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Nonlinear vibrations emerging from damaged structures are suitable indicators for detecting defects. When a crack arises, its
behavior could be approximated like a bilinear stiffness. According to this scheme, typical nonlinear phenomena as the presence
of superharmonics in the dynamic response and the variation of the oscillation frequency in time emerge. These physical
consequences give the opportunity to study damage detection procedures with relevant improvements with respect to the typical
strategies based on linear vibrations, such as high sensitivity to small damages, no need for an accurate comparison model, and
behavior not influenced by environmental conditions. This paper presents a methodology, which aims at finding suitable
nonlinear phenomena for the damage detection of three contact-type damages in a panel representing a typical aeronautical
structural component. At first, structural simulations are executed using MSC Nastran models and reduced dynamic models in
MATLAB in order to highlight relevant nonlinear behaviors. Then, proper experimental tests are developed in order to look for
the nonlinear phenomena identified: presence of superharmonics in the dynamic response and nonlinear behavior of the lower
frequency of vibration, computed using the CWT (continuous wavelet transform). The proposed approach exhibits the
possibility to detect and localize contact-type damages present in a realistic assembled structure.

1. Introduction

In the actual aeronautical field, the damage detection
methodologies are achieving a significant importance due
to their great influence on both safety and cost/time optimi-
zation. Traditional maintenance schemes based on statistical
predictions of times between controls are not optimal for cost
savings. Moreover, maintenance implies two kinds of costs
for operators [1]: direct costs (repairs) and indirect costs
(stop imposed to the airplanes). Both of them are becoming
excessive due to the augmentation of the operational life of
several airplanes. Indeed, the probability for airplanes to
suffer from unpredicted flight loads increases with that,
forcing the trend of maintenance costs to grow. These aspects
justify the interest in new inspection methodologies able to
detect cracks and defects but at the same time guaranteeing
time and cost reductions.

The traditional approaches to damage detection are
represented by the NDT (nondestructive testing) techniques.
They are off-line and localized inspections, developed since
the early to mid of 1960s, mainly related to visual inspections,

ultrasonic inspections, eddy currents, acoustic emissions,
radiography, thermography, and shearography [2, 3]. For
the goals before highlighted, the interest has recently
switched to structural health monitoring (SHM) schemes.
They are online and global procedures, based on the idea of
directly applying a system of detection giving the following
benefits: absence of accessibility requirements for operating
the tests, absence of necessity to predict possible collocations
of damages before executing the trials, and a single time
session for tests. SHM methods are classified as follows [4]:
“modal-based methods,” characterised by the comparison
between modal parameters of the current structure with
those of the undamaged one; “response-based methods,”
characterised by the analyses of the results to proper dynamic
tests; and “model-based methods,” characterised by the
comparisons of results from experimental tests with those
ones from numerical simulations.

The typical SHM methods are the linear vibrational
schemes [5, 6], developed from the hypotheses of linear,
time-independent structures. Among them, there has been
a wide research on modal techniques since the 1970s [7].
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These ones are based on the idea that a damage causes a
reduction of the local physical stiffness, causing the modifica-
tion of modal parameters (eigenfrequencies, damping ratios,
and eigenvectors). Therefore, the comparison between these
physical elements in the current state and in the undamaged
one is suitable for detecting damages. These methodologies
exhibit some weaknesses. At first, the traditional linear eigen-
frequencies analyses are weakly sensitive to small damages.
According to [8], a crack owning an area 15–20% of the cross
section of a beam structure determines a reduction of the
natural frequency of the element from 1% to 5%. This aspect
is the consequence of the global character of modal methods,
and thus it can be overpassed by augmenting the amount of
data to analyze. In this scenario, the actual research is exhibit-
ing interests in data mining (DM) techniques, such as the
artificial neural networks (ANN), principal component
analysis (PCA) [9], and genetic algorithms (GA), able to
reduce the amount of data to be processed for SHM. Refer-
ence [10] represents a very recent review paper that includes
a large and complete bibliography of papers about DM in
structural damage detection. Then, traditional linear analyses
are influenced by external conditions as temperature, which
drive modal parameters to change. Finally, traditional linear
analyses require accurate pieces of information on the
undamaged structure as they focus on a comparison. This
aspect implies the necessity for proper undamaged models
or test results on the undamaged structures.

Nonlinear vibrational methods in SHM context are
emerging in order to overcome the previous limitations.
The basic idea around them is that a damage causes a nonlin-
ear behaviour in the structure where it grows. For this reason,
it is sufficient to detect the nonlinearities in order to state
elements on the defect presence. According to [11], a simple
but realistic way to represent the mechanical behaviour of a
damage is the usage of a bilinear stiffness: when the crack
is open, no material can locally sustain loads and thus a
stiffness reduction happens; when it is closed, the origi-
nally undamaged stiffness is restored. This model justifies
several nonlinear phenomena in vibrations that have been
used in some research studies available in literature: absence
of homogeneity [12], variation of frequency with amplitude
of vibration [11], superharmonic generation [8, 11], and
sum/difference of the input harmonics in the dynamic
response [13]. The potential of nonlinear vibrational
methods is related to their benefits: sensitivity to small
defects, making them appealing in the assessment of damages
at the very early moments of the growing process; absence of
comparing models, influencing the time for the analyses; and
insensitivity to environmental conditions, remarkable in the
aeronautical context. According to these benefits, the
research has concentrated on analytical/numerical modeled
structures, with breathing cracks inside. The current paper
presents an extension of these methods in a structure
reproducing an aeronautical stiffened panel, in which three
different damaged scenarios have been taken into account.
Each defect is represented by the absence of connections
between a portion of a stiffener and a base plate. The
procedure aims at executing the first two steps of the detec-
tion procedure scheduled by Rytter in [14]: detection and

localization, leaving the damage quantification step for the
next research phase.

2. Theoretical Background

In order to justify the phenomena emerging from nonlinear-
ities suitable for the damage detection procedure here
discussed, a short theoretical background on nonlinear
systems is mandatory.

2.1. Nonlinear Phenomena. A nonlinear dynamical system
owns particular characteristics compared to those of the
linear processes. Firstly, the dynamical response to an input
excitation depends both on the frequency of the excitation
and its amplitude. For a linear system, instead, the only
dependence is that from the excitation frequency. Then, non-
linear systems exhibit sensitivity to initial conditions. In the
case of linear time-invariant systems, the impulse response
is the linear combination of specific shapes, called eigenvec-
tors, vibrating at specific eigenfrequencies. These invariant
sets do not depend on initial conditions. Moreover, given a
certain group of harmonics in the input signal, the output
of a nonlinear system may present subharmonics or
superharmonics. Finally, due to the high sensitivity to initial
conditions, nonlinear systems can exhibit a chaotic behavior
also with deterministic nonlinear models.

The mathematician Volterra proposed an extension of
the conventional input-output relation used to describe
dynamical systems in the time domain [15]. For a linear
time-invariant system, the output y t is related to the input
u t by the following convolution:

y t =
+∞

−∞
h τ u t − τ dτ, 1

where h t is the impulse response of the system. The
form of the relation for nonlinear systems becomes the
Volterra series:

y t = 〠
n

i=1
yi t , 2

where

yn t =
+∞

−∞

+∞

−∞
…

+∞

−∞
hn τ1, τ2,… , τn u t − τ1 u

t − τ2 … u t − τn dτ1 dτ2 … dτn

3

The terms hi t are called “kernels.” This relation is
correct under specific hypothesis [16], always included in
“weakly” nonlinear systems. Each kernel can be transformed
into the frequency domain by using the multidimensional
Fourier transform (MFT):

Hn ω1, ω2,… , ωn =
+∞

−∞

+∞

−∞
…

+∞

−∞
hn

τ1, τ2,… , τn e−i ω1 τ1+ω2 τ2+⋯+ωn τn dτ1dτ2 … dτn

4
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The terms Hn are the higher-order frequency response
functions (HOFRF). It can be easily noticed how the Volterra
series including only its first term corresponds to (1). Thus,
the input-output relation for linear systems is a particular
case of (2). The MFT of the single kernel is the Fourier
transform (FT) of the impulse response, which represents
the frequency response function (frf) for asymptotically
stable linear systems.

The Volterra series can be used in order to justify the
superharmonic presence in the output of nonlinear systems.
Indeed, in the case of a periodic excitation composed by
the harmonic ω u t = eiωt , the expression of the response
y t is the following one:

y t =H1 ω eiωt +H2 ω, ω ei2ωt +⋯ +Hn ω, ω,… , ω einωt

5

The response exhibits multiple integers of the har-
monic ω through the effect of the HOFRF. It is possible
to match the values of each HOFRF to the Fourier
transform of the input and the output [17].

Another relevant aspect described by the Volterra series
is the absence of homogeneity. While each single convolution
of the series is homogeneous, the response is the combination
of homogeneous convolutions with different numbers of
input functions. Consequently, differences in the amplitude
of the input cause a nonhomogeneous system response.

2.2. A Simple 1 Degree of Freedom Example. In order to
highlight the two effects underlined at the end of the previous
paragraph for nonlinear systems and relate them to a bilinear
spring mechanism representing a damage, it is here proposed
a simple 1 degree of freedom (dof) example coming from
the work of Neild [11]. Figure 1 represents a massm linked to
the wall by a bilinear spring: the spring constant is k1 until the
displacement x is less than a; then, it becomes k2. Distance a
in the model can be both considered as a crack opening size
or a contact gap. The first representation is that of a “breath-
ing crack,” as indicated in [11]. The second one suits with the
contact-type damages analyzed in the work here presented.

The equations of motion for the two different situations
are here proposed:

mx + k1x = 0, if x ≤ a,
mx + k2x + k1 − k2 a = 0, if x > a

6

The solutions of the equations for the two cases can
be easily found once the initial conditions are defined.
Considering the motion evolving from an initial position
x 0 = −αa, with an initial speed equal to zero, the fol-
lowing equation expresses the motion behaviour:

x = C cos k
m

t + φ −
K
k
t, 7

where k = k1 and K = 0 when x ≤ a and k = k2 and K =
k1 − k2 a when x > a. Constants C equals−αa and constant
φ equals 0 in the first case. When x > a, their values are the
following ones:

C = a
k1
k2

1 + k2
k1

α2 − 1 ,

φ = arctan −
k2
k1

α2 − 1

8

Through the analytic calculation of [11], the nondimen-
sional f s = f / ω1/2π can be computed, where ω1 = k1/m
and f equals the frequency of oscillation. Once the
mathematical model is solved, it is possible to determine
the nondimensional frequency of vibration for different
values of α (Figure 2). Moreover, it is possible to highlight
the second and third normalized superharmonics by apply-
ing the fast Fourier transform (FFT) to the normalized
displacement stories. They are equal to their value divided
by f1 = ω1/2π (Figure 3).

The results clearly underline the consequences of the
bilinear spring in the system response. Figure 2 shows
how the vibration frequency depends on the amplitude
of the oscillation; Figure 3 underlines the presence of the
superharmonics in the dynamic response.

3. Typical Aeronautical Panel: Preliminary
Numerical Studies

The panel analyzed in the current work reproduces a typical
aeronautical structure. It is the one used in [9, 18]. It consists
in a flat rectangular plate, having 1000mm for width and
1200mm for length, with a thickness of 1.3mm. It is
edged by two transversal supports with rectangular section

x

a

m

k
2
 − k

1

k
1

Figure 1: 1 dof system with bilinear spring.
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Figure 2: Normalized frequency with different amplitudes.
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(40mm× 4mm), running along the short sides. Moreover,
five stiffeners equally spaced reinforce the longitudinal
direction: they are all T-shaped, with a length of 1120mm,
a flange and a web of 40mm, and a constant thickness of
4mm. The whole panel is built using aluminum alloy 2024.
Figure 4 shows the panel.

The three damaged scenarios are represented by the
absence of connections between one stiffener and the base
plate (two lines of screws are used to connect each stiffener
to the base plate). They are called D2, D3, and D5. Table 1
summarizes the characteristics of each one of them.

Figures 5–7 show the different cases.
Table 2 shows the first 20 eigenfrequencies of the

undamaged free-free panel and exhibits the eigenfrequencies
and their percentage variations for the three damaged cases
considered. All the results have been obtained by means of
numerical FEM mode analyses in MSC Nastran, by

Figure 4: Aluminum panel used for the analyses.

Figure 5: Detail of D2 damage.

Figure 6: Detail of D3 damage.

Figure 7: Detail of D5 damage.
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Figure 3: Normalized superharmonics with different amplitudes.

Table 2: First 20 eigenfrequencies for the undamaged panel and for
the three damages with their % variations.

Mode f (Hz)
D2,

f (Hz)
D2, %

D3,
f (Hz)

D3, %
D5,

f (Hz)
D5, %

1 7.95 7.79 −2.01 7.95 0.00 7.83 −1.51
2 11.38 11.37 −0.09 11.38 0.00 11.38 0.00

3 23.67 23.44 −0.97 23.67 0.00 23.51 −0.68
4 27.90 26.67 −4.41 27.90 0.00 27.60 −1.08
5 47.72 43.15 −9.58 47.72 0.00 46.56 −2.43
6 49.82 48.93 −1.79 49.82 0.00 49.11 −1.43
7 72.67 71.01 −2.28 72.58 −0.12 71.47 −1.65
8 83.43 73.63 −11.75 83.43 0.00 80.68 −3.30
9 87.70 85.73 −2.25 87.57 −0.15 86.44 −1.44
— — 93.42 — — — — —

10 99.22 99.41 0.19 98.89 −0.33 98.20 −1.03
11 101.11 99.88 −1.22 101.10 −0.01 99.76 −1.34
12 101.22 109.68 8.36 100.97 −0.25 100.20 −1.01
13 114.46 114.63 0.15 114.45 −0.01 112.51 −1.70
14 117.42 117.48 0.05 115.53 −1.61 116.92 −0.43
15 118.05 117.86 −0.16 117.70 −0.30 117.86 −0.16
16 121.78 121.75 −0.02 121.77 −0.01 121.75 −0.02
17 121.82 126.57 3.90 121.65 −0.14 119.86 −1.61
18 128.90 131.10 1.71 128.88 −0.02 128.15 −0.58
19 137.98 137.16 −0.59 137.68 −0.22 137.36 −0.45
20 139.43 139.27 −0.11 139.34 −0.06 139.33 −0.07

Table 1: Damaged scenario characteristics.

Case Description

D2 Separation, 80mm long; ending stiffener position

D3 Separation, 120mm long; central stiffener position

D5 Separation, 40mm long; ending stiffener position
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representing each damaged area using not merged nodes
between the damaged stiffener and the panel. In the case
of D2, an uncorrelated mode at frequency 93.42Hz has
been identified.

Figures 8–13 show the numerical shapes for the first six
undamaged modes.

Figures 14–16 show the MAC (modal assurance
criterion) matrixes obtained comparing the first undamaged
20 modes with the corresponding damaged ones.

Each MAC matrix has been obtained by comparing the
transversal (out of plane) displacements of a set of 120 nodes
equally spaced along the lateral and longitudinal directions of
the panel.

Figure 14 clearly exhibits the not correlated mode at
93.42Hz (mode number 10) emerging for D2, which
interrupts the dominant behavior of the main diagonal of
the matrix.

In order to highlight the presence of nonlinear
phenomena, preliminary numerical tests have been run both
using complete FEM (finite element method) models with
the software MSC Nastran and reduced models with the

software MATLAB. The panel has been analyzed as a free-
free structure.

3.1. FEM Analyses on Complete Models. The original undam-
aged panel model has been developed in Nastran by using
12800 CQUAD4 elements (12000 for the base plate mesh,
800 for the transversal supports) and 560 CBEAM
elements for the stiffeners. Each damaged scenario has
been obtained from the original model by using a certain
amount of GAP elements, connecting pairs of nodes in
the vertical direction: they are nonlinear tools used to
implement a bilinear stiffness. In particular, the penalty
approach has been used in order to simulate the contact
mechanism in each damaged area: when there is a contact
between the two nodes connected by the gap, a stiffness of
109N/m acts in order to avoid interpositions. The cards
used to implement these gaps are CGAP and PGAP for
the property definition [19].

For each scenario, a limited number of gap elements have
been used only for the central pairs of nodes involved in

Figure 9: Mode 2.

Figure 10: Mode 3.

Figure 11: Mode 4.

Figure 12: Mode 5.

Figure 13: Mode 6.

Figure 8: Mode 1.
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order to reduce the time required for the analyses with the
SOL 129 (“nonlinear transient solution”): damages D2 and
D3 present three gaps and damage D5 presents two gaps.

The campaign of FEM analyses with complete models
has regarded the following tests:

(i) Double sine excitation tests: a 5Hz vertical (out of
plane) sinusoidal excitation and a 15Hz one have
been located on the opposite sides of the damaged

stiffener, with amplitudes of 50N and duration of
10 s. Acceleration stories in the excited nodes and
in the other three nodes along the damaged
stiffener have been windowed with the Hanning
window and finally analyzed by using the FFT
(all the elaborations have been executed in
MATLAB). Figures 17–19 show the locations of
the exciting nodes (node 12 for 5Hz excitation
and node 93 for 15Hz excitation) and the

Mode f(Hz)
1

U
n
d
a
m
a
g
e
d

p
a
n
e
l

7.95 1 0.01 0.01 0.02 0.06 0.07 0 0.03 0.01 0.02 0 0.01 0.01 0.01 0.01 0 0.10 0.04 0.04 0
2 11.38 0.01 1 0.01 0 0 0.01 0.01 0 0.05 0 0.03 0.02 0.06 0.04 0.06 0 0 0.05 0.08 0.23
3 23.67 0.02 0.01 1 0.06 0.03 0 0.01 0 0 0.02 0.01 0.01 0.05 0.08 0 0.01 0 0.04 0.09 0
4 27.9 0 0.01 0.04 0.99 0.18 0.02 0.04 0.12 0.01 0.01 0.15 0.14 0.2 0.18 0.1 0.04 0.09 0.12 0.04 0
5 47.72 0 0.01 0.02 0.07 0.79 0.5 0.02 0.3 0.36 0.02 0.03 0.03 0.04 0.07 0.09 0.05 0.01 0.02 0.04 0.07
6 49.82 0.07 0 0.02 0.07 0.5 0.86 0 0.26 0.02 0.1 0.04 0.05 0.07 0.03 0 0 0.15 0.09 0.08 0
7 72.67 0.01 0.01 0.01 0.04 0.02 0 0.99 0.01 0.12 0.01 0.02 0.06 0.02 0.07 0.04 0 0.02 0.02 0.01 0.02
8 83.43 0 0 0.04 0.03 0.1 0.02 0.02 0.68 0.32 0.49 0.03 0.04 0.32 0.1 0.07 0.03 0.01 0.03 0.12 0
9 87.7 0 0.05 0.01 0.01 0.27 0.2 0.08 0.29 0.92 0.3 0.12 0.05 0.09 0.01 0.05 0 0 0.01 0.02 0.07
10 99.22 0.01 0 0.02 0.24 0.03 0.01 0.04 0.16 0.04 0.43 0.6 0.59 0.21 0.12 0.05 0.01 0.01 0.06 0.08 0
11 101.1 0.06 0.01 0 0.12 0.01 0.11 0.35 0.03 0.04 0.02 0.25 0.35 0 0.01 0.05 0.23 0.05 0 0.04 0.03
12 101.2 0 0.08 0 0.04 0.09 0.03 0.01 0.29 0.08 0.59 0.37 0.29 0.5 0.2 0.06 0.01 0 0.12 0.13 0.01
13 114.5 0 0 0.08 0.01 0.01 0 0.04 0.12 0.14 0.2 0.08 0.01 0.6 0.79 0.08 0.1 0.03 0.14 0.01 0.06
14 117.4 0 0.04 0 0 0.08 0.07 0.01 0.08 0 0.08 0.04 0.01 0.25 0.19 0.89 0.3 0.02 0.11 0.07 0.06
15 118.1 0 0 0 0.06 0.02 0.01 0.03 0.04 0.03 0.03 0.05 0.01 0.15 0 0.25 0.95 0.03 0.08 0.04 0.04
16 121.8 0.11 0 0 0.02 0.12 0.14 0 0.04 0 0.07 0.04 0.06 0.12 0.15 0.13 0.03 0.95 0.2 0.11 0.01
17 121.8 0 0.01 0.01 0.29 0.1 0.01 0.06 0.14 0.01 0.13 0.01 0.04 0.28 0.39 0.3 0.09 0.3 0.55 0.38 0.01
18 128.9 0 0 0.10 0.01 0.05 0.01 0.01 0.13 0.01 0.06 0.02 0 0.11 0.12 0.03 0.01 0.02 0.69 0.71 0.05
19 138 0 0.25 0 0.01 0.06 0.02 0.01 0.02 0.02 0.03 0.03 0.01 0.05 0.02 0.03 0.03 0.01 0.05 0 0.97
20 139.4 0 0 0 0 0.01 0.02 0.01 0.01 0.01 0 0.01 0 0.01 0.03 0.02 0.01 0 0.02 0.06 0.19

f(Hz) 7.79 11.4 23.4 26.7 43.2 48.9 71 73.6 85.7 93.4 99.4 99.9 110 115 117 117 122 127 131 137
Mode 1 2 3 4 5 6 7 8 9 10

D2 damaged panel

11 12 13 14 15 16 17 18 19 20
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Figure 14: Undamaged panel–D2 damaged panel MAC.
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Mode f(Hz)
1 7.95 1 0 0.01 0 0 0.07 0 0 0 0.01 0 0 0 0 0 0 0.11 0 0 0
2 11.38 0 1 0.01 0 0.01 0 0.01 0 0.05 0.01 0.08 0 0 0.04 0.02 0.01 0 0 0.23 0
3 23.67 0.01 0.01 1 0 0 0.01 0 0.03 0 0.0 0 0 0.09 0 0 0 0 0.1 0 0
4 27.9 0 0 0 1 0 0.01 0.04 0 0 0.22 0.03 0 0 0.03 0.04 0.32 0 0 0.01 0
5 47.72 0 0.01 0 0 1 0 0 0.01 0.37 0.01 0.01 0 0 0.1 0.08 0 0 0 0.06 0
6 49.82 0.07 0 0.01 0.01 0 1 0 0 0 0 0 0.06 0 0 0 0 0.16 0 0 0.02
7 72.67 0 0.01 0 0.04 0 0 1 0 0.01 0.04 0 0 0 0.01 0.01 0.07 0 0 0 0
8 83.43 0 0 0.03 0 0.01 0 0 1 0 0 0 0 0.26 0 0 0 0.01 0.04 0 0
9 87.7 0 0.05 0 0.01 0.37 0 0 0 1 0.01 0.01 0 0 0.01 0.02 0 0 0 0.04 0
10 99.22 0.01 0 0 0.22 0 0 0.04 0 0.01 0.99 0.13 0 0 0.02 0.01 0.03 0 0 0 0
11 101.1 0.06 0.01 0.01 0.11 0.02 0.11 0.32 0.01 0.02 0.06 0.03 0.43 0.03 0.17 0.2 0.07 0.02 0.03 0.01 0.05
12 101.2 0 0.08 0 0 0.02 0 0 0 0.01 0.12 0.99 0 0 0.01 0.01 0.01 0 0 0 0
13 114.5 0 0 0.09 0 0 0 0 0.26 0 0 0 0.02 1 0 0 0 0.01 0.04 0 0
14 117.4 0 0.04 0 0 0.13 0 0.01 0 0.05 0.01 0.02 0 0 0.73 0.66 0.02 0 0 0.05 0
15 118.1 0 0 0 0.07 0 0 0.01 0 0.01 0.02 0.01 0 0 0.66 0.76 0.03 0 0 0.02 0
16 121.8 0.11 0 0 0 0 0.16 0 0.01 0 0 0 0.06 0.01 0 0 0 1 0.02 0 0
17 121.8 0 0.01 0 0.31 0 0 0.07 0 0 0.01 0.01 0 0 0.08 0.06 1 0 0 0.02 0
18 128.9 0 0 0.1 0 0 0 0 0.04 0 0 0 0 0.04 0 0 0 0.02 1 0 0
19 138 0 0.25 0 0 0.06 0 0 0 0.04 0.01 0.01 0 0 0.01 0.04 0.01 0 0 1 0
20 139.4 0 0 0 0 0 0.02 0 0 0 0 0 0.01 0 0 0 0 0.01 0 0 1
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Figure 15: Undamaged panel–D3 damaged panel MAC.

6 International Journal of Aerospace Engineering



positions of the other three measuring nodes for
each damage, along the second stiffener.

The double sine excitation at the indicated frequen-
cies has been chosen in order to look for possible lin-
ear combinations, sum, or difference of the
excitation frequencies in the outputs. The use of a
difference between the two frequencies matching a
structural eigenfrequency determines a relevant

response, as indicated in the literature [13]. As a
benefit of nonlinear methods is to provide detection
without having preliminary pieces of information on
the structure, it has been decided to consider 5Hz
and 15H. They are low frequencies having a differ-
ence which does not meet a panel eigenfrequency.

In the case of the damaged scenario D2, a 30Hz
response in the results has been obtained. Figure 20
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0.4–0.5

0.3–0.4
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Mode f(Hz)
1 7.95 1 0 0.01 0.01 0.03 0.07 0 0.01 0.01 0.01 0 0 0.01 0 0 0.03 0.1 0.01 0.03 0.01
2 11.38 0 1 0.01 0 0.01 0.01 0.01 0 0.05 0.03 0.04 0.04 0.01 0.03 0.01 0.03 0 0.02 0 0.25
3 23.67 0.02 0.01 1 0.01 0.01 0 0.01 0.02 0 0 0.01 0.01 0.09 0.02 0.01 0.01 0 0.08 0.03 0.01
4 27.9 0 0.01 0.01 1 0.04 0.01 0.04 0.03 0.01 0.14 0.11 0.1 0.06 0.07 0.07 0.3 0.1 0.03 0.02 0.01
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17 121.8 0 0.01 0 0.31 0.03 0.01 0.06 0.05 0 0.04 0.02 0.04 0.07 0.1 0.01 0.86 0.31 0.15 0.25 0.1
18 128.9 0 0 0.1 0 0.01 0.01 0.01 0.08 0.01 0.03 0.02 0.01 0.03 0.06 0.02 0.1 0.02 0.97 0.18 0.02
19 138 0 0.25 0 0 0.06 0.01 0.01 0.01 0.03 0.02 0.02 0.01 0.04 0.02 0.03 0.02 0.01 0.05 0.38 0.9
20 139.4 0 0 0 0 0.01 0.02 0.01 0 0.01 0 0 0 0.02 0 0 0.02 0 0 0.14 0.26
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Figure 16: Undamaged panel–D5 damaged panel MAC.

Figure 17: Excitation and measuring nodes for D2 damage along the second stiffener.

Figure 18: Excitation and measuring nodes for D3 damage along the second stiffener.
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reports the behavior of the normalized response for
the different measurement points, obtained by
dividing its value by the maximum one in the
spectrum. In the figure, the nodes in the abscissa
go closer to the damaged area from the left to
the right. Thus, the amount of superharmonic
contribution increases with the proximity to the
damage. Similar results have been obtained for
the 20Hz contribution in the damaged scenario
D3 (Figure 21) and for the 25Hz contribution in
each damaged scenario (Figures 22–24). These
representations highlight the possibility to use
the amount of the nonlinear response as an indi-
cator for the localization.

(ii) Tests for superharmonics: for each damaged sce-
nario, two different numerical tests have been exe-
cuted applying a 50N amplitude vertical sinusoidal
force next to each damaged area. It has been decided
to use the same frequencies of the previous tests, in
order to highlight possible similarities in the results.
Thus, in the first case, the frequency is 5Hz and in
the second case, it is 15Hz for a duration of 12 s. In
the case of the 15Hz excitation, scenario D2 has
exhibited the superharmonic 30Hz highlighted in
the tests done before (Figure 25).

(iii) Decay tests: for each damaged scenario, an impulsive
vertical load has been applied next to each damaged

Figure 19: Excitation and measuring nodes for D5 damage along the second stiffener.
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Figure 20: D2, 30Hz normalized responses, double excitation tests.
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Figure 21: D3, 20Hz normalized responses, double excitation tests.
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Figure 22: D2, 25Hz normalized responses, double excitation tests.
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Figure 23: D3, 25Hz normalized responses, double excitation tests.
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area, represented as a triangular excitation of
duration 0.01 s and amplitude 20N. A damping
factor of 1% has been set for a frequency about
7Hz, which is close to the first eigenfrequency of
the undamaged plate. Each simulation with SOL
129 has lasted 5 s, with a time step suitable as to
follow the very rapid load story (an initial step of
0.001 s has been used). Accelerations in time have
been computed in each excitation node and in a
node located in the damaged area. Then, they have
been processed by using the continuous wavelet
transform (CWT) based on the Morlet wavelets
[20–22]. This tool guarantees the decomposition of
a time signal in components well localized in time
and frequency called “wavelets.” Therefore, the
CWT allows looking for changes in the behavior of
a signal during its evolution. Before its application,
the analytic signal [11] has been obtained and then
the curves exhibiting the maximum frequency
content for different times have been presented in
output. The purpose of the analyses has been the
search for possible variations of the frequency of
vibration in time, due to the nonlinear behavior of
each damage. Figures 26 and 27 show the output
curves for the D3 case: they exhibit slow fluctuations
around the second eigenfrequency of the undam-
aged plate, about 11Hz. These little waves can be
related to the variation of the local stiffness due to
the contact mechanism, but models considering the

entire contact are required in order to focus this
phenomenon in a better way.

3.2. FEM Analyses on Reduced Models. The analyses
described before have the limitation of long times required,
and this does not give the opportunity to model the entire
damaged areas with the gaps. For this reason, further
analyses have been executed by using reduced-order models,
following the Craig-Bampton approach [23] in conjunction
with the concentrated nonlinearities [24]. In particular, the
boundary set of each model includes those dof connecting
the bilinear springs simulating the contact mechanism (all
the dof in each contact area), the excitation dof, and the
measurement dof. By using MSC Nastran SOL 103, the
Craig-Bampton mass and stiffness matrixes have been
obtained in output (it has been chosen to consider a number
of fixed interface modes equal to 14, in order to cover a wide
range of frequencies). From the results with the complete
models, it has been decided to focus on the following nonlin-
ear phenomena: superharmonics and variations of vibration
frequencies in time. Thus, the following tests have been done
with the software MATLAB using the matrixes obtained:

(i) Sine excitation tests: a vertical sinusoidal excitation
(amplitude =50N) at different frequencies (5, 10,
15, 20, 25, and 30Hz) has been placed in a node
located next to each damaged area. The direct
acceleration responses, obtained by using the for-
ward finite difference method on the velocities, have
been windowed with the Hanning window and then
elaborated through the FFT. The first simulations
done on undamped models have shown unclear
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Figure 24: D5, 25Hz normalized responses, double excitation tests.
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Figure 25: D2, direct response FFT, 15Hz excitation test.

t (s)
0 0.5 1 1.5 2 2.5 3

f
 (H

z)

10

12

14

16
Maximum frequency content of node 48 acceleration

Figure 26: D3, decay test CWT, acceleration in the excitation node.

t (s)
0 0.5 1 1.5 2 2.5 3

f
 (H

z)

10

12

14

16
Maximum frequency content of node 1006354 acceleration

Figure 27: D3, decay test CWT, acceleration in the damaged area.
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responses in those cases exhibiting nonlinear behav-
iors: indeed, the absence of damping causes a limited
dissipation of those contributions at frequencies
higher than the half of the sampling frequency (time
step has been taken equal to 0.005 s). For this reason,
tests have been repeated on damped models: a
damping matrix proportional to the stiffness matrix
has been used, with the proportional constant taken
as to give a damping of 1% for a frequency of 7Hz.
The function used to solve the system of nonlinear
ordinary differential equation is “ode15s,” a stiff
solver. In this case, tests have been done for the
damaged scenarios D2 and D5, as D3 has not exhib-
ited superharmonics in the previous simulations.
Tables 3 and 4 summarize the results obtained in
terms of superharmonic contributions found for
the two scenarios.

Figures 28 and 29 report the FFT of the 5 s accelera-
tion stories for the damaged scenario D2 with 20Hz
and 25Hz excitations; the same results for D5 are
shown in Figures 30 and 31. These figures highlight
the evidence of the superharmonic presence for the
20Hz and 25Hz cases.

A theoretical interpretation of this aspect comes
from several works in which it is stated that, in the
case of crack breathing into beam structures, the
higher first superharmonic behavior is excited when
the excitation frequency matches one-half of the
eigenfrequency [17, 25]. Therefore, the possibility
for superharmonics increases when the excitation
frequency has multiples close to the eigenfrequen-
cies of the structure. As the panel analyzed exhibits
two linear modes in the range between 40Hz and
50Hz (see Table 2), the excitations 20Hz and
25Hz satisfy this condition.

(ii) Sine excitation tests with multiple acceleration mea-
surements: once the previous tests have revealed the
presence of superharmonics, the 20Hz excitation

simulations have been repeated by computing the
accelerations in 10 nodes along the damaged
stiffeners, at a distance one to each other of about
106.6mm (see Figure 32 for the node location). This
procedure has aimed at finding possible correlations
between the superharmonic contributions and each
damaged area (for both D2 and D5, the damage is
located at one end of the stiffener). In the case of
D2 scenario, the first and third superharmonic con-
tributions have resulted sensitive to the localization.
Figure 33 reports the normalized trend for the first
superharmonic amplitudes. For D5, the same output
is shown in Figure 34, exhibiting the localization
trend. Damages D2 and D5 are located close to
node 93 (see Figures 17 and 18).

(iii) Sine excitation tests repeated with a different force
position. The multiple acceleration measurement
tests have been executed exciting in node 12, which

Table 3: D2, superharmonic contributions, sine excitation tests.

1st
superharmonic

2nd
superharmonic

3rd
superharmonic

5Hz Yes No Yes

10Hz Yes No Yes

15Hz Yes Yes Yes

20Hz Yes Yes Yes

25Hz Yes Yes No

Table 4: D5, superharmonic contributions, sine excitation tests.

1st
superharmonic

2nd
superharmonic

3rd
superharmonic

20Hz Yes No Yes

25Hz Yes No No
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Figure 28: D2, direct response FFT, 20Hz sine excitation.
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Figure 29: D2, direct response FFT, 25Hz sine excitation.
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Figure 30: D5, direct response FFT, 20Hz sine excitation.
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is located on the opposite side of the damages D2
and D5 (see Figures 17 and 18). In this case, the
relevant trend is that obtained for the first superhar-
monic contributions of the D2 scenario (Figure 35).
Even if the localization trend has been obtained also
for D5, the absolute values are not significant in this
case (the 40Hz peak in node 93 equals 0.0361m/s2,
while the 20Hz one is 3.995m/s2).

(iv) Decay tests: as done for the tests with complete
models, an impulsive vertical load has been applied
next to each damaged area, with the same character-
istics of the one used before. A damping matrix pro-
portional to the stiffness one has been introduced in
the model. 4 s acceleration signals with a resolution
of 0.005 s have been recorded in the excitation node
and in a node close to each damaged area. Each
signal has been transformed into its analytic version
and processed by using the CWT with Morlet wave-
lets. Results have highlighted relevant fluctuations of
the main vibration frequency around an eigenfre-
quency after a transition time, for the accelerations
in the damaged area nodes (Figures 36–38).

(v) As observed for the D3 results with the complete
models, the fluctuations in this case are around
the second eigenfrequency (11Hz). On the other
hand, they are around the first eigenfrequency
(8Hz) for D2 and D5 cases. This fact is due to
the relation between the position of the excitation
node and the mode shapes: the first mode, with a
frequency about 8Hz, is a torsion (see Figure 8);
the second mode, with a frequency about 11Hz,
is a flexion around the longitudinal direction (see
Figure 9) and thus forces the central part of the
structure to vibrate vertically. Thus, the central
excitation used for D3 excites the second mode
more than the first one.

3.3. Comments on Numerical Results. The numerical tests
described have been executed with the aim of finding suitable
nonlinear phenomena for an experimental damage detection
technique. From the results discussed, it has been decided to
focus on two phenomena highlighted by the use of the
reduced-order simulations: the presence of superharmonics
with sine excitation tests and the fluctuations of the main
vibration frequency for decay tests. Both these aspects are
theoretically justified by the analyses described in Section 2.
Indeed, the superharmonic presence is a consequence of the
nonlinear response described by the Volterra series, while
the variation of frequency of vibration results from the
activation of a local bilinear stiffness behavior. Double sine
excitation tests executed with the complete models have
not been considered in the experimental activity as single
excitations are more practical to be managed than double
excitations, with the consequent impact on time required
for the analyses and ease of testing.

In order to exhibit a comparison between the numeri-
cal results obtained in the cases of complete and reduced
models, Figures 39 and 40 report the first superharmonic
contributions found for the 20Hz excitation on node 93
along the acceleration measuring nodes used for sine exci-
tation tests with multiple acceleration measurements. The
damaged case considered is D2. These contributions have
been obtained for both the simulations, with correlated
orders of magnitudes. Moreover, Figures 41 and 42 show
the comparison between the FFT of the direct response
(that obtained on node 93).
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D5: FFT acceleration story on node 1011502, sine force with f = 25 Hz

Figure 31: D5, direct response FFT, 25Hz sine excitation.

Figure 32: Positions of the measuring nodes for experimental
superharmonic tests.
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Figure 33: D2, 20Hz excitation, normalized 1st superharmonic.
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Figure 34: D5, 20Hz excitation, normalized 1st superharmonic.
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The comparisons shown must be completed highlighting
that full models consider a limited area for the gap mechanism
implementation in each damaged place. Moreover, reduced
model simulations have been executed introducing a damping
has written in Section 3.2. These relevant aspects, together

with the simplification introduced by the Craig-Bampton
approach, justify the difference in the FFT contributions,
the detection of relevant contributions at higher superhar-
monics only in the case of reduced models, and the evident
difference in the fluctuations resulting from decay tests.
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Figure 35: D2, 20Hz excitation in node 12, normalized 1st superharmonic.
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Figure 36: D2, decay test CWT, acceleration in the damaged node.
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Figure 37: D3, decay test CWT, acceleration in the damaged node.
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Figure 38: D5, decay test CWT, acceleration in the damaged node.
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Figure 39: D2, 20Hz excitation 1st superharmonic, full model.
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It is important to underline that the numerical simula-
tions have been based on model assumptions. In particular,
the intuitive idea of the local bilinear stiffness behavior of
each contact has been followed without an energetic formal-
ization of the contact mechanism. Moreover, the contact has
been modeled only in each damaged area, so where it has
been supposed that the nonlinear phenomena show their
main effects. Finally, each link between the stiffeners and
the baseplate has been realized merging the common nodes.

The detail of time integration parameters and model
setup for the numerical analyses is present in [18].

4. Experimental Tests

The experimental tests have been conducted with the panel
suspended by the use of an elastic cable, which supports the
structure at the two extremities. Figure 43 shows the detail
of the hanging system. The interference of the low frequency
of oscillation due to the cord is limited as to consider the
structure in the free-free condition. Both the sine excitation

tests and the decay tests have dealt with the measure of
accelerations by using the “PCB Piezotronics” accelerome-
ters. The data acquisition and postprocessing are carried
out using the Test-Lab software by Siemens.

All the accelerometers are located on the side of the
baseplate without the stiffeners.

4.1. Sine Excitation Tests for Superharmonics. Tests for
superharmonics have been conducted by forcing the refer-
ence structure and the damaged scenarios in two different
positions. The first one corresponds to that of node 12 and
the second one is the place of node 93. They are located on
the opposite sides of the damaged stiffeners, as shown in
Figures 17–19. For each single excitation, six load levels have
been imposed. Figure 44 shows the detail of the stinger for
the panel-shaker connection, and Table 5 reports the six load
levels (the voltage range imposed to the signal generator and
the corresponding load level measured by the load cell).

For each excitation, ten accelerations have been recorded
along the second stiffener in those points corresponding
to the measuring nodes of the numerical simulations.
Figure 32 shows the location of the measuring and excita-
tion nodes along the second stiffener. Each single test has
lasted 10 s. Each signal has been filtered with an imposed
band of 1024Hz and then amplified before its digitalization.
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Figure 40: D2, 20Hz excitation 1st superharmonic, reduced model.
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D2, FFT acceleration story on node 93, f = 20 Hz, sine force on node 93

Figure 41: D2, node 93 acceleration, FFT, full model.
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Figure 42: D2, node 93 acceleration, FFT, reduced model.

Figure 43: Detail of the hanging system.

Figure 44: Detail of the rod for panel-shaker connection.

Table 5: Load levels used for the sine excitation tests.

Load level Voltage range (V) Load range (N)

1 0.05 12.4

2 0.1 23.6

3 0.15 34.1

4 0.2 44.3

5 0.25 54

6 0.3 62.7
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The final numerical data have been processed by using the
software MATLAB (windowing with the Hanning window
and FFT). For each condition (reference structure, D2, D3,
and D5), the following 24 tests have been executed:

(i) 20Hz sinusoidal excitation in node 12, with the six
load levels

(ii) 20Hz sinusoidal excitation in node 93, with the six
load levels

(iii) 25Hz sinusoidal excitation in node 12, with the six
load levels

(iv) 25Hz sinusoidal excitation in node 93, with the six
load levels

The choice for the excitation frequencies result from the
numerical analyses.

By analyzing the direct responses, the presence of super-
harmonics has been found also for the reference condition.
Moreover, several superharmonics have been detected for
each damaged scenario analyzed [18]. This aspect is probably
due to the discrete nature of each connection and marks a
fundamental consequence: the detection alone by finding
the nonlinear phenomena is not possible. Table 6 indicates,
for each direct response with the 20Hz excitation, the
number of superharmonic peaks (N) identified and the
corresponding frequency range (f ): the counted peaks are
those ones having a contribution higher than the 10% of
the highest response in each spectrum.

The analyses of the direct responses for the 25Hz
excitation have revealed the presence of superharmonics with
more limited contributions. For this reason, it has been
decided to focus on the 20Hz excitation cases. As done
for the numerical tests, the first superharmonic contributions
(40Hz) in all the measuring nodes have been compared. In
particular, for all the cases, these contributions and their
normalized values (obtained dividing the data by the highest
value in each test) have been reported into figures represent-
ing the first superharmonics along the measuring nodes for
all the load levels.

4.1.1. Reference Structure. Figures 45 and 46 report the
behavior of the first superharmonics along the measuring
nodes for all the load levels, exciting in node 12 and node
93. The trends are mainly symmetrical, and the nonlinear
phenomena is approximately proportional changing the load
levels, as visible from the normalized trends.

4.1.2. D2 Scenario. Figures 47 and 48 report the same figures
for the D2 scenario. In the case of excitation in node 93, the
force is located in that side of the stiffener closer to the
damaged area. As a consequence, the contributions grow
towards that direction, with the exception of lower load levels
(0.05V and 0.1V). In the case of excitation in node 12, even if
the maximum contributions are those in the excitation point,
the increasing of the load level determines a nonlinear
augmentation of the contribution in the damaged area, as
visible from the normalized trend. The trigger is reached with
load level 0.2V.

4.1.3. D3 Scenario. Figures 49 and 50 report the same figures
for the D3 case. As for the reference structure, the trends are
mainly symmetrical.

4.1.4. D5 Scenario. Figures 51 and 52 report the same figures
for the D5 scenario. In this case, both the trends own the
contributions growing towards node 93, the point closer to
the damaged area.

4.1.5. Comments on Results. The analyses of the first super-
harmonics have revealed the possibility to localize the end
damages (D2 and D5) in a qualitative way by comparing
the responses to the different load levels and exciting at the
opposite sides. Only for those cases of end damages, growing
trend oriented towards a predominant direction has been
observed. Moreover, for the case of excitation in node 12 in
the D2 scenario, the nonhomogeneity explained by the
Volterra series has resulted in the increasing of the amount
of the contributions of those nodes located in the damaged
area with the augmentation of the load level. Therefore, the
load level acts like a trigger able to activate the nonlinear
contact mechanism. Figure 53 reports the ratios between
the first superharmonic magnitudes in load level 0.3V and
load level 0.05V for all the measuring points for this case:
the highest value is that of the damaged area.

Similar conclusions for the qualitative localization are
possible analyzing other superharmonics. In particular, [18]
reports the results obtained with the second (60Hz) and
the third (80Hz) ones.

4.2. Decay Tests. Decay tests have been executed by using the
PCB instrumented hammer shown in Figure 54.

For each damaged scenario, two impulsive excitations
have been applied: the first one located next to the damaged
region and the second one located at one end of the damaged
stiffener. For each test, three accelerations have been
recorded: one in point A, located near the damaged area;
one in point B, located in the damaged area; and one in the
point corresponding to node 12, at one end of the stiffener.
Figures 55–57 show the location of the three measuring
points for each damaged scenario. Each 10 s signal has been
firstly filtered with an imposed band of 1024Hz and then
amplified before its digitalization. The final numerical data
have been processed by using the software MATLAB (trans-
formation through the Hilbert transform as to obtain the
analytic version of each signal and CWT).

Table 6: Number of superharmonic peaks (N) and maximum
superharmonic frequency content (f ).

Case
N ,

node 12
f , node
12 (Hz)

N ,
node 93

f , node
93 (Hz)

Reference 7 160 2 60

D2 2 80 24 980

D3 2 60 26 820

D5 19 700 9 820
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4.2.1. D2 Scenario. The CWT has been firstly applied consid-
ering a frequency range between 5Hz and 30Hz. This allows
the elimination of the low-frequency contribution related to
the elastic cable used to suspend the structure. By the data
processing, the main frequency content in time has been
obtained. Two contributions have been observed in the

acceleration stories: one at 8Hz, so close to the first eigenfre-
quency of the undamaged structure, and one at 24Hz [18]. In
order to focus on the first eigenfrequency behavior as done in
the numerical tests, the analysis has been repeated with a
frequency range between 5Hz and 10Hz. Figures 58 and 59
report the comparisons of the maximum frequency content
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Figure 45: 40Hz FFT magnitudes, 20Hz sine excitation force applied to node 12, reference structure.
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Figure 46: 40Hz FFT magnitudes, 20Hz sine excitation force applied to node 93, reference structure.
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Figure 47: 40Hz FFT magnitudes, 20Hz sine excitation force applied to node 12, D2 scenario.
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in this range for the two excitation tests done. The three
curves included represent each acceleration measured.

Fluctuations in the contribution are evident. The
oscillations for point B (black curves) are higher than the
other ones, for both cases. Moreover, the oscillations in
point A (blue curve) are higher than the ones in node
12 (red curves). As point B is the one in the damaged

area, an explanation for the phenomenon is that this
region has the highest variation of stiffness in time. From
the results, it is also possible to state that all the structure
exhibits main frequency oscillations. In order to compare
this situation with the undamaged one, the same tests have
been repeated with the original structure. Results are
reported in Figures 60 and 61.
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Figure 48: 40Hz FFT magnitudes, 20Hz sine excitation force applied to node 93, D2 scenario.
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Figure 49: 40Hz FFT magnitudes, 20Hz sine excitation force applied to node 12, D3 scenario.
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Figure 50: 40Hz FFT magnitudes, 20Hz sine excitation force applied to node 93, D3 scenario.
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In this case, the oscillation ranges are the same for all the
points. The visible abrupt ends are due to the absence of
further more acceleration time data after the final time
indicated: the test recordings last 14-15 s.

4.2.2. D3 Scenario. The elaborations done for the D3 case are
the same as those for the D2 one, with the exception that the
range of frequencies used for the second analyses goes from
5Hz to 13Hz. In the test done exciting near the damage,
the acceleration analysis for point B has revealed a very
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Figure 52: 40Hz FFT magnitudes, 20Hz sine excitation force applied to node 93, D5 scenario.
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Figure 54: Instrumented hammer used for decay tests.

ID node
12 21 30 39 48 57 66 75 84 93

M
ag

ni
tu

de
 (m

/s
2 )

0

2

4

6

8
D5, first superharmonic, 20 Hz sine force on node 12

0.05 V
0.1 V
0.15 V

0.2 V
0.25 V
0.3 V

(a)

ID node
12 21 30 39 48 57 66 75 84 9340

 H
z r

es
p/

m
ax

im
um

 re
sp

0

0.2

0.4

0.6

0.8

1
D5, normalized first superharmonic, 20 Hz sine force on node 12

0.05 V
0.1 V
0.15 V

0.2 V
0.25 V
0.3 V

(b)

Figure 51: 40Hz FFT magnitudes, 20Hz sine excitation force applied to node 12, D5 scenario.
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strong fluctuation around the second eigenfrequency of the
undamaged structure (11Hz), as reported in Figure 62.
Moreover, Figure 63 shows the comparisons of the main
frequency oscillations for the accelerations recorded exciting
far from the damage (the abrupt ends are present according
to what was stated at the end of the previous section).

As visible from Figure 63, the acceleration in node 12
owns a dominant frequency content represented by the first
eigenfrequency. On the other hand, as known from the
numerical analyses, point A and point B exhibit fluctuations
around the second eigenfrequency. The amplitude of the

oscillations in point B located in the damaged area is higher
than the one for point A.

4.2.3. D5 Scenario. The elaborations done for the D5 case are
the same as those for the previous cases. The frequency
ranges for the results reported go from 5Hz to 10Hz.
Figures 64 and 65 report the comparisons of the maximum
frequency content in this range for the two excitation tests
done (abrupt ends are present according to what was stated
at the end of Section 4.2.1).

Figure 57: Positions of the measuring nodes for decay tests,
damage D5.
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Figure 58: D2, maximum frequency, excitation near the damage.
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Figure 59: D2, maximum frequency, excitation far from the
damage.
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Figure 60: Undamaged case, excitation near the damage.
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Figure 61: Undamaged case, excitation far from the damage.

Figure 56: Positions of the measuring nodes for decay tests,
damage D3.

Figure 55: Positions of the measuring nodes for decay tests,
damage D2.
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Again, the trend of the amplitudes increasing moving
from node 12 to point A and point B is evident.

4.2.4. Comments on Results. The analyses from decay tests
have underlined some relevant points. At first, the main
frequency fluctuation expected from numerical tests has been
found for all the measurement points. As understood by the
superharmonic tests, this element is the consequence of the
nonlinear behavior of the structure itself. Then, it clearly
emerges that the oscillations found for the lower dominant
frequencies have higher amplitudes when related to the
damaged area. Thus, comparing these amplitudes among

different acceleration elaborations, it is possible to detect
and localize the damages. Finally, the nonlinear phenomenon
observed, justified by the variation of the local stiffness due to
the contact, has shown some remarkable elements. Among
them, all the fluctuations identified by the CWT elaborations
have exhibited a 2Hz oscillation behavior, with higher
contributions at the top and the bottom of each one of them.
Also, the local effect of damages has resulted stronger than
the global nonlinearity of the structure. In this context, the
CWT has resulted a powerful tool for the identification of a
nonlinear and nonstationary phenomenon.

In order to define a proper quantitative index for the
localization, Tables 7–11 report the maxima and minima
frequency values obtained for each elaboration, with the
resulting range.

In order to obtain the value reported, proper time
intervals have been fixed for the data available in order to
include only the dominant frequency oscillations. For all
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Figure 62: D3, maximum frequency, point B, excitation near
the damage.
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Figure 63: D3, maximum frequency, excitation far from the
damage.
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Figure 64: D5, maximum frequency, excitation near the damage.
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Figure 65: D5, maximum frequency, excitation far from the
damage.

Table 8: D2, excitation far from the damage, localization indexes.

Index Node 12 Point A Point B

f , min (Hz) 7.87 7.86 7.79

f , max (Hz) 8.75 8.81 8.93

f , range (Hz) 0.88 0.95 1.14

Table 7: D2, excitation near the damage, localization indexes.

Index Node 12 Point A Point B

f , min (Hz) 7.93 7.86 7.78

f , max (Hz) 8.74 8.82 8.82

f , range (Hz) 0.81 0.96 1.04

Table 9: D3, excitation far from the damage, localization indexes.

Index Point A Point B

f , min (Hz) 9.66 9.38

f , max (Hz) 11.67 11.67

f , range (Hz) 2.01 2.29
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the cases, the frequency range increases from node 12 to
point B, so the damage approaches.

5. Conclusions

The paper has presented an extension of the nonlinear
vibrational methods in a structure reproducing an aeronauti-
cal panel, in which three different contact-type damages have
been taken into account.

The results presented based on the search for two nonlin-
ear behaviours (superharmonics, variation of the lower fre-
quency of vibration in time) have highlighted the following
points in relation to the damage detection procedure:

(i) The nonlinear phenomena here investigated have
also emerged with the undamaged structure. Thus,
the detection itself by finding these characteristics
has not resulted a possibility.

(ii) The localization of the contact damages has been
possible through the comparisons of the responses
measured. In particular, the variations of the lower
frequency of vibration in time have resulted useful-
ness to detect all the damages analyzed, without
requiring the amount of elaboration done for the
end defect detection using the superharmonics.
Indeed, the amplitude of these variations has resulted
sensitivity to the damage location. Moreover, the
CWT used to analyze the decay tests data has been
identified as a powerful tool for underlining such a
nonlinear and nonstationary behaviour.

The numerical procedure executed in order to highlight
the presence of suitable nonlinear phenomena has been able
to underline effects also found in the experimental tests.
Therefore, the contact mechanism model implemented using
the local penalty approach has resulted validity for under-
standing possible nonlinear evidences but needs to be
furtherly elaborated in order to ensure true predictions of
the analyzed structure. Despite the model assumptions
reported in Section 3.3, the nonlinear behavior found in the
undamaged structure reveals the requirement of simulations
including all the contacts with their whole interferences.

Finally, in order to better explore the nonlinear
vibrational methods for applicative cases, further analyses
are mandatory: extension of the methods used (step and sine
for superharmonics, CWT used for the monitoring of
superharmonics in time, and decay tests with more dam-
ages of different extensions), new conditions (composites
structures, different boundary conditions), and different
kinds of damages.
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