliced box Πz̃(BBBl) is non-empty, we next prove that
a value for z̃ that makes the set-containment condition (21)
hold can be found via a linear feasibility test.

Proposition 2: Let Πz̃(BBBl) 6= ∅. Then, condition
Πz̃(BBBl) ⊆ Πz̃(SpSpSpl) is satisfied if and only if:

∃z̃ ∈ [b(Il)z b̄(Il)z ] :
[

S
(Il)
a

]

z
z̃ ≤ S

(Il)
b − L(Il), (22)

where

L(Il)=
1

2

[

S
(Il)
a

]

w

(

b̄(Il)w + b(Il)w

)

+
1

2

∣

∣

∣

[

S
(Il)
a

]

w

∣

∣

∣

(

b̄(Il)w − b(Il)w

)

.

Proof: Condition Πz̃(BBBl) ⊆ Πz̃(SpSpSpl) is equivalent to:
[

S
(Il)
a

]

w
Uw +

[

S
(Il)
a

]

z
z̃ ≤ S

(Il)
b , ∀Uw ∈ [b(Il)w , b̄(Il)w ],

which holds if and only if:

max
Uw∈[b

(Il)
w , b̄

(Il)
w ]

[

S
(Il)
a

]

w
Uw +

[

S
(Il)
a

]

z
z̃ ≤ S

(Il)
b , (23)

where the max operator is meant row-wise. Through the
following change of variable:

Uw = µU +Q,

where µU = 1
2

(

b̄
(Il)
w + b(Il)w

)

and

Q ∈ Q =

[

−
1

2

(

b̄(Il)w − b(Il)w

)

,
1

2

(

b̄(Il)w − b(Il)w

)

]

,

problem (23) is rewritten as:

max
Q∈Q

[

S
(Il)
a

]

w
Q+

[

S
(Il)
a

]

w
µU +

[

S
(Il)
a

]

z
z̃ ≤ S

(Il)
b . (24)

The worst case of the term on the left hand side of (24) is
found on a vertex of Q, and its value is given by:

max
Q∈Q

[

S
(Il)
a

]

w
Q =

∣

∣

∣

[

S
(Il)
a

]

w

∣

∣

∣

b̄
(Il)
w − b(Il)w

2
(25)

Plugging (25) in (24) concludes the proof.
The feasibility test (22) applies to those switching se-

quences such that Πz̃(BBBl) is not empty. For those ones
such that Πz̃(BBBl) is empty, Πz̃(BBBl) ⊆ Πz̃(SpSpSpl) is trivially
satisfied. To account for this, we will next encode the
condition

Πz̃(BBBl) ⊆ Πz̃(SpSpSpl) ⇔






[

S
(Il)
a

]

z
z̃ ≤ S

(Il)
b − L(Il), z̃ ∈ [b(Il)z , b̄

(Il)
z ]

trivially satisfied, z̃ /∈ [b(Il)z , b̄
(Il)
z ]

within a mixed integer linear feasibility test.
Fix a switching sequence Il: the constraint z̃ ∈

[b(Il)z , b̄
(Il)
z ] that z̃ belongs to the box BBBl can be expressed

as
Taz̃ ≤ T

(Il)
b , (26)

where Ta = [ImvT+1, −ImvT+1]
′

and T(Il)
b = [b̄

(Il)
′

z −

b(Il)
′

z ]′. We now introduce 2(mvT+1) binary variables σ(Il)
j ,

j = {1, . . . , 2(mvT +1)}, one per each row of (26), defined
by:

σ
(Il)
j = 1 ⇔ Ta,j z̃ ≤ T

(Il)
b,j . (27)

Equation (27) can be translated via the big-M technique (see
[24]) into the following linear inequalities :

{

Ta,j z̃ −T
(Il)
b,j + V̄

(Il)
j σ

(Il)
j ≤ V̄

(Il)
j

−Ta,j z̃ +T
(Il)
b,j + V

(Il)
j σ

(Il)
j ≤ 0

,

where V̄
(Il)
j and V

(Il)
j are given by

V̄
(Il)
j = max

z̃
Ta,j z̃ −T

(Il)
b,j

V
(Il)
j = min

z̃
Ta,j z̃ −T

(Il)
b,j

and can be computed by using the same technique as in
Proposition 2. In order to make the constraint (22) trivially
satisfied when z̃ /∈ [b(Il)z , b̄

(Il)
z ], we can now exploit the

binary variables defined in (27) and write the following
constraint:
[

S
(Il)
a

]

z
z̃ − S

(Il)
b + L(Il) ≤ Z

(Il)12(mvT+1) − Z
(Il)σ(Il),

(28)

where σ(Il) is a column vector obtained by stacking all σ(Il)
j

variables, 12(mvT+1) is a column vector of 2(mvT+1) ones,
and each column [Z]j of Z is defined by:

[Z]j = max
z̃

[S(Il)
a ]z z̃ − S

(Il)
b + L(Il), (29)

where the max operator is to be interpreted row-wise. Again,
(29) can be tackled by means of the same technique used
in Proposition 2. Equation (28) becomes tight only if all
the σ

(Il)
t , t = 1, . . . , 2(mvT + 1), are equal to 1, which is

equivalent to z̃ ∈ [b(Il)z , b̄
(Il)
z ] (see (27)).

Finally, we can setup the following MILP problem:

min
z̃=(ṽ,ℓ̃)∈V×L, {σIl}Il∈SS

ℓ̃ (30)

subject to:

Ta,j z̃ −T
(Il)
b,j + V̄

(Il)
j σ

(Il)
j ≤ V̄

(Il)
j , j = 1, . . . , 2(mvT + 1)

−Ta,j z̃ +T
(Il)
b,j + V

(Il)
j σ

(Il)
j ≤ 0, j = 1, . . . , 2(mvT + 1)

[

S
(Il)
a

]

z
z̃ + Z

(Il)σ(Il) ≤ S
(Il)
b − L(Il) + Z

(Il)12(mvT+1)

∀Il ∈ SS.

Note that the obtained solution is suboptimal since an over-
approximation of the reach-sets has been adopted. However,
if feasible, problem (30) returns a control input sequence
ṽ⋆ and an upper bound ℓ̃⋆ on the cost that are feasible
for the original problem (8), thus entailing that ṽ⋆ enforces



the state constraints robustly over the set W of disturbance
realizations of predefined probability 1−ǫ, despite of the fact
that different disturbance realizations may activate a different
switching sequence.

Supposedly, problem (30) has to be solved for the admis-
sible switching sequences only. In practice, there is no need
of predetermining which sequences are admissible (which
can be done via MILP as shown in [14]). Indeed, a non-
admissible switching sequence Il is automatically discarded
when the computation of the outer box of AAAl is infeasible.

The complexity of the MILP problem (30) is basically
dictated by the number of involved integer variables. This
number grows exponentially with the time horizon length T
since the number of switching sequences grows exponentially
with time. If we fix T and look at the dependence in the
number of switching sequences, then for each switching
sequence we have that, in the worst case, 2(mvT + 1)
binary variables for each box are needed. In practice this
number is always much smaller, since each binary variable is
associated with the boundary of a box and it is often the case
that a boundary is shared by multiple boxes. Note that the
computational complexity does not depend on the state space
dimension. This feature makes our approach particularly
attractive for problems with a large state space, yet with a
limited number of modes.

IV. CONCLUSIONS

In this paper, we presented a data-driven approach to
optimal control input design for a discrete time PWA system
affected by a possibly unbounded stochastic disturbance
subject to state and actuation constraints.

We adopted a chance-constrained approach for the optimal
control problem formulation and propose a solution resting
on the integration of the scenario approach to stochastic
optimization and robust control for PWA systems.

Scalability issues of the resulting MILP problem could
be addressed by applying model reduction techniques or the
joint use of classical MILP solvers and techniques borrowed
from theoretical computer science, like Boolean satisfiability
problem solvers (SAT), so as to improve the performance of
Branch & Bound algorithms for MILP programs (see [25]).

Another interesting direction of research that we are
currently pursuing is the extension of the approach to the
class of nonlinear systems by suitably approximating their
dynamics with a PWA one and accounting for the error as a
bounded mode-dependent disturbance.
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