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SUMMARY

We present a two phase model for microcirculation that describes the interaction of plasma with red blood

cells. The model takes into account of typical effects characterizing the microcirculation, such as the

Fahraeus-Lindqvist effect and plasma skimming. Besides these features, the model describes the interaction

of capillaries with the surrounding tissue. More precisely, the model accounts for the interaction of capillary

transmural flow with the surrounding interstitial pressure. Furthermore, the capillaries are represented as

one-dimensional channels with arbitrary, possibly curved configuration. The latter two features rely on the

unique ability of the model to account for variations of flow rate and pressure along the axis of the capillary,

according to a local differential formulation of mass and momentum conservation. Indeed, the model stands

on a solid mathematical foundation, which is also addressed in this work. In particular, we present the model

derivation, the variational formulation and its approximation using the finite element method. Finally, we

conclude the work with a comparative computational study of the importance of the Fahraeus-Lindqvist,

plasma skimming and capillary leakage effects on the distribution of flow in a microvascular network.
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1. INTRODUCTION

Mathematical modeling is a well accepted tool of investigation in microcirculation [35], because it

complements experimental investigation by facilitating the formulation of hypotheses to be tested

against real data. Mathematical models for microcirculation have evolved over the last three decades

(at least), with the attempt to advance the state of art from phenomenological models to predictive

ones [56]. Now, there is a fairly good agreement about the fundamental traits of models for blood

flow in the microcirculation. More precisely, the importance of nonlinear blood rheology depending

on hematocrit [22, 18, 38, 23, 39, 58], the role of the microvascular morphology [4, 20, 52, 19],

and of the extravascular pressure gradient [16, 15], is well accepted. However, how the interaction

of these essential factors determine the main features of blood flow at the microvascular level

still presents some unresolved questions. For this reason, the development of mathematical and

computational models able to address the complexity of these phenomena is still up to date.

From the computational standpoint, the panorama looks more scattered. This may be due to

the intrinsic difficulty to solve the microcirculation problem, because it involves differential and

nonlinear governing equations defined on networks of complex shape. Even though it is out of

the scope of this work to provide a comprehensive review, we mention here some representative

approaches, such as the one of [22, 14, 13], the method of Green’s functions [28, 57], and also the

approaches that look at the microvascular bed as a porous medium [63, 8, 45].

The objective of this work is to derive a model of microcirculation and its interaction with the

interstitial volume, where the effect of pressure gradients is taken into account. As mentioned before,

the model does also include a nonlinear blood rheology, dependent of the vessel diameter and the

hematocrit, as well as it is able to account for complex vascular geometries. To include complex

geometries, we adopt a mesoscale approach conceptually similar to the method of Green’s functions.

The unique feature of this model is to be rigorously derived from the governing equation of flow,

such as mass and momentum balance in a network of leaky channels. For example, we can naturally

account for the role of capillary permeability and we determine how to modify the equations in

accordance to curvature of the channels. The enforcement of mass conservation at the junctions

of capillary branches also emerges directly from the derivation of the model. This allows us to

embed plasma skimming effects in the model. According to the classification proposed in [56], the

model belongs to the category of quantitative conceptual models, with the ambition to facilitate the

migration of the state of art towards predictive models. The resulting mathematical problem consists

of coupled partial differential equations (PDEs) on manifolds with heterogeneous dimensionality.

Namely, it couples a flow and transport problem in one-dimension (1D) with a porous media flow

problem in three-dimensions (3D). This approach was originally proposed in [9, 11, 10]. Besides
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its relevance to applications, it has recently attracted the attention of several researchers from the

perspective of mathematics. Indeed, it requires particular attention to prove existence of a solution

in the weak (or variational) sense [31, 44, 32, 62].

This study is organized as follows. In the first section we present the derivation of the governing

equations of flow through a vascular network of one-dimensional channels from the general three-

dimensional formulation of the Navier-Stokes equations for incompressible fluids. Once the general

framework is developed, we make it specific to microcirculation by introducing an additional

transport equation for hematocrit, (defined as a continuum quantity, as red blood cells can not

be described as individual particles at this level of detail) in virtue of which the model becomes

genuinely two-phase. Also the Fahraeus-Lindqvist and plasma skimming effects are embedded into

the governing principles. In the third section, we rigorously address the variational formulation of the

problem, in preparation of the numerical discretization based on the finite element method. Finally,

this section is concluded with the study of a numerical solution strategy to address the nonlinearity

arising from the complex blood rheology. The work ends with an extended series of numerical tests

with increasing level of complexity. For validation purposes, we begin from the analysis of a single

vascular branch, for which the analytical solution is known. Then, we consider the flow through a

Y-shaped bifurcation, to investigate the role of curvature and radius on the flow split. Finally we

address a more complex network, built on the basis of a biomimetic principle related to Voronoi

tassellations [54, 55].

In perspective, this work proposes a quantitative tool for the investigation of many pathologies

related to microcirculation. Ongoing applications to nephrology (precisely the study of perturbed

fluid homeostasis in uremic patients [47]), neurology (see for example recently published works

[37, 61]) and oncology (for better understanding the microenvironment of vascularized tumors

[42, 43]) are already in progress.

2. A TWO PHASE MODEL OF MICROCIRCULATION COUPLED WITH INTERSTITIAL

FLOW

We define a mathematical model for fluid transport in a permeable biological tissue perfused by a

capillary network. We consider a domain Ω that is composed by two parts, Ωv and Ωt, the capillaries

and the tissue interstitium, respectively. Assuming that the capillaries can be described as cylindrical

vessels, we denote with Γ the outer surface of Ωv, with R its radius and with Λ the centerline of the

capillary network. Any physical quantity of interest, such as the blood pressure p and the blood

velocity u, is a function of space (being x ∈ Ω the spatial coordinates). We consider steady-state
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flow conditions, as a result all variables are independent of time. The flow model in the vascular

domain Ωv reads as follows:



∇ · ut = 0 in Ωt

ut +
K

µt
∇pt = 0 in Ωt

ρ
∂uv
∂t

+ ρ(uv · ∇)uv = ∇ · σ in Ωv

∇ · uv = 0 in Ωv

(1)

where σ(uv, pv) = 1/2µv(∇uv +∇Tuv)−∇pv is the Cauchy stress in the blood and µv is the

apparent (or effective) blood viscosity. In addition, µt and K denote the dynamic fluid viscosity

and the hydraulic permeability of the interstitial tissue, respectively, and ρ is the blood density. The

viscosity of the interstitial fluid, µt, is taken from [60]. It is comparable to the one of blood plasma

at body temperature of 37o, which will be later denoted by µref (we remand to Table I for the

values of the parameters and corresponding references). At the interface Γ = ∂Ωv ∩ ∂Ωt we impose

continuity of the flow:

uv · n = ut · n = f(pt, pv) with f(pt, pv) = Lp
(
(pv − pt)− (πv − πt)

)
, ut · τ k = 0, on Γ

(2)

where n is the outward unit vector normal to the capillary surface and τ k, k = 1, 2 are the tangential

and binormal vectors. The fluid flux across the capillary wall can be obtained on the basis of linear

non-equilibrium thermodynamic arguments, originally developed by Kedem and Katchalsky. In

particular Lp is the hydraulic conductivity of the vessel wall, Rg is the universal gas constant and

T is the absolute temperature. In (2) πv and πt determine the osmotic (or oncotic) pressure gradient

across the capillary wall, namely δπ = πv − πt, due to the difference in the concentration of proteins

(for example albumin), [33]. In what follows, we assume that δπ is given and is independent of x.

2.1. Derivation of the governing flow equations in a capillary with arbitrary geometry

The one dimensional model that governs the bulk flow in each branch of a generic microcirculation

network is obtained as follows. Let us define a local cylindrical coordinate system x = (r, θ, s) at

each point of the centerline of the capillaries. We denote with er, eθ, es the radial, circumferential

and axial unit vectors. The model is based on the following, geometric, kinematic and dynamic

assumptions:
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A
cc

ep
te

d
A

rt
ic

le
5

Circular section For each value of the arc length s along a network branch, the intersection

between the orthogonal plan to es and the vessel is circular.

Dominance of axial velocity The radial and circumferential velocity components are negligible

compared to the axial component, namely uv = [0, 0, uv(r, θ, s)]
T .

Body forces We neglect the effect of gravity and other possible types of body forces (inertia,

Coriolis).

Steady flow We neglect transient phenomena. Microcirculation is characterized by negligible

fluctuations of the blood pressure due to the heartbeat, namely the Womersley numbers at the level

of capillary circulation are negligible [24]. For this reasons, we just aim to determine the steady flow

conditions.

Dominance of viscous forces Microcirculation is also characterized by the dominance of viscous

forces over inertial forces acting on infinitesimal fluid particles, namely the Reynolds number

characterizing the flow is low.

Viscosity We assume that the apparent viscosity of blood, µv is independent of the local

deformation rate conditions. However, the viscosity is not a constant parameter but it depends on

the hematocrit and on the vessel radius.

Under these assumptions the mass balance and momentum equations governing an incompressible

flow, such as blood, reduce to the following form,

ur = uθ = 0, ∂rpv = 0, ∂θpv = 0, ∂suv = 0, −µv∆uv + ∂sp = 0, (3)

for any (r, θ, s) ∈ Ωv where ∆ denotes the Laplace operator with respect to cylindrical coordinates

∆u = 1/r∂r(r∂ru) + 1/r2∂2
θu+ ∂2

su. We now aim to transform equation (3) into a simpler one that

is defined on the centerline of the capillary, solely. To this purpose, we introduce a parametrization

of each curvilinear branch. Let Ψ : R→ R3 be the parametric arc length, such that Ψ ∈ C3(R) and

‖dzΨ(z)‖ = 1 for any z ∈ [0, L] being L the length of a generic branch of the capillary network.

Note that s =
∫ z

0
‖dζΨ(ζ)‖dζ = z. The curvature of the arc at a specific location, is κ = ‖dzzΨ(z)‖;

the centripetal unitary direction is N = dzzΨ(z)/κ and the center C0 of the osculating circle is the

point in the direction N(z) with distance 1/κ from Ψ(z).

In order to proceed with the one-dimensional model derivation, we set the following ansatz: the

axial velocity profile can be decomposed as uv(r, θ, s) = uv(s)Φ(r, θ) where uv represents the mean
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or bulk velocity of the blood stream on the cross section identified by the arc length s, denoted by

Σ(s). More precisely, in what follows we will use the notation

uv(s) =
1

πR2

∫
Σ(s)

uv dσ , pv(s) =
1

πR2

∫
Σ(s)

pv dσ , pt(s) =
1

2πR

∫
∂Σ(s)

pt dσ ,

where pt is the mean interstitial pressure on the boundary of a section Σ. The function φ(r, θ) is a

shape factor that is represented as

Φ(r, θ) = φ(r/R)(1 + arcos θ + brsin θ + cr2cos θsin θ + dr2cos 2θ + er2sin 2θ) , (4)

where a, b, c, d, e are parameters to be determined in what follows. The radially symmetric part of

the profile, namely φ(r/R) is usually modeled as,

φ(ρ) =
γ + 2

γ
(1− ργ) ,

which coincides with the classic Poiseuille parabolic flow profile (observed in straight cylindrical

channels) for γ = 2.

We aim to find a suitable expression for the parameters a, b, c, d, e in terms of the geometry of

the centerline, namely Ψ, such that the shape factor coincides with the classic parabolic Poiseuille

profile when the centerline is rectilinear, while it deviates from this pattern when the centerline is

curved. To this purpose, we set the following additional assumptions:

Choice of θ We assume that on each cross section the axis θ = 0 is colinear with the vector N.

Symmetry of the profile We require that the velocity profile in each section is such that

Φ(r, θ, ψ) = Φ(r,−θ, ψ) ∀r, θ, ψ. As a result of that the coefficient b, c must vanish, namely

b = c = 0.

Linear dependence We assume that the correction factor of the velocity profile at any point s,

namely (1 + arcos θ + brsin θ + cr2cos θsin θ + dr2cos 2θ + er2sin 2θ) is linearly dependent of the

distance from the center of the osculating circle relative to this point.

We are now able to determine the coefficients a, d, e which satisfy these assumptions. For the

linear dependence of the velocity with the distance from the center of the osculating circle, our

profile must be zero in C0 = (r = 1/κ, θ = 0, ψ), that is (1 + a/κ+ d/κ2) = 0→ d = −aκ− κ2.

Furthermore, since the velocity profile is linearly dependent to the distance from the center of the

osculating circle, we have that all the points with distance 1/κ from it must have the same velocity.

This article is protected by copyright. All rights reserved.
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The set of points of each cross section with distance 1/κ from the point C0 are:

ϕ = {(r, θ) : r =
2cos θ

κ
, θ ∈ [−π

2
; +

π

2
]}.

Moreover we have that Φ(r = 0, θ, ψ) = φ(0) and so ∀(r, θ) ∈ φ then Φ(r, θ, ψ) = φ(r/R). It

follows that ∀(r, θ) ∈ ϕ:

0 = arcos θ + dr2cos 2θ + er2sin 2θ = 2
a

κ
cos 2θ + 4

d

κ2
cos 4θ + 4

e

κ2
cos 2θsin 2θ.

Now for θ = ±π2 the equation is verified. In the other cases we can divide all by 2cos 2θ/κ2, to

obtain:

0 = aκ+ 2dcos 2θ + 2esin 2θ ∀θ ∈
(
−π

2
,+

π

2

)
.

To find the value of the parameters we need two more equations. Thus, we test it on two particular

cases: θ = π/4, θ = π/3. For θ = π/4, using d = −aκ− κ2 we obtain:

0 = aκ+ 2d(
1

2
) + 2e(

1

2
) = aκ+ d+ e = aκ− κ2 − aκ+ e = e− κ2.

For that e = κ2. Finally for θ = π/3, using the previous result we have:

0 = aκ+ 2d(
1

4
) + 2e(

3

4
) = aκ+

d

2
+

3e

2
= aκ− κ2

2
− aκ

2
+

3κ2

2
=
aκ

2
+ κ2

So we obtain a = −2κ and d = κ2. In a general configuration the curvature is dependent on the arc

length κ = κ(s). In conclusion, the velocity profile is of the form:

Φ(r, θ, ψ) = φ(rR−1)(1 + r2κ2(ψ)− 2κ(ψ)rcos θ). (5)

A visualization of such profile is provided in Figure 1

Now we derive the reduced model for flow in curved vessels by replacing the velocity profile (5)

into the mass and momentum balance equations (3) and we integrate these equations on a portion of

vessel, P delimited by two cross sections Σ(s1),Σ(s2), s2 > s1. In this way, we obtain simplified

equations that depend only on the arc length s. We start first from the continuity equation, using the

This article is protected by copyright. All rights reserved.
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Figure 1. Visualization of the dimensionless velocity profile for a curved pipe obtained using expression (5).
The shape parameter is γ = 2 and the curvature is such that κR = 0.11 as in the numerical simulations.

fact that n = es on Σ(s1) and Σ(s2) we obtain:

0 =

∫
P

∇ · uvdΩ =

∫
∂P

uv · n dσ =

∫
Σ(s1)

uv · ndσ +

∫
Σ(s2)

uv · n dσ +

∫
Γ

uv · n dσ

= −
∫

Σ(s1)

uv dσ +

∫
Σ(s2)

uv dσ +

∫
Γ

f(pt, pv) dσ ' −uv(s1)πR2(s1) + uv(s2)πR2(s2) +

∫ s2

s1

f(pt, pv)dz

=

∫ s2

s1

[f(pt, pv) + ∂s(πR
2uv)]dz .

(6)

According to (3), in particular ∂rpv = ∂θpv = 0, we notice that pv(r, s, θ) = pv(s). Furthermore, in

equation (6) we have adopted the assumption that the radius of the capillary is small if compared to

the domain Ω. More precisely, we have set that

∫
Γ

f(pt, pv) dσ =

∫ s2

s1

∫ 2π

0

f(pt, pv)R(s)dθ ds =

∫ s2

s1

∫ 2π

0

f(pt, pv)R(s)dθ ds =

∫ s2

s1

2πR(s)f(pt, pv) ds ,

where the last step holds true because f(pt, pv) is a linear function of its arguments.

Let us now apply the averaging technique to the momentum balance equation, that is the last of

(3). We have:

∫
P

∆uv dΩ =

∫
∂P

∇uv · n dσ = −
∫

Σ(s1)

∂suv dσ +

∫
Σ(s2)

∂suv dσ +

∫
Γ

∇uv · n dσ =

∫
Γ

∇uv · er dσ

=

∫
Γ

∂ruvdσ =

∫
Γ

uv(s)∂rΦ(r, θ)dσ =

∫
Γ

uv(s)R
−1φ′(rR−1)(1− 2κrcos θ + κ2r2) + φ(rR−1)(2κ2r − 2κcos θ) dσ

=

∫ s2

s1

∫ 2π

0

uv(s)
(
R−1φ′(1)(1− κcos θ + κ2R2) + φ(1)(2κ2R− 2κcos θ)

)
Rdθds.

This article is protected by copyright. All rights reserved.
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Now using the fact that φ(1) = 0, the periodicity of cos θ, we obtain:

∫
P

∆uv dΩ =

∫ s2

s1

2πφ′(1)(1 + κ2R2)uv(s) ds,

such that the averaged/one-dimensional form of the momentum equation becomes

−2πµv(s)φ
′(1)
(
1 + κ2(s)R2

)
uv(s) + πR2∂spv(s) = 0.

2.2. Extension to a network of capillaries

Now that we have derived the 1D model equations we need to generalize them to a more complex

topology. To this purpose, we decompose the network in Λi branches, i = 1, ..., N . The branches

are parametrized by the arc length si; a tangent unit vector λi is also defined over each branch,

accounting for an arbitrary branch orientation. Differentiation over the branches is defined using the

tangent unit vector, namely ∂si := λi · ∇ on Λi, i.e. ∂si represents the projection of ∇ along λi.

So far, the equations that govern the flow in each branch of the network are uncoupled. In order to

make the flow problem fully coupled we need to enforce constraints at the junctions of the branches.

Junctions are defined as the points y such that

yj = Ψi(s
∗
i ) = Ψı̂(s

∗
ı̂ ), s

∗
i ∈ {0, Li} ∀i, ı̂ = 1, . . . , N

Let us count the junctions with the index j = 1, 2, . . . ,M and let us denote withKj the set of indices

i such that Ψi(s
∗
i ) = yj . These are the branches that join at the j-th junction. There may be branches

that end inside or at the boundary of the domain Ω. The former are said dead ends and are denoted

with z. The indices of branches featuring a dead end are i ∈ E . The latter points are called boundary

ends and are identified by the symbol x. The set of branches intersecting the outer boundary is i ∈ B.

The branches that merge at the j-th junction can be subdivided according to different criteria. We

present here two options, both useful later on. Let λi be the orientation of a given branch of the

network and let es be the outgoing tangential unit vector at the each of the two endpoints of the

branch, identified respectively by the arc length coordinates si = 0 and si = L.

The ingoing points are identified by the following conditions: λi · es(si) < 0 for si = 0 and

si = L. The outgoing points are obviously the ones such that λi · es(si) > 0. The indices i that

correspond to ingoing branches at the j-th junction are denoted with K−j , while the indices of the

outgoing branches at the junction are collected in K+
j .

If we add the orientation of the flow to this classification we obtain that the inflow points are

identified by the following condition that involves the orientation of the flow: uv(si)λi · es(si) < 0

This article is protected by copyright. All rights reserved.
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for si = 0 and si = L. The outflow points are obviously the ones such that uv(si)λi · es(si) > 0.

The corresponding indices are collected in the setsKinj , Koutj , respectively. We classify similarly the

boundary ends, subdividing the points x into ingoing or outgoing, namely x−,x+, or into inflow

and outflow xin,xout. At these points, we set the vascular pressure equal to a prescribed value

pv(xi) = gv(xi), i ∈ B, while the value of hematocrit will be enforced at the inflow points solely,

xin.

We enforce balance of flow rates and continuity of pressure at each junction, namely,

∑
i∈Kj

πR2
kuv,i = 0, j = 1, 2, . . . ,M , pv,i = pv,̂ı, i, ı̂ ∈ Kj , j = 1, 2, . . . ,M .

At dead ends of the network we set no-flow conditions πR2uv|zi = 0, i ∈ E , where |zi is a shorthand

notation for the evaluation of a function (or better the whole term) in the point zi.

In conclusion, the coupled model of blood flow in the network is the following,



∂s
(
πR2

i (s)uv,i(s)
)

+ 2πRi(s)f(pt(s), pv(s)) = 0 on Λi, i = 1, . . . , N ,

−2µv,i(s)φ
′(1)
(
1 + κ2

i (s)R
2
i (s)

)
uv,i(s) +R2

i (s)∂spv,i(s) = 0 on Λi, i = 1, . . . , N ,∑
i∈Kj πR

2
kuv,i|yj = 0 j = 1, 2, . . . ,M ,

pv,i|yj = pv,̂ı|yj i, ı̂ ∈ Kj , j = 1, 2, . . . ,M ,

πR2uv|zi = 0 i ∈ E ,

pv|xi = gv i ∈ B .
(7)

We notice that in the case of a straight, cylindrical, impermeable pipe, i.e. γ = 2, the coefficient

φ′(1) = −4 and f(pt, pv) = 0, such that these equations coincide with the standard Poiseuille flow.

Finally, we address the coupling of the reduced model (7) with the porous media equation in the

surrounding environment, as described in (1). We follow the approach proposed in [6], where the

interaction of the manifold Λ with the bulk domain Ω is represented by means of the distribution of

concentrated sources on Λ. Owing to these assumptions, we identify Ωt with Ω and we introduce

a new term on the left hand side to the first equation of (1). To guarantee mass conservation, this

new term must be opposite to f(pt(s), pv(s)) and be multiplied by δΛi that is a distribution of Dirac

This article is protected by copyright. All rights reserved.
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masses along the manifold Λi. As a result of that, the flow model that describes capillaries as one-

dimensional channels coupled with a porous interstitial tissue reads as follows:



∇ · ut − 2πR(s)f(pt(s), pv(s))δΛ = 0 in Ω

ut + K
µt
∇pt = 0 in Ω

∂s
(
πR2

i (s)uv,i(s)
)

+ 2πRi(s)f(pt(s), pv(s)) = 0 on Λi, i = 1, . . . , N ,

−2µv,i(s)φ
′(1)
(
1 + κ2

i (s)R
2
i (s)

)
uv,i(s) +R2

i (s)∂spv,i(s) = 0 on Λi, i = 1, . . . , N ,∑
i∈Kj πR

2
kuv,i|yj = 0, j = 1, 2, . . . ,M ,

pv,i|yj = pv,̂ı|yj i, ı̂ ∈ Kj , j = 1, 2, . . . ,M ,

πR2uv|zi = 0 i ∈ E ,

pv|xi = gv i ∈ B .
(8)

2.3. Modeling the Fahraeus-Lindqvist and the plasma skimming effects

The apparent (or effective) viscosity of blood flowing through very small channels is not constant.

The main factor that affects the apparent viscosity of blood is the volumetric concentration of red

blood cells, namely the hematocrit. Several phenomenological models are available to quantify this

dependence, we refer here to a widely used one, proposed in [50]:

µv
µref

=

[
1 +

(
µ0.45

µref
− 1

)
· (1−H)C − 1

(1− 0.45)C − 1
·
(

D

D − 1.1

)2]
·
(

D

D − 1.1

)2

(9)

where H is the discharge hematocrit, defined such that πR2(s)uv(s)H(s) is the total flow of red

blood cells that crosses a section Σ(s) of a capillary. In the expression (9), C is a parameter

depending on the diameter D = 2R of the capillary:

C = (0.8 + e−0.075D) ·

(
−1 +

1

1 + 10−11D12

)
+

1

1 + 10−11D12
(10)

and µ0.45 is a nominal value viscosity, related to the value at 45% hematocrit,

µ0.45

µref
= 6 · e−0.085D + 3.2− 2.44 · e−0.06D0.645

. (11)

The reference viscosity µref is obtained from the dynamic viscosity of water (H2O, see the IAPWS

standards) as follows

µref = 1.8µH2O = 1.8
µ0

1 + 0.0337T + 0.00022T 2
. (12)
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Figure 2. Visualization of the effective viscosity (measured in Pa · s), calculated with expression (9), in terms
of the hematorit (H , %) and the capillary diameter (D, measured in microns, µm).

where T is the temperature (measured in Celsius) and µ0 = 1.808 centi-Poise (cP ) is the viscosity

of water at 0 Co. The variation of the apparent viscosity, for a suitable range of hematocrit and

capillary diameter is visualized in Figure 2. The model (9) entails the need to model the dynamics of

hematocrit in the microvascular network. To this purpose, we propose a one-dimensional model for

transport of hematocrit that will be coupled to (8). This model is set on the following assumptions.

Steady flow conditions As we did for the bulk flow model, we study the hematocrit distribution

in steady conditions.

Transport dominated regime Let us analyze the Péclét number that characterizes the hematocrit

transport,

Pe =
LU

DRBC
(13)

where L ' 10−5m is the RBC characteristic scale (also comparable with the capillary diameter),

U ' 10−3m/s is the average velocity of RBC in the capillaries and DRBC ' 10−12m2/s is the

diffusivity parameter of RBC in water [3, 26, 46]. As a result we obtain Pe ' 104 that justifies the

assumption of advection dominated RBC transport.

Reactions and leak off We assume that the RBC do not leak off from the capillaries and we

neglect any effects involving production or sequestration of RBC from the blood stream.

Absence of trifurcations at network junctions We assume that all the inner junctions of the

network can be classified either as anastomoses or bifurcations.
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On the basis of these hypotheses, the dynamics of hematocrit in a capillary network, where each

capillary branch is modeled as a one-dimensional channel, is described by the mass balance equation.

Denoting the flow rate of hematocrit across a single channel as QH , owing to the definition of

discharge hematocrit we directly haveQH = πR2uvH and the mass balance equation for hematocrit

becomes,

∂s
(
πR2

i uv,iHi

)
= 0 on Λi, i = 1, 2, . . . , N . (14)

Equation (14) will be taken as the governing equation for hematocrit in each branch of the capillary

network. We observe that this equation can be easily combined with the first of (8) to obtain

πR2
i uv,i∂sH − 2πRif(pt, pv)Hi(s) = 0 on Λi, i = 1, 2, . . . , N .

It shows that the hematocrit distribution is not constant along the axis of the branch, despite we

neglect RBC reactions and leak off. However, hematocrit varies because the plasma can leak off and

consequently the volumetric concentration of RBC may vary.

Equation (14) is not sufficient to uniquely determine the value of hematocrit in the network. It

must be combined with suitable conditions for conservation of hematocrit at the junctions and at

the boundary of the network. As (14) is a pure transport equation, it is well known that we have to

prescribe a constraint on hematocrit at each inflow point of the network branches. Let us denote by

∂Λin the inflow points at the boundary of the network. On all these points we enforce a given value

of hematocrit, namely H = H0 on ∂Λin. For the internal junctions we exploit mass conservation

of hematocrit. Let us consider a generic junction with multiple branches joining at a single node.

Given the orientation of the flow, we subdivide the branches into Kout = card(Koutj ) outflow ones

and Kin = card(Kinj ) inflow branches. We prescribe as many constraints as the number of inflow

branches, namely Kin. Mass conservation always provides one constraint that is,

∑
i∈Koutj

πR2
i uv,iHi =

∑
i∈Kinj

πR2
i uv,iHi .

The previous equation is not sufficient to close the problem in the case Kin > 1. The simple case

Kin = 1 identifies anastomoses, where one, two or multiple outflow branches merge into a sigle

inflow one. In this case, since all the terms on the left hand side are known, hematocrit value

on the right is uniquely determined. In case of bifurcations, namely Kin = 2, the problem can

be solved by means of the flow split model proposed in [49]. Since we exclude the presence of

trifurcations or more complex configurations, this approach will be entirely sufficient to determine

the distribution of hematocrit in the network. Without loss of generality, let us consider the classic

Y-shaped configuration, where one channel divides into two branches. We denote by the subscript f
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the quantities related to the parent channel and with α, β the daughter branches. Given the blood flow

rates Q∗ = πR2
∗uv,∗ with ∗ = f, α, β and the outflow hematocrit Hf , we aim to determine Hα and

Hβ , which provide hematocrit values at the inflow of the bifurcation branches. Using the approach

of [49] we define,

FQBα =
Qα
Qf

FQEα =
QαHα

QfHf
,

and we calculate these fractions by means of the following model



FQEα = 0 if FQBα ≤ X0

logit(FQEα) = A+Blogit(
FQBα−X0

1−2X0
) if X0 < FQBα < 1−X0

FQEα = 1 if FQBα ≥ 1−X0

where A,B are fixed parameters determined in [50], logit(x) = ln[x/(1− x)] and X0 is the

fractional blood flow rate under which any RBC will flow into the daughter branch α. Finally, the

desired hematocrit levels are determined as

Hα = FQEαHfQf/Qα , Hβ = (1− FQEα)HfQf/Qβ .

3. MATHEMATICAL FORMULATION AND NUMERICAL APPROXIMATION

3.1. Weak formulation of the two phase flow problem

For the variational formulation of the coupled flow problem (8), we proceed as previously described

in [44] for a similar case. We adopt the standard notation for function spaces, see for example [51, 2].

Let’s multiply the Darcy equations of (8) by test functions qt ∈ Qt = L2(Ω), vt ∈ V t = Hdiv(Ω).

Owing to Green’s formula we have

(
∇pt , vt

)
Ω

= −
(
pt , ∇ · vt

)
Ω

+
(
pt , vt · nt

)
∂Ω

= −
(
pt , ∇ · vt

)
Ω

+
(
gt , vt · nt

)
∂Ω

where gt is a prescribed value of the interstitial pressure at the artificial boundaries of the tissue

slab, namely ∂Ω. For the network, we multiply the third equation of (8) by a test function qv ∈ Qv.

In general, it is sufficient that Qv ⊂ L2(Λ), but we require that the pressure is continuous at the

junctions, according to the last equation of (8). Let qv|yj be the uniquely defined value of qv at

the location of the j-th junction. We weakly enforce the flow rate compatibility constraints at the

junctions, by multiplying the fifth equation of (8) by qv|yj and we add it to the third equation.
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In this way, we obtain the third equation of (15). To derive the last equation of (15), we multiply

the fourth equation of (8) by a test function vv,i ∈ Vv,i ∈ H1(Λi) and by πR2
i . Then, we sum the

contribution of each branch of the network. Moreover, using again Green’s formula, we transfer the

spatial derivative from the pressure to the test function, as follows,

∑
i

(
∂spv,i , πR

2
i vv,i

)
Λi

= −
∑
i

(
pv,i , ∂s(πR

2
i vv,i)

)
Λi

+
∑
i

[
pv,iπR

2
i vv,i|s=L − pv,iπR2

i vv,i|s=0

]
.

Using the continuity of the pressure at junction points, the last term in the previous expression can

be arranged junction by junction as follows,

∑
i

[
pv,iπR

2
i vv,i|s=L − pv,iπR2

i vv,i|s=0

]

=
∑
j

pv|yj

∑
i∈K+

j

πR2
i vv,i|yj −

∑
i∈K−

j

πR2
i vv,i|yj

+
∑
i∈E

pv πR
2
i vv|zi +

∑
i∈B

[
pv πR

2
i vv|x+

i
− pv πR

2
i vv|x−

i

]
.

We finally use the last term of the previous expression to enforce pressure boundary conditions at

the boundary points of the network, namely pv|x+
i

= g+
v and pv|x−

i
= g−v for any i ∈ B. Combining

all these equations, the weak formulation of problem (8) reads as follows:



(
∇ · ut , qt

)
Ω
−
(

2πRf(pt, pv)δΛ , qt
)

Ω
= 0 ∀qt ∈ Qt,

µt
K

(
ut , vt

)
Ω
−
(
pt , ∇ · vt

)
Ω

= −
(
gt , vt · nt

)
∂Ω

∀vt ∈ V t,

∑
i

(
∂s(πR

2
i uv,i , qv

)
Λi

+
∑

i

(
2πRf(pt, pv) , qv

)
Λi
−
∑

i∈E qvπR
2
i uv,i|zi

−
∑

j qv|yj
[∑

i∈K+
j
πR2

i uv,i|yj −
∑

i∈K−
j
πR2

i uv,i|yj
]

= 0 ∀qv ∈ Qv,

∑
i

(
− 2

µv,i
R2
i
φ′(1)

(
1 + κ2

iR
2
i

)
πR2

i uv,i , vv,i
)

Λi
−
∑

i

(
pv , ∂s(πR

2
i vv,i)

)
Λi

+
∑

j pv|yj
[∑

i∈K+
j
πR2

i vv,i|yj −
∑

i∈K−
j
πR2

i vv,i|yj
]

+
∑

i∈E pv πR
2
i vv|zi

= −
∑

i∈B

[
g+
v πR

2
i vv|x+

i
− g−v πR

2
i vv|x−

i

]
∀vv ∈ Vv.

(15)

For the hematocrit, we multiply the governing equation (14) by a test functionwi ∈ H1(Λi). Then,

we use Green’s formula to transfer the derivative from Hi to wi and we sum over the branches. In

this way we obtain the following expression,

∑
i

(
∂s(πR

2
i uv,iHi) , wi

)
Λi

= −
∑
i

(
πR2

i uv,iHi , ∂swi
)

Λi
+
∑
i

[
πR2

i uv,iHiwi|s=L − πR2
i uv,iHiwi|s=0

]
.
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Then, we rearrange the last term of the previous equation junction by junction, as well as we isolate

the terms on the boundary and on the dead ends,

+
∑
i

[
πR2

i uv,iHiwi|s=L − πR2
i uv,iHiwi|s=0

]
=
∑
j

 ∑
i∈Koutj

πR2
i uv,iHiwi|yj −

∑
i∈Kinj

πR2
i uv,iHiwi|yj


+
∑
i∈B

[
πR2

i uv,iHiwi|xouti
− πR2

i uv,iHiwi|xini
]

+
∑
i∈E

πR2
i uv,iHiwi|zi (16)

Using the previous expression, we enforce the mass balance of hematocrit at the network junctions

and the boundary conditions. For this purpose we define the following quantities for the j-th junction.

The blood flow split relative to all the inflow branches is,

FQB,j,i =
πR2

i uv,i|yj∑
i∈Koutj

πR2
i uv,i|yj

, ∀ i ∈ Kinj ,

and let FQE,j,i be the corresponding split of hematocrit,



FQE,j,i = 1 if card(Kinj ) = 1;

FQE,j,i = 0 if card(Kinj ) = 2 ∧ FQB,j,i ≤ X0;

logit(FQE,j,i) = A+Blogit(
FQB,j,i−X0

1−2X0
) if card(Kinj ) = 2 ∧ X0 < FQB,j,i < 1−X0;

FQE,j,i = 1 if card(Kinj ) = 2 ∧ FQB,j,i ≥ 1−X0.

(17)

As a consequence of these definitions, the discharge hematocrit entering each branch downstream

the j-th junction is,

πR2
i uv,iHi|yj = FQE,j,i

∑
i∈Koutj

πR2
i uv,iHi|yj .

We weakly enforce the hematocrit split conditions in the variational formulation as follows,

∑
i∈Kinj

πR2
i uv,iHiwi|yj =

∑
i∈Kinj

FQE,j,iwi|yj

 ∑
i∈Koutj

πR2
i uv,iHi|yj

 .

We also enforce the boundary conditions for hematocrit at the boundary of the network,

πR2
i uv,iHiwi|xini = πR2

i uv,iH0wi|xini .
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Substituting, for clarity, these terms into (16), we obtain,

+
∑
i

[
πR2

i uv,iHiwi|s=L − πR2
i uv,iHiwi|s=0

]
=
∑
j

∑
i∈Kout

πR2
i uv,iHiwi|yj +

∑
i∈B

πR2
i uv,iHiwi|xouti

+
∑
i∈E

πR2
i uv,iHiwi|zi

−
∑
j

∑
i∈Kinj

FQE,j,iwi|yj

 ∑
i∈Koutj

πR2
i uv,iHi|yj

−∑
j

∑
i∈B

πR2
i uv,iH0wi|xini .

Consequently, the variational formulation of the hematocrit governing equation reads as follows,

−
∑
i

(
πR2

i uv,iHi , ∂swi
)

Λi

+
∑
j

∑
i∈Kout

πR2
i uv,iHiwi|yj +

∑
i∈B

πR2
i uv,iHiwi|xouti

+
∑
i∈E

πR2
i uv,iHiwi|zi

−
∑
j

∑
i∈Kinj

FQE,j,iwi|yj

 ∑
i∈Koutj

πR2
i uv,iHi|yj

 =
∑
j

∑
i∈B

πR2
i uv,iH0wi|xini ∀wi ∈ H1(Λi) .

(18)

3.2. Numerical approximation and solution strategy

3.2.1. Finite element approximation The discretization of problem (15) is achieved by means of the

finite element method. One of the main advantages of our formulation is that the partitions of Ω and

Λ are completely independent. For this reason we address the two approximations separately.

We denote with T ht an admissible family of partitions of Ω̄ into tetrahedrons K

Ω̄ =
⋃

K∈T ht

K,

that satisfies the usual conditions of a conforming triangulation of Ω. Here, h denotes the mesh

characteristic size, i.e. h = maxK∈T ht kK , being hK the diameter of simplex K. Moreover, we are

implicitly assuming that Ω is a polygonal domain. The solutions of (15) are approximated using

discontinuous piecewise-polynomial finite elements for pressure and Hdiv-conforming Raviart-

Thomas finite elements [2] for velocity, namely

Y hk := {vh ∈ L2(Ω), vh|K ∈ Pk(K) ∀K ∈ T ht },

RT hk := {wh ∈Hdiv(Ω), wh|K ∈ Pk(K; Rd)⊕ xPk(K) ∀K ∈ T ht },
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for every integer k ≥ 0, where Pk indicates the standard space of polynomials of degree ≤ k in the

variables x = (x1, . . . , xd). For the simulations presented later on, the lowest order Raviart-Thomas

approximation has been adopted, corresponding to k = 0 above.

Concerning the capillary network, we adopt the same approach used at the continuous level,

namely we split the network branches in separate sub-domains. Furthermore, each curved branch

Λi is approximated by a piecewise linear 1D line, denoted with Λhi . More precisely the latter is a

partition of the i-th network branch made by a sufficiently large number of segments, named S ⊂ Λhi .

In this way, we obtain the following discrete domain:

Λh =

N⋃
i=1

Λhi .

The solution of (15) over a given branch Λhi is approximated using continuous piecewise-polynomial

finite element spaces for both pressure and velocity. Since we want the vessel velocity to be

discontinuous at multiple junctions, we define the related finite element space over the whole

network as the collection of the local spaces of the single branches. Conversely the pressure has been

assumed to be continuous over the network, therefore its finite element approximation is standard.

We will use the following families of finite element spaces for pressure and velocity, respectively:

Xh
k+1 (Λ) := {wh ∈ C0(Λ̄), wh|S ∈ Pk+1 (S) ∀S ∈ Λh},

Wh
k+2 (Λ) :=

N⋃
i=1

Xh
k+2

(
Λhi
)
,

for every integer k ≥ 0. As a result, we use generalized Taylor-Hood elements on each network

branch, satisfying in this way the local stability of the mixed finite element pair for the network. At

the same time, we guarantee that the pressure approximation is continuous over the entire network

Λh. In particular, for the numerical experiments shown later on we have used the lowest order, that

is k = 0.

For hematocrit we proceed as for the velocity approximation. In particular, we approximate

equation (18) with the finite element space Wh
k+2 defined on Λhi . For the sake of generality, let

us define the families of discrete subspaces of the functional spaces for k ≥ 0:

V h
t = RT hk(Ω) and Qht = Y hk (Ω) ,

V hv = Wh
k+2(Λh) and Qhv = Xh

k+1(Λh) and Wh
v = Wh

k+2(Λh) .
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Then, the finite element approximation of equations (15) and (18) reads as follows: find uht ∈

Vh
t , p

h
t ∈ Qht , uhv ∈ V hv , phv ∈ Qhv , Hh ∈Wh

v such that



(
∇ · uht , qht

)
Ω
−
(

2πRf(p
h
t , p

h
v )δΛ , q

h
t

)
Ω

= 0 ∀qht ∈ Qht ,

µt
K

(
uht , v

h
t

)
Ω
−
(
pt , ∇ · vht

)
Ω

= −
(
gt , v

h
t · nt

)
∂Ω

∀vht ∈ V
h
t ,

∑
i

(
∂s(πR

2
i u
h
v,i , q

h
v

)
Λhi

+
∑

i

(
2πRf(p

h
t , p

h
v ) , qhv

)
Λhi
−
∑

i∈E q
h
vπR

2
i u
h
v,i|zi

−
∑

j q
h
v |yj

[∑
i∈K+

j
πR2

i u
h
v,i|yj −

∑
i∈K−

j
πR2

i u
h
v,i|yj

]
= 0 ∀qhv ∈ Qhv ,

∑
i

(
− 2

µv,i
R2
i
φ′(1)

(
1 + κ2

iR
2
i

)
πR2

i u
h
v,i , v

h
v,i

)
Λi
−
∑

i

(
phv , ∂s(πR

2
i v
h
v,i)
)

Λhi

+
∑

j p
h
v |yj

[∑
i∈K+

j
πR2

i v
h
v,i|yj −

∑
i∈K−

j
πR2

i v
h
v,i|yj

]
+
∑

i∈E p
h
v πR

2
i v
h
v |zi

= −
∑

i∈B

[
g+
v πR

2
i v
h
v |x+

i
− g−v πR

2
i v
h
v |x−

i

]
∀vhv ∈ V hv ,

−
∑

i

(
πR2

i u
h
v,iH

h
i , ∂sw

h
i

)
Λhi

+
∑

j

∑
i∈Kout πR

2
i u
h
v,iH

h
i w

h
i |yj +

∑
i∈B πR

2
i u
h
v,iH

h
i w

h
i |xouti

+
∑

i∈E πR
2
i u
h
v,iH

h
i w

h
i |zi

−
∑

j

∑
i∈Kinj

FQE,j,iw
h
i |yj

(∑
i∈Koutj

πR2
i u
h
v,iH

h
i |yj

)
=
∑

j

∑
i∈B πR

2
i u
h
v,iH0w

h
i |xini ∀whi ∈Wh

v .

(19)

The global error of the numerical solution is affected by multiple factors: (i) the approximation

properties of the scheme (19) with respect to the exact equations (15) and (18); (ii) the interpolation

properties of the finite element spaces chosen to represent the unknowns, namely velocity, pressure

and hematocrit; (iii) the approximation of the morphology of the curved network branches by means

of piecewise linear segments with nodes located on the exact geometry. Since the discrete problem

is strongly consistent with the exact equations, and all the integral forms are computed exactly when

applied to the discrete functions, we conclude that the contribution (i) is null. For the finite element

spaces, we will use the lowest order formulation defined above, that is k = 0. This choice entails

linear convergence with respect to the mesh characteristic size, for velocity and pressure in Ω and

quadratic convergence for velocity and pressure in Λ. Finally, it can be shown that the third type of

approximation, namely the difference between the network Λ with Λh, introduces an error that scales

quadratically with the characteristic size of the mesh defined on Λh. For the simulations presented

in the next section we have derived the analytical solution of the problem on a single, curved but

impermeable capillary, and we have compared it with the numerical solution for different mesh sizes,

see Figure 3 panel C. Even though the data are not explicitly reported, the quadratic convergence

rate for the velocity is confirmed.

We notice that problem (19) is a fully coupled nonlinear problem. Indeed, velocities and pressures

on Ω and Λ are coupled through the linear term f(pt, pv), while the velocity field on Λ is affected
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by hematocrit through the nonlinear viscosity model. More precisely we have µv,i = µv,i(Hi) as

prescribed in equation (9). Finally, hematocrit is heavily affected by the flow field in the network,

through transport and also by the flow split at network branches, defined in (17). In order to solve

the problem, we will adopt an iterative splitting strategy, addressed in the next section.

3.2.2. Iterative strategy for the solution of the nonlinear problem To describe the iterative splitting

strategy used to decouple (19) we define a shorthand notation. More precisely, let us group the first

four equations of (19) into the fluid mechanics operator Fh. Given Ω,Λh, the external data gt, gv

and the parameters for the porous medium K,µt the operator Fh takes as input the viscosity of the

fluid µv as a function defined on Λh and gives back the solution of the fluid mechanics problem,

namely [uht , u
h
v , p

h
t , p

h
v ] = Fh(µv). In algebraic terms is a large system of linear and nonlinear

equations, presented in the appendix A, see in particular (25). Similarly, the last equation of (19)

can be represented as the operator Hh, such that given the velocity field in the network uhv it gives

back the hematocrit level at each point of Λh, precisely Hh = Hh(uhv ). This is a large system of

linear equations defined in (26). Using these operators the iterative method to solve (19) consists of

performing the following steps for any k > 0 until convergence:

0. we initialize the fluid mechanics problem by calculating all the matrices of (25) that are

independent of µv, namely all except from Mvv. We calculate Mvv using a uniform initial

guess of the apparent blood viscosity µ0
v = µref defined in (12).

1. (if k > 0 we build the matrix Mvv(µ
k−1
v ) and we solve the fluid mechanics problem


Mtt −DTtt O O

Dtt Btt O −Btv

O O Mvv(µ
k−1
v ) −DTvv − JTvv

O −Bvt Dvv + Jvv Bvv




U∗t

P∗t

U∗v

P∗v


=


Ft

−Bttδπ

Fv

Bvvδπ


to determine [uh,∗t , uh,∗v , ph,∗t , ph,∗v ] from the vectors U∗t , P∗t , U∗v, P∗v using expressions (22),

(23), where ∗ denotes an auxiliary solution to be used in the next step;

2. we apply the relaxation of the velocity and pressure fields to enhance convergence,

namely for a given α ∈ (0, 1] we calculate

uh,kt = αuh,∗t + (1− α)uh,k−1
t , uh,kv = αuh,∗v + (1− α)uh,k−1

v ;

ph,kt = αph,∗t + (1− α)ph,k−1
t , ph,kv = αph,∗v + (1− α)ph,k−1

v ;
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3. we build the matrices defined in (26), using the velocity field in the network calculated at the

previous step, namely uh,kv . Then, we solve the hematocrit problem

[
Bh(uh,kv ) + Jh(uh,kv ) + Oh(uh,kv )

] [
H∗
]

=
[
Fh

]
to determine Hh,∗ from the vector H∗ using expression (24);

4. we apply the relaxation Hh,k = βHh,∗ + (1− β)Hh,k−1 with β ∈ (0, 1];

5. we update the apparent viscosity of blood, µkv,i = µv,i(H
h,k
i ) for i = 1, . . . , N using the

formula (9).

6. given fixed tolerances εF , εH, we test the convergence by means of the following indicators,

∥∥Uk+1
v −Uk

v

∥∥
‖Uk

v‖
+

∥∥Pk+1
v −Pk

v

∥∥
‖Pk

v‖
+

∥∥Uk+1
t −Uk

t

∥∥∥∥Uk
t

∥∥ +

∥∥Pk+1
t −Pk

t

∥∥∥∥Pk
t

∥∥ < εF ,

∥∥Hk+1 −Hk
∥∥

‖Hk‖
< εH

If the test is satisfied, then we stop the iterations. Otherwise, we go back to point 1.

4. NUMERICAL SIMULATIONS

In this section we apply the computational model for blood flow and hematocrit transport to various

test cases of increasing complexity. The simplest ones, more precisely a single capillary branch and

a bifurcation, are presented to validate the predictions of the model against analytical solutions and

expected behaviors. In this case, we also elucidate the sensitivity of the outcome with respect to

some parameters of the model, such as the curvature of the capillaries and their permeability. Later

on we present a more complex, but still idealized, model for a capillary network. In this case, we

investigate the ability of the model to capture the macroscopic traits of microcirculation.

4.1. Single capillary branch case

We present simulations of blood flow in a single branch of capillary vessel, interacting with the

surrounding tissue, modeled as a homogeneous porous medium. For this idealized experiment we

consider a tissue sample represented by a cube of side D. A single capillary branch crosses the

tissue sample from side to side. Different capillary shapes are considered, namely we simulate a

straight segment, a circular arc with intermediate curvature (such that the dimensionless parameter
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sy mbo l Pa r a met er Un it Va l u e Ref.
d characteristic length m 1× 10−4 [40]

D characteristic length of the domain m 1× 10−4 [40]

R average radius m 4× 10−6 [65]

K tissue hydraulic conductivity m2 1× 10−18 [7]

µt interstitial fluid viscosity cP 1.2 [60]

µv blood viscosity cP Pries formula [50]

Lp wall hydraulic conductivity m2 s kg−1 10−12 [7]

P characteristic pressure Pa 133.32 [7]

U characteristic velocity m s−1 1× 10−3 [49]

δπ oncotic pressure gradient mmHg 25 [59]

σ reflection coefficient [−] 0.95 [36]

Table I. Physiological parameters used for all the numerical tests (unless differently specified).

κR is equal to 0.06) and a circular arc with high curvature (such that κR = 0.11, shown in Figure

3). When the curvature changes, the dimension of the domain is adjusted such that in all cases the

length of the channel, L, is constant and equal to D. The velocity profile for a curved pipe with

κR = 0.11 is visualized in Figure 1. We observe it looses symmetry with respect to the axis of the

channel. The parameters of the model adopted in the simulations are collected (with description,

units and sources) in Table I.

Concerning the boundary conditions, we apply the pressure at the endpoints of the network, the

hematocrit at the corresponding inflow points and we allow for fluid exchange at the artificial

interfaces that separate the tissue sample with the exterior. The latter effect is described by a

condition of type

ut · nt = βt(pt − p0),

where βt is the boundary conductivity of the tissue matrix and p0 denotes a far field pressure. The

data and parameters used for boundary conditions are reported in Table II. In particular, the value of

the pressure drop is determined on the basis of a prescribed value of the blood flow velocity in small

capillaries. Assuming uv ' 1mm/s, the blood flow rate through a capillary with R = 4µm is

Qb = πR2uv = 5.03× 10−14m3/s. (20)
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Using (20), µv ' 9.33 cP form [50] and Poiseuille’s law, with the hypothesis of no transcapillary

flow, the pressure drop between the inlet and the outlet of the capillary will be equal to,

δpv = Qb
8µvL

πR4
= 3.5mmHg.

Finally, we need to determine inlet and outlet pressures. This choice depends on the position of the

capillary segment in the microvasculature. To this purpose, we define p∗v as the value of pv for which

the net filtration pressure is zero (for an average tissue pressure equal to the far field pressure p0):

if pv > p∗v there will be a net fluid filtration, while if pv < p∗v there will be a net fluid absorption.

Considering the parameters in Table I and a constant interstitial pressure pt ' p0 = −1mmHg, we

obtain,

p∗v = p0 + σδπ = −1 + 0.95 · 25 = 22.75mmHg.

On the basis of the observation that the microvascular pressure ranges between 32 and 15 mmHg

(see [59]) this value, for a vessel near the arteriolar end of the capillary network, we set pinlet =

32mmHg and poutlet = 28.5mmHg, such that both values are above p∗v. For a portion of capillary

near the venular circulation we set pinlet = 18.5mmHg and poutlet = 15mmHg. In the latter case

we expect that the capillary will absorb fluid from the intestitium.

Sy mbo l B.C.s Un it Va l u e Ref.
δp hydrostatic pressure drop mmHg 3.5 [59]

p0 far field pressure mmHg −1 [12]

βt boundary conductivity m2s/kg 5× 10−11 [5]

H0 hematocrit at inlet of capillary − 0.45 [25]

Table II. Data and parameters for the boundary conditions in the capillary and tissue regions

In Figure 3 (panel C) we compare the computed and analytically determined values of the velocity

magnitude. We observe that in such simple geometry and in case of impermeable capillary walls,

the analytical solution is available for pressure, velocity and hematocrit variation along the axis of

the capillary. For example, for a straight pipe the analytical solution for velocity and pressure is the

Poiseuille’s law. According to the 1D model equations, in the case of a pipe with curvature κ > 0

the analytical solution for the velocity is the following,

uv = − R2

8µv(1 + κ2R2)

δp

L
.

In this case, the comparison of computed and analytical solutions is shown in Figure 3 (panel

C). The hematocrit distribution can then be easily determined if an analytical formula for the
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A	  

B	   D	  

C	  

Figure 3. Panel A shows the geometrical configuration of the test case (highest curvature) with the variation
of the pressure along the capillary and in the bulk. The inlet and outlet pressures are set to model the arteriolar
side of the microvascular network (pinlet = 32mmHg and poutlet = 28.5mmHg). Panel B compares the
velocity profile (constant) and magnitude along the axis of the capillary and in the bulk, for the same test case
as before. The velocity vectors of the interstitial velocity ut are represented on a cross section of the tissue
sample, on top of the contour plot of the velocity magnitude. Panels C and D show the evolution of variables
along the axis of a capillary, being s ∈ (0, 1) the arc-length. Panel C shows the results for a impermeable
capillary. For such case the analytical solution of the problem is available (dashed line) and it is compared
with the numerical solution (continuous line), for different values of the curvature (κR = 0, 0.06, 0.11).
Panel D shows the % variation of the velocity magnitude (continuous line) and hematocrit (dashed line)
along the capillary axis for the straight permeable capillary. Blue lines correspond to the venular end while
red lines refer to the arteriolar side of the capillary network. The dots represent the analytical solution of

problem (21) in terms of velocity and hematocrit variations.

velocity is known, because the hematocrit flow rate is constant along the pipe, namely H(s)uv(s) =

Hinletuv,inlet. Obviously, since the capillary is impermeable, the velocity profile is constant along

the axis, but the velocity magnitude decreases with the curvature, because curved vessels oppose

higher resistance to flow. We observe that this behavior is correctly captured by the model. The

comparison of the numerical and analytical solution provides a verification of the numerical

algorithm as well as a preliminary validation of the computational model. When we allow for plasma

leakage from the capillary to the interstitial tissue, the flow and hematocrit axial distribution change

in both regions, as shown on panels A and B of Figure 3. If we consider a capillary segment near

the arteriolar side of the capillary network, due to overpressure in the capillary with respect to

the interstitial volume, there is positive leakage and the capillary flow rate decreases accordingly.

As a consequence of reduced plasma flow rate, the hematocrit slightly increases. These effects are
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captured by model (8) that in this particular case simplifies to,

∂2pv
∂s2

− 2πRLp
πR4

8µv
(
1 + κ2

i (s)R
2
i

)
pv(s) = −2πRLp

πR4
8µv
(
1 + κ2

i (s)R
2
i

)
[ ¯̄pt + σδπ] , (21)

pv(s = 0) = 32 , pv(s = 1) = 28.5 .

If the interstitial pressure is assumed to be constant, in this case equal to ¯̄pt = −1mmHg, the solution

of the problem above can be determined analytically and it is

pv(s) = Ae
−
√

2πRLp

8πR4 µv(1+κ2
iR

2
i ) s +Be

√
2πRLp

8πR4 µv(1+κ2
iR

2
i ) s + C ,

with constants
√

2πRLp
8πR4 µv(1 + κ2

iR
2
i ) = 0.0048296A = 366.984 andB = −357.734C = 22.75 for

a rectilinear single branch, k = 0. The velocity magnitude can be determined correspondingly,

using equation uv = −(R2)/(8µv(1 + κ2R2))∂spv that gives uv(s) = 0.506526e−0.0048296s +

0.493758e0.0048296s. The variation of hematocrit is then equal to H(s) = Hinletuv,inlet/uv(s). The

comparison of these analytical results with the computed ones is shown in Figure 3 (panel D) and

it confirms the validity of the computational approach. Opposite trends are observed for a capillary

segment closer to the venular end (see Panel D, blue lines, continuous line for velocity, dashed line

for hematocrit). Although these effects are quantitatively small for a little portion of a capillary, they

illustrate the ability of the computational model to accurately capture the interaction of plasma flow,

interstitial filtration and hematocrit at the microscale.

4.2. Y-shaped bifurcations

This test case is useful to evaluate the accuracy of the computational model in the description of

the Fahraeus-Lindqvist effect, that is the variation of apparent viscosity due to rearrangement of

red blood cells in the flow, and the plasma skimming effect, that is the asymmetric distribution of

hematocrit when channels downstream a bifurcation are different. These phenomena mostly depend

on the geometrical configuration of the vascular network, while the permeability of the capillary

walls weakly affects them. For this reason, we perform all the computational tests for bifurcations in

the case of impermeable walls, namely we set Lp = 0. All the remaining parameters and boundary

conditions are the ones of Tables I and II.

The geometrical model consists of a Y-shaped bifurcation, where all branches have the same

length. The radii of the daughter branches are calculated on the basis of the Murray’s law, that is

R3
0 = R3

1 +R3
2, where index (0) denotes the parent vessel and (1), (2) are the daughter channels.

Unless differently specified, the daughter branches have equal radius, namely R1 = R2, which
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straight curved κR = 0.06 curved κR = 0.11
Branch 0 1 2 0 1 2 0 1 2
uv 0.6559 0.5222 0.5222 0.6542 0.5222 0.5194 0.6509 0.5222 0.5142
H 0.4500 0.4500 0.4500 0.4500 0.4508 0.4492 0.4500 0.4524 0.4475

πR2H uv 1.48 10−5 7.42 10−6 7.42 10−6 1.48 10−5 7.43 10−6 7.37 10−6 1.47 10−5 7.46 10−6 7.26 10−6

Balance −6.34× 10−13 −2.92× 10−13 1.17× 10−13

Table III. For the text cases of Figure 4 we report the values of velocity (uv), hematocrit (H) and hematocrit
flow rate at the junction, for the parent (0) and the daughter channels (1-top side) and (2-bottom side). The

residual of the hematicrit flux balance (value (0) = value (1) + value (2)) is reported at the bottom row.

allows us to determine R1 = R2 as a function of R0 as in Table I. The current model is not sensitive

to the angle of the daughter branches.

First, we analyze the role of curvature on the distribution of flow rate, hematocrit and viscosity

downstream to a bifurcation. The results of simulations are collected in Figure 4. We notice that

curvature increases the resistance to flow, which in turn affects the distribution of blood flow rate

and hematocrit at the bifurcation. Differences with respect to the symmetric case are rather small,

approximately of 1% for each quantity. However, we remind that we are considering a small portion

of a normal capillary, namely the characteristic length is only 100µm. For the more extended

vasculature models, the difference will be amplified by the geometrical scale factor. Thanks to the

fact that we consider impermeable capillary walls, we observe that mass balance at the bifurcation

point is trivially verified by looking at flow rates and hematocrit flow rate at the endpoints of the

network. As it appears from Table III, the balance of these quantities at the junctions of the network

is satisfied within the tolerance of the numerical discretization.

As regards the viscosity, reported in the bottom row of Figure 4, we first verify that the predictions

of the computational model are coherent with formula (9), also visualized in Figure 2. We observe

that viscosity increases downstream to the bifurcation, even though the hematocrit sightly decreases

in the bottom branch (because of increased resistance to flow). This is however in agreement with

the model, because viscosity is highly sensitive to the variation of the capillary radius. Since this

parameter decreases from 4 µm in the parent branch to 3.17 µm in the daughter branches, viscosity

correspondingly increases (see Figure 2 for a visualization of this effect).

In Figure 5, we study the influence of the capillary radii (or diameters) of the daughter branches on

the velocity, hematocrit and viscosity. More precisely, we increase the radius of the upper daughter

branch of 5% and 10%, while we decrease the radius of the lower branch of the same amount. More

precisely, Figure 5 gives a general overview of all the cases, while Figure 6 provides a more detailed

analysis of the results for the 10% perturbation of the radius where the differences are more easily

visible.

A quantitative analysis of these effects is reported in Table IV. From the analysis of flow rates we

see that the ±5% and ±10% variation of the radius significantly affects the distribution of flow rate
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Figure 4. The top row (panel marked with A) shows the distribution of velocity in the bifurcation, for
increasing levels of curvature κR = 0.0; 0.06; 0.11, from left to right. We point out that all curved branches
have the same length, such that the variation of resistance is only due to curvature. The middle row (marked
with B) shows the hematocrit. In the bottom row (marked with C), we show the apparent viscosity, which is

affected by the hematocrit and the capillary diameter according to (9), see also Figure 2.

downstream to the bifurcation, because resistance to flow is highly sensitive to the channel diameter

at these small scales. Concerning hematocrit, we observe that its variations are also amplified with

respect to the magnitude of the perturbation. More precisely, because of the plasma skimming effect,

red blood cells hardly flow into the daughter branch with smaller radius. For this reason, hematocrit

is lower in the branches where the radius has been decreased than in the ones where it was increased.

The behavior of viscosity is less obvious, but still in line with the model. Indeed, we see that

perturbations of the viscosity are damped with respect to those of the radius. This behavior can

be interpreted using Figure 2, where we see that for small capillary radius, viscosity increases with

hematocrit and decreases with capillary diameter. Our interpretation of Table IV is that these two

effects partially compensate in the variation of viscosity.

This analysis confirms that blood velocity, hematocrit and viscosity are subject to a complex

interaction at the bifurcation. More precisely, breaking the symmetry of the daughter vessel

branches, generates significant variations on the blood flow rate, hematocrit and viscosity

downstream to the bifurcation. The interaction between radius, flow rate, hematocrit and viscosity

is highly nonlinear and hardly predictable with simple models that do not take into account their

combined effects.
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Figure 5. Velocities (panel A), hematocrit (penel B) and effective viscosity (panel C) are reported from top
to bottom. In the first column, the daughter branches have equal radii R1 = R2 = 3.17µm. In the second
column the radius of the upper branch is increased of 5% with respect to the nominal value while the one of
the lower branch is decreased of the same amount. In the third column, the perturbation of the radii is ±10%

Figure 6. The linear variation along the axial coordinate s of velocity (blue), hematocrit (red) and effective
viscosity (green) is shown from left to right for the particular case of ±10% radial perturbation downstream

to the bifurcation.

4.3. Comparative studies on a microvascular network

In this section we use the computational model to simulate flow and hematocrit distribution in a

fairly complex and realistic model of microvascular network. The section is subdivided in two parts.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le
29

reference 5% 10%
Branch 0 1 2 0 1 2 0 1 2
R 4.000 3.170 3.170 4.000 3.330 3.020 4.000 3.490 2.860
uv 0.656 0.522 0.522 0.669 0.568 0.483 0.697 0.617 0.446

%uv 2% 9% -8% 6% 18% -15%
H 0.450 0.450 0.450 0.450 0.480 0.407 0.450 0.498 0.351

%H 0% 7% -10% 0% 11% -22%
µ 0.009 0.012 0.012 0.009 0.012 0.012 0.009 0.012 0.011

%µ 0% 0% -3% 0% -2% -8%

Table IV. Quantitative analysis of the simulations illustrated in Figure 5.

First we describe the procedure developed to generate artificial but realistic networks. Second we

discuss the numerical simulations of flow and hematocrit transport obtained with the computational

model.

4.3.1. A generator of artificial vascular networks The network that we use here satisfies the

following criteria:

1. the morphology of the network respects the optimal distribution of a Voronoi tassellation;

2. the aspect ratio of each branch (Li/Ri) is large enough to justify the one-dimensional flow

assumption;

3. the radii of branches merging at any junction satisfy Murray’s law;

4. the surface to volume density of the capillaries satisfies the physiologic value of S/V = 7000

m−1 [1];

The generation of such network is a complex (nonlinear) iterative procedure that is summarized

below. We consider a representative cube of D = 500 µm side, because this is the typical length of

a capillary vessel from the arteriolar to the venular ends. We notice that the characteristic size of the

cube has increased 5 times with respect to the previous cases (where it was equal to 100 µm). As we

will explain later, this change also influences the boundary conditions for the vasculature, spanning

the entire pressure range of microvasculature from 32 to 15 mmHg.

The morphology of the network in such representative volume has been obtained by stacking

several slabs containing a quasi-planar network. Following previous works [54, 55], each of these

networks has been obtained using a biomimetic design principle based on the Voronoi tassellation

model, which defines a partitioning of a plane into regions, based on the distance to seed points

distributed on a subset of the plane. The edges of the Voronoi tassellation are equidistant to the seed

points of the neighboring regions. Thanks to this property, the Voronoi partition may be considered

to be a reasonable model for the distribution of capillaries, which should fill a biological tissue in a
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way to maintain equal distance to the cells that populate it. The main parameter that influences the

morphology of the network is then the number of seed points. We have screened several network

configurations spanning from 5 to 15 seeds and we have decided to use networks arising from

random distributions of 8 points on a 500 µm side square. This number of points is small enough

to guarantee an aspect ratio of the channels that is sufficiently high (about Li/Ri = 4), given an

average radius of the branches of 4 µm. By randomly varying the distribution of 8 points, we have

generated 100 different network configurations that satisfy the criterion on aspect ratio.

The second step consists of assigning to each branch a suitable radius that respects the Murray’s

law together with the additional physiological constraints of having a distribution of radii in the

range 2− 6 µm with mean value, defined as
∑

iRiLi/
∑

i Li, equal to 4 µm ±5%. This task is

achieved through the following procedure. We initialize the network with a uniform radius of 4 µm

for every branch. Then we iterate among the following steps:

1. calculate the flow along the network, for suitable arteriolar and venular pressures. This step

determines the connectivity of the network with respect of the flow and it allows us to identify

bifurcations and anastomoses among all junctions. Finally, for any bifurcation, we randomly

assign a split ratio a, defined below;

2. we apply the Murray’s law:

bifurcation R3
in,0 = R3

out,1 +R3
out,2; for a given split ratio a =

Rin,0
Rout,1

anastomosis R3
in,1 +R3

in,2 = R3
out,0;

and we iterate until the connectivity of the network does not change from one step to the next. Since

the split ratio at bifurcations is a random variable, this procedure is not deterministic and it gives out

a different outcome at any run. This procedure was applied 100 times to each of the 100 networks

morphologies obtained before. The procedure was also repeated with initial radii of 4, 4.5, 5 µm for

a total of 3× 104 possible configurations. Finally, we have discarded the ones with radii outside the

interval 2− 6 µm and with a mean value of radius not equal to 4 µm ±5%, ending up with about

104 valid configurations.

In this way, we have obtained a large population of planar networks that satisfy the first three

criteria described above. The three-dimensional network configuration with a physiologic surface to

volume density is obtained by stacking a suitable number of planar networks one above the other.

After some preliminary calculations and numerical verifications, it is apparent that superposing 18

admissible planar networks on top of each other provides a surface to volume ratio of approximately

7000 m−1, as desired. Every network can be randomly chosen among the database of ' 104
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Figure 7. Visualization of the the morphology of the network and the distribution of the radii (µm).

configurations obtained by means of the previous procedure. To avoid perfect planarity, unlikely

to be observed in reality, we have placed each network on the central plane of a slab that is ∆ = 27.8

µm thick. Then, we have perturbed the vertical coordinate of the network nodes of a random quantity

less equal to ∆/2.

This construction also facilitates the definition of boundary conditions on the network, because

2 of the 6 faces of the cube, precisely the ones parallel to the network planes, do not intersect

the network branches. The remaining 4 faces (called lateral faces of the cube) are subdivided in

two neighboring arteriolar faces and two neighboring venular ones. At the arteriolar endpoints of

the network we set 32 mmHg while at the venular ends we have 15 mmHg. The corresponding

pressure drop drives the flow along the network.

In conclusion, this protocol allows for a great variability, but is controlled by a fairly small number

of parameters that we have optimized in order to satisfy the physiological criteria listed above. One

of these realistic configurations is the one used for the simulations discussed in the next section. In

particular, we show in Figure 7 the morphology of the network (made of about 250 branches) and

the distribution of the radius.

4.3.2. Calculation, visualization and analysis of blood flow and hematocrit in a realistic model of

microvasculature The numerical simulations have been carried out using the finite element solver

described in section 3.2. The geometrical model consists of 250 vascular branches with 20 elements

on each branch, for a total of 5× 103 nodes in the network. The interstitial volume is discretized

with a uniform tetrahedral mesh obtained by distributing 41 nodes along each edge of the cube and

consisting of approximately 4× 105 tetrahedral elements.

The discrete model is transformed into a system of linear equations for the physical unknowns

pv, pt, uv, ut, corresponding approximately to 5× 103, 4× 105, 104, 8× 105 degrees of freedom,

respectively. This is a fully coupled, block structured linear system that is solved by means of the
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Figure 8. Visualization of the flow in a complex network interacting with the interstitial volume. In particular
the panels show: the pressure drop along the network (top left); the velocity magnitude (top right); the
pressure variation along a slice of the interstitial volume combined with the pressure in the network (middle
left); the velocity field along a slice of the interstitial volume (the vectors show the direction and the colors the
magnitude, middle right); the hematocrit distribution in the network (bottom left); and the effective viscosity

(bottom right).

GMRES iterative solver, accelerated by a block preconditioner based on the Schur complements of

the pressure problems. The solution of the system takes about 30 minutes on a standard desktop

PC. However, this is not the total time necessary to perform the simulations shown below, because

the Fahraeus-Lindqvist and plasma skimming effects consist of nonlinear expressions. The iterative

approach described in section 3.2.2 is applied here and the linear system described above is solved

once for every iteration.

Figure 8 shows the main outputs of the model. On the top left panel we see that the pressure in

the network progressively decreases from the arteriolar to the venular ends of the microvasculature,

as expected. The blood velocity (shown in the top right panel), however, is not uniformly distributed

and several network branches are crossed by a flow rate significantly lower than the average (i.e. the

dark blue color).
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Concerning the interaction of the microvasculature with the interstitial flow, we observe that

the variation of pressure through the capillary bed influences the pressure in the interstitial space.

This is shown in the middle left panel, by the slice of the interstitial pressure field. We see that in

proximity of the arteriolar end of the network, an increased interstitial pressure level is visible, while

it decreases below average next to the venules. Then, it is apparent that the pressure gradient in the

vasculature induces a secondary, weaker gradient in the interstitium. This effect generates a modest

flow in the interstitial volume, which is clearly visible in the middle right panel. On the bottom row

of the figure we show the viscosity and the hematocrit. We notice that the hematocrit is characterized

by a high spatial variability, while the changes of apparent viscosity are less spread, in line with the

observations of Figure 5.

5. DISCUSSION

The results of Section 4 show that the proposed computational approach is correct if compared to

idealized tests with analytical solutions and it also captures the main traits of microcirculation in

more complex cases, such as the one addressed in 4.3.2. However, performing a detailed validation

of the model is a very difficult task.

Concerning the vascular network, local measurements are very challenging because of the small

size of the capillaries and the intrinsic variability of the network morphology. We refer for example

to [30] where capillary flow velocity measurements in vivo and in situ are provided, and we observe

that the reported range of velocities is compatible with the ones computed in Figure 8. Comparable

results with those of Figure 8 are also shown in [57] for the distribution of velocities. Unfortunately,

we are not yet aware of local measurements of hematocrit and viscosity, which could allow us to

validate the predictions of the model for these quantities.

Concerning the interstitial volume and the fluid balance between this region and the capillary

bed, the mean interstitial pressure is a model output for which measurements are more easily

available. For example a detailed study where the model predictions and measurements available

in the literature were compared was recently performed by the authors in [47]. There, the authors

have used the model for the analysis of microvascular fluid balance. For this reason, model was

complemented by new specific features addressing the lymphatic drainage. The results of that study

show that the model matches well with the available data in the literature for the interstitial fluid

pressure and net filtration rate. For the first indicator, the values predicted by the model agree with

those reported in [12], where for healthy volunteers an interstitial pressure of −0.9± 1.3 mmHg is

observed in vivo. In addition, when the pathological conditions of uremic patients were simulated,
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interstitial fluid pressure increased, in agreement with the range of 4.6± 4.2 mmHg reported in

[12]. Therefore, the variation of interstitial pressure is correctly reproduced by the model according

to physiological evidence. The net filtration rate is the integral along the microvascular network of

the net fluid flow from the capillaries to the interstitial volume, namely
∫

Λ
2πRi(s)f(pt(s), pv(s))ds.

For comparison with available measurements, the result of this formula is rescaled to the whole

extra-vascular volume in the body [25]. More precisely, the value reported for the entire body is

about 2 ml/min [25], which is in agreement with the prediction of 1.96 ml/min obtained by the

authors in [47].

Thanks to the unique ability to model local microvascular flow, combined with fluid balance

with the tissue interstitium, the computational model can be adopted to study various applications

where microcirculation plays a fundamental role. Among these we mention the study of vascularized

tumors and in particular the simulation of the tumor microenvironment. Indeed, authors and co-

workers have applied a simplified version of this model, where blood flow was modeled using a

constant viscosity, to simulate and compare different drug delivery therapies, see [6, 5, 42, 43],

based on mass and heat transport superposed to microcirculation. Considering the increasing interest

in the application of sophisticated mathematical models to study the fluid and tissue mechanics in

the brain, see for example [53, 27, 41, 64], we see a significant potential in the application of the

proposed model to analyze the interaction of vasculature and cerebrospinal fluid for metabolic waste

clearance in the brain, according to the mechanisms hypothesized in [29].

Although the computational model seems to be a valuable complementary tool to experimental

research in biology and medicine, it is still affected by several limitations. First of all, working

at small space scales, we have to face a significant variability of the tissue properties and in the

morphology of the network. Indeed, the simulation of section 4.3.2, is just a single occurrence

of many possibilities characterized by a probability distribution. In this context, the numerical

simulations shall be rather used within a statistical framework, in order to determine the mean

values and the variance of some specific quantities of interest related to microcirculation. If applied

to the morphology of the microvasculature, this becomes a particularly challenging issue. In fact,

it is known that morphology of capillary networks strongly depends on the host organ and type of

tissue (see for example [48]). In some cases, such as the healthy muscle tissue and particularly when

arteriole and venulae are included, a tree like structure is apparent. To model pathological situations,

such as the ones occurring in tumors, a network like configuration of the capillary bed (such as the

one of Figure 7) is preferred instead, as discussed in [18, 21]. The proposed computational approach

is completely general with respect to the morphology of the network. In this respect, the simulations

of section 4.3.2 are just an example among many other studies that will be performed.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le
35

Second, we observe that the interaction of the tissue sample with the surrounding system is

described by rather coarse approximations. Coupling the current model with other ones that account

for flow at the systemic level will be a future direction of improvement. This can be achieved by

making the boundary conditions of the model become dependent of a macroscale approximation

of the systemic circulation, based on lumped parameter models inspired to the analogy between

the vascular system and electrical circuits, see for example [66]. Furthermore, these models should

be also complemented by equations that describe the mass and heat metabolism at the systemic

level (due to the systemic circulation, the lymphatic system, the bio-heat transfer for temperature

regulation etc.)

Finally, despite the model framework is rigorously derived from the governing principles of flow

and transport, the nonlinear blood rheology is still determined by a phenomenological process.

However, the model is completely general with respect to rheology. If a more advanced rheology

was available, perhaps by means of a multiscale approach, the current model could easily be

updated to incorporate it. Indeed, a one-way multiscale approach for blood rheology is currently

under development by the research team and co-workers [34]. In particular, microscale effects are

incorporated in the model by studying individual red blood cells flowing at different Reynolds

numbers and different levels of hematocrit. In this way, we will replace expression (9) with a new

one derived upon mechanistic principles.

6. CONCLUSIONS, LIMITATIONS AND PRESPECTIVES

We have derived a mathematical model that encompasses nonlinear blood rheology (Fahraeus-

Lindqvist and plasma skimming effects), capillary leakage and flow in the interstitial volume

for a microvascular network of possibly curved vessels. Numerical tests have confirmed that all

these features play a role in microcirculation. Furthermore, thanks to a sophisticated mathematical

formulation complemented by advanced numerical solvers that discretize partial differential

equations defined in one-dimension (for the network) and three-dimensions (for the interstitial

volume), we are able to apply the model to fairly complex network configurations. The results

obtained by the model are quantitatively consistent with the physiological values expected for

healthy cases.

Concerning applications, we believe that the model is a flexible tool of investigation to be used

in may areas of research of medicine and biology, such as oncology, neurology and nephrology. For

example, the authors and co-workers have used previous versions of it to study drug delivery to the
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tumor microenvironment [6, 5, 43, 42]. The current model is being used by the authors to analyze

the effect of lymphatic drainage in uremic patients [47].

A. THE EQUATIONS SOLVED FOR FLOW AND HEMATOCTIT

For the sake of clarity and to foster the reproducibility and verifiability of the results, we derive here

the algebraic form of the discrete problem. These equations are implemented and solved using a

software based on the finite element library Getfem++ [17].

Let us start by defining some notation for the application of the finite element method. Let us first

introduce the dimension of the finite element spaces:

Nh
t := dim

(
V h
t

)
, Mh

t := dim
(
Qht
)
, Nh

v := dim
(
V hv
)
, Mh

v := dim
(
Qhv
)
, Shv := dim

(
Wh
v

)
.

Since the tissue 3D and the vessel 1D meshes are independent, we define three sets, containing

respectively the finite element basis for V h
t ×Qht , V hv ×Qhv and Wh

v :

{
ϕit
}Nht
i=1
×
{
ψit
}Mh

t

i=1
,

{
ϕiv
}Nhv
i=1
×
{
ψiv
}Mh

v

i=1
,

{
φiv
}Shv
i=1

.

Then, we express our variables as linear combination of the basis elements as follows:

uht (x) =

Nht∑
i=1

U it ϕ
i
t (x) , pht (x) =

Mh
t∑

i=1

P it ψ
i
t (x) , ∀x ∈ Ω, (22)

uhv (s) =

Nhv∑
i=1

U iv ϕ
i
v (s) , phv (s) =

Mh
v∑

i=1

P iv ψ
i
v (s) , ∀ s ∈ Λ, (23)

Hh (s) =

Shv∑
i=1

Hi φiv (s) , ∀ s ∈ Λ, (24)

being Ut =
{
U it
}Nht
i=1

, Pt =
{
P it
}Mh

t

i=1
, Uv =

{
U iv
}Nhv
i=1

, Pv =
{
P iv
}Mh

v

i=1
and H =

{
Hi
}Shv
i=1

the

vectors containing the degrees of freedom of the finite elements approximations. Now using the
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linearity of the operators, we rewrite (19) in algebraic form:


Mtt −DTtt O O

Dtt Btt O −Btv

O O Mvv −DTvv − JTvv

O −Bvt Dvv + Jvv Bvv




Ut

Pt

Uv

Pv


=


Ft

−Bttδπ

Fv

Bvvδπ


(25)

[
Bh + Jh + Oh

] [
H

]
=
[
Fh

]
(26)

which correspond to the equations solved for the fluid mechanics problem (previously also

represented as [uht , u
h
v , p

h
t , p

h
v ] = Fh(µv)) and for the hematocrit problem (that was represented

as Hh = Hh(uhv )). The matrices of the previous system are calculated as follows, using suitable

numerical integration formulas, starting from the bilinear forms (more generally, the mathematical

operators) of problem (19):
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[Mtt]ij := (
µt
Kt
ϕjt ,ϕ

i
t)Ω Mtt ∈ RN

h
t ×N

h
t ,

[Dtt]ij := (∇ ·ϕjt , ψit)Ω Dtt ∈ RN
h
t ×M

h
t ,

[Btt]ij := (2πRLpψ
j

tδΛh , ψ
i
t)Ω Btt ∈ RM

h
t ×M

h
t ,

[Btv]ij := (2πRLpψ
j

vδΛh , ψ
i
t)Ω Btv ∈ RM

h
t ×M

h
v ,

[Bvt]ij := (2πRLpψ
j

t , ψ
i
v)Λ Bvt ∈ RM

h
v×M

h
t ,

[Bvv]ij := (2πRLpψ
j

v, ψ
i
v)Λ Bvv ∈ RM

h
v×M

h
v ,

[Mvv]ij := (−2πµv,iφ
′(1)
(
1 + κ2

iR
2
i

)
πR2

iϕ
j
v, ϕ

i
v) Mvv ∈ RN

h
v×N

h
v ,

[Dvv]ij := (πR2∂ϕjv, ψ
i
v)Λ Dvv ∈ RN

h
v×M

h
v ,

[Jvv]ij := 〈ϕjv, ψ
i

v〉J Jvv ∈ RN
h
v×M

h
v ,

[Ft]i := −(ght ,ϕ
i
t · n)Γp Ft ∈ RN

h
t ,

[Fv]i := −
∑
i∈B

[
g+
v πR

2
i v
h
v |x+

i
− g−v πR

2
i v
h
v |x−

i

]
Fv ∈ RN

h
v ,

[Bh]i,j :=
(
πR2

i uv,pϕ
pφj , ∂sφi

)
Λ

Bh ∈ RS
h
v ,

[Jh]i,j := 〈〈φjv, φiv〉〉in Jh ∈ RS
h
v ,

[Oh]i,j := 〈〈φjhφ
i
h〉〉out Oh ∈ RS

h
v ,

[Fh]i :=
∑
k∈B

πR2
ku

h
v,kH0w

h
k |xink Fh ∈ RS

h
v .
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For simplicity we have introduced the compact notation 〈·, ·〉J , 〈〈Hh, wh〉〉out , 〈〈Hh, wh〉〉in, to

indicate the junction, inflow and outflow terms of problem (19), respectively,

〈
qhv , u

h
v

〉
J

:=
∑
j

qhv |yj

∑
i∈K+

j

πR2
i u
h
v,i|yj −

∑
i∈K−

j

πR2
i u
h
v,i|yj

 ,

〈〈Hh, wh〉〉out :=
∑
j

∑
i∈Kout

πR2
i u
h
v,iH

h
i w

h
i |yj +

∑
i∈B

πR2
i u
h
v,iH

h
i w

h
i |xouti

+
∑
i∈E

πR2
i u
h
v,iH

h
i w

h
i |zi ,

〈〈Hh, wh〉〉in := −
∑
j

∑
i∈Kinj

FQE,j,iw
h
i |yj

 ∑
i∈Koutj

πR2
i u
h
v,iH

h
i |yj

 .
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