
Demonstration of GenoMetricQuery Language
Stefano Ceri, Arif Canakoglu, Andrea Gulino, Abdulrahman Kaitoua∗

Marco Masseroli, Luca Nanni, Pietro Pinoli
DEIB, Politecnico di Milano

first.last@polimi.it

ABSTRACT
In the last ten years, genomic computing has made gigantic steps
due to Next Generation Sequencing (NGS), a high-throughput, mas-
sively parallel technology; the cost of producing a complete human
sequence dropped to 1000 US$ in 2015 and is expected to drop be-
low 100 US$ by 2020. Several new methods have recently become
available for extracting heterogeneous datasets from the genome,
revealing data signals such as variations from a reference sequence,
levels of expression of coding regions, or protein binding enrich-
ments (‘peaks’) with their statistical or geometric properties. Huge
collections of such datasets are made available by large interna-
tional consortia.

In this new context, we developed GenoMetric Query Language
(GMQL), a new data extraction and integration language. GMQL
supports queries over thousands of heterogeneous datasets; as such,
it is key to genomic data analysis. GMQL queries are executed on
the cloud, after being translated and optimized; our best deployment
uses Spark over Hadoop. Datasets are described by the Genomic
Data Model (GDM), which provides interoperability between many
data formats; GDM combines abstractions for genomic region data
with the associated experimental, biological and clinical metadata.

GMQL is targeted to the bio-informatics community for facili-
tating data exploration and for integrating data extraction and data
analysis; this demonstration highlights its usability and expressive
power. We show GMQL at work from a Web-based user interface
and from a language embedding (Python).

CCS CONCEPTS
• Applied computing→ Computational genomics; • Theory
of computation → Data modeling;

KEYWORDS
Genomic Data Management, Query Language

ACM Reference Format:
Stefano Ceri, Arif Canakoglu, Andrea Gulino, Abdulrahman Kaitoua Marco
Masseroli, Luca Nanni, Pietro Pinoli. 2018. Demonstration of GenoMetric
Query Language. In The 27th ACM International Conference on Information
and Knowledge Management (CIKM ’18), October 22–26, 2018, Torino, Italy.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3269206.3269217

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00
https://doi.org/10.1145/3269206.3269217

Figure 1: Dataset with two samples in GDM format.

1 BACKGROUND
We summarize the features of Genomic Data Model, from [6]. A
sample s is a triple ⟨id,R,M⟩ where:

• id is the sample identifier, unique within each dataset.
• R is the set of genomic regions of the sample, built as pairs
⟨c, f ⟩ of coordinates c and features f ; coordinates are arrays
of four fixed attributes chr, left, right, strand; features are
arrays of typed attributes; we assume attribute names of
features to be different. The region schema of s is the list of
attributes used for the identifier, the coordinates, and the
features.

• M is the set of metadata of the sample, built as attribute-value
pairs ⟨a,v⟩, where we assume the type of each value v to be
string; the use of attribute-value pairs provides a generic so-
lution that mediates among very different metadata formats
of genomic sources.

A dataset is a collection of samples with the same region schema;
Fig. 1 presents a dataset consisting of two samples.

Each GDM dataset is implemented by two data collections pair-
ing identifiers respectively to metadata and regions. The upper
part of Fig. 1 shows metadata, with the attributes: ID, ATTRIBUTE,
VALUE. The intermediate part shows regions, with the attributes ID,
CHR, LEFT, RIGHT, STRAND followed by an arbitrary number of at-
tributes representing features; here, we illustrate a simple case with
∗Current affiliation: German research center for artificial intelligence (DFKI)/ Technical
University of Berlin (TU-Berlin), Berlin, Germany

https://doi.org/10.1145/3269206.3269217
https://doi.org/10.1145/3269206.3269217

CIKM ’18, October 22–26, 2018, Torino, Italy S. Ceri et al.

Figure 2: Genometric join in GMQL.

only one attribute, the region’s P_VALUE. The lower part shows an
abstract representation of the five regions, that belong to the first
two chromosomes, aligned along the genome.

GMQL is a high-level language inspired by Codd’s relational
algebra; it extends conventional algebraic operations with domain-
specific operations specifically designed for genomics [5]. GMQL
operations include classic algebraic operations (SELECT, PROJECT,
UNION, DIFFERENCE, JOIN, SORT, EXTEND, GROUP) and domain-
specific operations (e.g., COVER deals with replicas of the same
experiment; MAP refers regions of experiments to user-selected ref-
erence regions; GENOMETRIC JOIN selects region pairs based upon
distance properties); the full description and language specification
of GMQL is provided at the GMQL website1.

A simple example of genometric join operation is shown in Fig.
2. Two samples, denoted as EXPERIMENT and GENES, are joined
based on a simple distance predicate that is satisfied by overlapping
regions (their distance must be less than zero). The RESULT is
projected over the RIGHT operand; it consists of all the genes that
intersect with the experiment regions.

A typical GMQL query starts with a SELECT operation, which
applies to input datasets. The operation assigns to a GMQL vari-
able those samples which are filtered by the selection predicate;
these samples are loaded from a repository of the private and pub-
lic dataset (later discussed). Then, the query continues with an
arbitrary number of operations; eventually, it ends with a MATE-
RIALIZE operation for the result variable. GMQL exploits a batch
and lazy execution model: the actual execution starts with the MA-
TERIALIZE operation. All operations producing the result variable
are modeled as an Operation DAG, which is then logically and
physically optimized.

In the join operation of Fig. 2, metadata of RESULT are copied
from metadata of GENES; in general, GMQL queries extract in the
result, operation after operation, the metadata content which is
suitably composed from the metadata of the operands, thereby
tracing the input samples which contributed to the results. Tracing
metadata provenance during query processing is a unique aspect of
our approach, that distinguishes GMQL from other genomic data
management systems [1, 8, 9]; more comparisons can be found in
[4, 5].

1http://www.bioinformatics.deib.polimi.it/GMQL/

The GMQL system is organized as a four-layer architecture [4]:
the Access Layer, supporting web interface / web services, a shell
command line interface and several APIs (Scala, Python, R); the
Engine Layer, including the compiler and managing the Operation
DAG; the Server Management Layer, enabling the execution over
heterogeneous implementations and environments (local vs. dis-
tributed); and the Implementation Layer, mapping the operation
DAG to a specific implementation (Spark, Flink, SciDB).

Moreover, the Server Manager is supported by a Repository
Manager, for accessing the data repository on heterogeneous file
systems (local file system, Hadoop Distributed File System, and
Google Cloud Storage).

The publicly accessible version of our system uses the Spark im-
plementation and is deployed on a cluster provided by the CINECA
supercomputing site2. The cluster, made up of three core nodes and
equipped, in total, with 120 vCPU and 375 GB of RAM, is driven
by a master node providing Web services and a user-friendly Web
interface.

2 DEMO HIGHLIGHTS
The demonstration is based on a specific query which is paradig-
matic of the capabilities of our system; it is executed in two sec-
tions, from the GMQL Web-based user interface and from within a
Python notebook, respectively; the former demo section highlights
the declarative style of the language and the data browsing and
visualization capabilities of the GMQL system, the latter demo ses-
sion highlights the friendliness of a language embedding for data
exploration and analysis.

2.1 Query Description
Informally, the query consists of loading three experimental data
samples (UPLOADED dataset), then extracting the regions which
are present in at least two out of the three experiments (using
the Cover operation), then finding those resulting regions which
overlap with genes (using the Genometric Join operation), and then
finding those gene-overlapping regions which include at least one
mutation (using the Map operation); genes are extracted from pub-
lic annotations (RefSeq by UCSC), mutations are extracted from a
public dataset from the International Cancer Genome Consortium
(ICGC). The query can be spotted in panel (B) of Fig. 3; its step-
by-step explanation is covered by videos available on the GeCo
Website3.

2.2 Demo Objectives
• Demonstrate a complete user session, from input data upload
to result in visualization.

• Explain three core operations of GMQL: Cover, Map, and
Join. Explain their effect on genomic regions during GMQL
execution.

• Show metadata browsing and in particular show region
schemas, data profiles and metadata-based selections.

• Show query compilation/execution and data materialization
within private workspaces.

2https://www.cineca.it/
3See: http://www.bioinformatics.deib.polimi.it/geco/?video

Demonstration of GenoMetric Query Language CIKM ’18, October 22–26, 2018, Torino, Italy

Figure 3: GMQLWeb Interface, artificially divided into six panels representing (A) Public and private data resources, (B) Query
editor, (C) Compilation/Execution monitor, (D) Metadata browser, (E) Metadata display, (F) Schema display.

• Show the integration with the UCSC Genome Browser for
result displaying.

• Repeat the user session, including data loading, extraction
and analysis, using the PyGMQL library from inside a Python
notebook.

• Show exploratory steps of data analysis from within Python
(including integration with Pandas library4).

2.3 Session using the Web interface
The GMQL Web interface can be invoked from within the GeCo
Website5; guest logins are supported in addition to registered users.
The demo starts with the loading of experimental datasets, activated
by an upload button (Add); as result, an UPLOADED dataset ap-
pears in the private user’s repository (Fig. 3A). The public repository
includes public datasets from sources such as ENCODE (the Ency-
clopedia of DNA Elements [2]) and TCGA (The Cancer Genome
Atlas [10]); the GMQL public repository currently consists of about
20 datasets and 150,000 samples.

By selecting a sample of the repository, users can view its meta-
data (Fig. 3E) and schema (Fig. 3F); the specific situation illus-
trated in Fig. 3 shows the RefSeq genes (a specific sample of the
HG19_BED_ANNOTATION dataset). Users can then use the Meta-
data browser to progressively create a GMQL SELECT statement on
a repository dataset, by adding simple predicates (Fig. 3D); meta-
data are suitably profiled, hence the user sees the cardinality of
result samples after applying conjunctive conditions. When the
condition is executed, it generates a tabular view of the metadata of

4https://pandas.pydata.org/
5See: http://www.bioinformatics.deib.polimi.it/geco/?try

Figure 4: Metadata browser results.

the samples which satisfy the selection; Fig. 4 shows the metadata
attributes and their values of the RefSeqGenes sample.

The user then can write the demo query shown in Fig. 3B. It is
possible to separately compile each GMQL operation (Fig. 3C) and
check statements one by one. GMQL uses a lazy query execution
initiated by the MATERIALIZE operation. During execution, some
information about the processing state is shared with the user
through a query log panel.

Upon termination, a new dataset is loaded in the user’s private
workspace (Fig. 3A). Results are profiled so as to provide their
statistical description; Fig. 5 shows the profile of the query result.

2.4 Session using the Python library
GMQL can be used also through PyGMQL, a Python interface which
supports GMQL queries in an interactive and exploration-driven
fashion. Fig. 6 shows an example of join operation expressed in
Python style, for comparison with the algebraic operation shown in

CIKM ’18, October 22–26, 2018, Torino, Italy S. Ceri et al.

Figure 5: Profile of query result.

Figure 6: Join in PyGMQL.

Figure 7: Dataframe for data exchange.

Fig. 2; one can note the functional style which is typical of Python,
but the use of operation parameters in the two cases is identical.

PyGMQL can execute both locally, using a local GMQL back-
end embedded in the library, or remotely, by sending queries (in
the form of a graph data structure) to a remote server where a
GMQL engine is installed. PyGMQL can be installed by using the
pip package manager.

The result of a query is automatically loaded in memory as a
Python structure called GDataframe, which in turn is composed
of two Pandas dataframes, illustrated in Fig. 7; the dataframes re-
flect the GDM organization shown in Fig. 1, except for metadata
which is organized in a tabular format. In Fig. 7, regions include
mutation counts, metadata include some attributes from GENE and
MUTATION datasets.

Thanks to the Pandas implementation, the GDataframe can be
used as a starting point for complex data manipulation using spe-
cific Python libraries for data analysis (like Pandas or Numpy), for
machine learning (like Scikit-Learn or Scipy) and for deep learning

Figure 8: Data analysis using Pandas.

(like TensorFlow or Keras). Fig. 8 shows an example of simple de-
scriptive statistics (the histogram of the genes with a given number
of found mutations) computed upon the region dataframe of the
result.

As illustrated in Fig. 8, PyGMQL code will be shown with the
support of Jupyter notebook6, a programming environment for
data exploration. The usage of Jupyter notebooks improves the
reproducibility of the results, their sharing, and visualization.

The demo will be initiated by providing basic information about
used concepts so that it will be understandable to a public with
no background in genomics. We also developed a complex Jupiter
notebook relative to an ongoing research project, which uses more
sophisticated datasets (including: topologically associating domains,
ChiaPet links, transcription factors and histone modifications), ded-
icated to interested users with a strong biological background.

ACKNOWLEDGMENT
This work is supported by the ERC Advanced Grant GeCo (Data-
Driven Genomic Computing).

REFERENCES
[1] V. Bafna et al. Abstractions for genomics. CACM, 56(1):83-93 (2013).
[2] ENCODE Project Consortium. An integrated encyclopedia of DNA elements in

the human genome. Nature, 489(7414):57-74 (2012).
[3] W.J. Kent et al. The Human Genome Browser at UCSC, Genome Res, 12(6):996-1006

(2002).
[4] A. Kaitoua et al. Framework for supporting genomic operations IEEE-TC, 66(3):443-

457 (2017).
[5] M. Masseroli et al. GenoMetric Query Language: A novel approach to large-scale

genomic data management. Bioinformatics, 31(12):1881-1888 (2015).
[6] M. Masseroli, et al. Modeling and interoperability of heterogeneous genomic big

data for integrative processing and querying. Methods, 1;111:3-11 (2016).
[7] L.D. Stein. The case for cloud computing in genome informatics. Genome Biol,

11(5):207 (2010).
[8] S. Tata et al. Declarative querying for biological sequences. In Proc. IEEE ICDE

87:99 (2006).
[9] X.Zhu, et al. START: a system for flexible analysis of hundreds of genomic signal

tracks in few lines of SQL-like queries. BMC Genomics, 18(1):749 (2017).
[10] J.N. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat

Genet., 45(10):1113-1120 (2013).

6http://jupyter.org/

	Abstract
	1 Background
	2 Demo Highlights
	2.1 Query Description
	2.2 Demo Objectives
	2.3 Session using the Web interface
	2.4 Session using the Python library

	References

