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Abstract 

The process of verifying that interplanetary missions respect the planetary protection requirements must account 

for uncertainties in the design parameters of the mission and perform long numerical simulations to estimate the 

impact probability of the mission-related objects with celestial bodies that could develop extra-terrestrial life. This 

kind of analysis is usually done via Monte Carlo simulation, with high computational cost since the requirements 

also include high confidence levels of the probability estimate. In order to reduce the computational load of the 

simulation the line sampling method, already analysed in previous works, is used here in order to further characterise 

his numerical performance, by providing an approximate formula highlighting the dependency of the method from 

the level of probability and the shape of the impact regions in the uncertainty space, and by analysing how its 

accuracy changes for different shapes of the initial distribution. The observations made here will allow to identify in 

advance in which cases the method will perform better than the standard Monte Carlo according to the expected 

impact probability and the shape of the initial distribution. 
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1. Introduction 

1.1 Planetary protection 

Planetary protection (PP) requirements set stringent 

constraints on the design of trajectories in the Solar 

System, since they aim to avoid the contamination of 

planets and moons where life could develop by limiting 

the probability of impact between spacecraft or launcher 

stages and these celestial bodies [1]. The process of 

verifying that spaceflight missions fulfil the 

requirements is typically performed via Monte Carlo 

(MC) methods and must account for uncertainties in the 

design parameters of the spacecraft, random failures, 

errors in the determination of its state, chaotic n-body 

dynamics and not modelled effect in the dynamics, 

which introduces numerical errors in the propagation of 

the trajectory. This is expensive in terms of numerical 

resources, since the requirements also include long time 

intervals (up to 100 years in most cases) and high 

confidence levels of the probability estimates, which 

increases the number of propagations to perform. 

 

1.2 Proposed approach 

On the side of the statistical analysis, to reduce the 

computational load, the impact probability is estimated 

through the use of the Line Sampling (LS) method 

[2][4], as an alternative to the conventional Monte Carlo 

method, which propagates a large number of initial 

conditions directly sampled from an uncertainty 

distribution; instead, LS samples the initial distribution 

in a more efficient way, aimed to provide a probability 

estimation with a higher confidence level, or employing 

a lower number of samples to reach the desired 

accuracy level. In this work, the LS is further 

characterised by analysing how the shape of the initial 

uncertainty (expressed through a covariance matrix) 

affects numerical performance of the method; in 

addition, the number of LS runs necessary to reach the 

confidence level imposed by the PP requirements is 

estimated in advance by using an approximated 

analytical formula which was developed starting from 

the information already available in the literature. 

On the other side, the orbital propagations are 

carried out by taking into account the characterisation of 

the close approaches with planetary bodies, by obtaining 

information about the dynamics using the eigenvalues 

of the Jacobian matrix of the equations of motion. 

The techniques presented here have been 

implemented into SNAPPshot (tool suite for the 

verification of the compliance to planetary protection 

requirements initially developed at the University of 

Southampton in the framework of a study for ESA 

[5][6]). The tool follows a Monte Carlo approach, where 

the initial uncertainty (over the state or other design 

parameters of the spacecraft or launcher) is sampled into 

many initial conditions, that are then propagated to 

estimate the probability of impact (or orbital resonance) 

with other celestial bodies. 

 

1.3 Manuscript content and outline 
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The paper is organised as follows: Section 2 is 

dedicated to explaining the advances on the application 

of the LS method for MC analysis, and to the approach 

proposed to improve the accuracy and efficiency of the 

orbital propagation in terms of analysis of the close 

approaches; Section 3 considers the planetary protection 

analysis for the launcher upper stage of the Solo 

spacecraft to show the application of all the techniques, 

by defining test cases aimed to showing how different 

conditions affect the accuracy of the impact probability 

estimate to obtain a criterium to identify in advance 

when the LS will be more efficient than the standard 

MC; finally, Section 4 will summarise the main results 

and conclusions, and anticipate future developments. 

 

 

2. New developments 

2.1 Line Sampling 

The LS method was introduced in previous works 

[2][3], where a general explanation of the theory behind 

it was presented, together with the results of its 

application to different test cases, to show how the 

choice of this sampling method can improve the 

efficiency of the MC simulations for planetary 

protection analysis. In short, the main feature of this 

method is the analytical estimation of the probability, 

obtained by reducing the multi-dimensional integration 

problem across the uncertainty domain to many one-

dimensional problems along lines following a reference 

direction that are used to sample the initial distribution; 

this direction is determined so that it points toward an 

impact region of the domain, and, if this is properly 

chosen, the method can considerably reduce the number 

of required system simulations with respect to a 

standard MC. 

In this work, the method is further developed by 

introducing a way to estimate in advance the number of 

runs that are required to reach a desired confidence level 

for a given expected impact probability. This is done to 

mirror the functionality that is already built in the 

SNAPPshot tool for the standard MC analysis. 

In the case of the LS, the literature already gives a 

qualitative estimation of its efficiency compared with 

the standard MC in terms of convergence rate [4]. A 

summary of it is reported in Section 2.1.1 to introduce 

the notation that will be used in Section 2.1.2 . 

 

2.1.1 Theoretical formulation of the LS method 

Following the explanation and the notation 

presented in [4], the probability of the event F (which 

can be seen as the failure of a system or, in this case, an 

impact with a celestial body) can be expressed as the 

multidimensional integral in the form 

 ( ) ( ) ( ) ( )
F

P F P F I q d=  =  X
x x x x   (2.1) 

where ( )
1
, ...,

d

d
x x= x  is the vector of the uncertain 

variables of the system, ( )q
X

x  is the multidimensional 

probability density function (pdf), F is the subdomain of 

the variables x  leading to the event of interest, defined 

by a performance function ( )g
X

x  (which is lower than 

or equal to zero if Fx  and greater than zero 

otherwise) and ( )
F

I x  is an indicator function such that 

( ) 1
F

I =x  if Fx  and ( ) 0
F

I =x  otherwise. 

A coordinate transformation from the physical space 

to the standard normal space :T →
Xθ

x θ  brings as 

advantages the normalisation of the physical variables 

through the covariance matrix, and the possibility to 

express the multidimensional pdf as a product of d unit 

Gaussian standard distributions ( )
j j

  : 

 
1

( ) ( )
d

j jj
  

=
=θ   (2.2) 

With reference to Fig. 1, in the d-dimensional standard 

normal space, the domain F is the subspace for which 

the samples ( )
1
, ...,

T

d
 =θ  satisfy a given property 

(e.g. an impact with a planet or a system failure). With 

the assumption that 
1

  points in the direction of the 

sampling vector α  (this can always be assured by a 

suitable rotation of the coordinate axes), the subdomain 

F can be also expressed as 

 ( ) 1 1 1
: , ..., , ...,

d

j d
F F   =  θ   (2.3) 

with 
1

1

d
F

−
 , in this way the region F corresponds to 

the values of θ  such that the performance function 

( )g
θ
θ  satisfies the relation 

, 1 1 1
( ) ( ) 0g g 

− −
= − 

θ θ
θ θ , 

where ( ) 1

1 2
, ...,

T d

d
 

−

−
= θ . 
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Fig. 1 - Scheme representing the sampling procedure 

along a line (characterised by the ck parameter) 

to identify the border (red line) of the region F of 

interest (image from [4]). 

Considering this change of variables and the 

definition in Eq. (2.3), the integral in Eq. (2.1) can be 

rewritten as 

  
1

( ) ( ) ( ) ( )
d

F j j Fj

d

P F I d E I 
=

= = θ θ θ   (2.4) 

(where [ ]E X  is defined as the expected value of the 

generic random variable X ) and manipulated as 

follows: 

 

( )

( )

( ) 
1

1

1 1 1 1 12

1

1 1 12

1

1 1

( ) ( ) ( )

... ( ) ( ) ( )

... ( ) ( )

( )

d

F j jj

d

d

F j jj

d

d

j jj

d

P F I d

I d d

F d

E F

 

    

 

−

=

− −=

−

− −=

−

−

=

=

= 

= 



  

 

θ

θ θ

θ θ

θ θ

θ

 (2.5) 

where ( ) ( ) ( )
A

A I d =  x x x  is the definition of the 

Gaussian measure of A, where A is the subset of the 

random variables x  which lead to a given result (e.g. an 

impact). In case of the standard MC (which could be 

considered a Point Sampling method, in relation with 

the LS), ( )
1 1
( )F

−
 θ  is a discrete random variable equal 

to ( )
F

I θ  (meaning that  ( ) ( )2

1 1 1 1
( ) ( )F F

− −
 = θ θ  is 

always true 
1

1

d −

−
 θ ), while for the LS method 

( )
1 1
( )F

−
 θ  is a continuous random variable where 

1 1
( )

k k
F c

−
= −θ  (see Fig. 1, where the sampling 

procedure is represented highlighting the boundary of 

the region corresponding to the event F), meaning that 

( )
1 1

0 ( ) 1F
−

  θ  and ( ) ( )2

1 1 1 1
0 ( ) ( )F F

− −
   θ θ  

are always true 
1

1

d −

−
 θ . 

The consequence of these properties is visible when 

considering the definition of variance of an estimator for 

the two methods. An estimator ˆ ( )P F  of the probability 

( )P F  as expressed in Eq. (2.5) can be computed as 

 ( )1 1

1

1
ˆ( ) ( )

T
N

k

kT

P F F
N

−

=

=  θ   (2.6) 

where , 1, ...,
k

T
k N=θ  are independent and identically 

distributed samples in the standard normal coordinate 

space. Given the generic definition of variance for 

( )P F  following Eq. (2.5) as 

 

( )

( ) 

( ) ( ) 

( )

1 1

1

2

2

1 1 1 1

2 2

1 1 1 1

2 2

1 1

( )

( ) ( ) ( )

( ) ( )

( ) ( )

P F

F P F d

E F E F

E F P F





− −

−

− − −

− −

−

=  −

=  − 

=  −

  

  



θ θ

θ

θ θ θ

θ θ

θ

  (2.7) 

the variance of the estimator ˆ ( )P F  is defined as 

 
( )

( ) ( ) 

2

2 2

1 1

ˆ ( )

( ) ( )
T T

P F

P F N F N



 
−

= =  θ
  (2.8) 

meaning that the variance of the estimator directly 

depends on the variance of the random variable 

( )
1 1
( )F

−
 θ . Consequently 

 

( ) 

( ) ( ) 

( )  ( ) 

( )  

1 1

1 1

2

1 1

2 2

1 1 1 1

2

1 1 1 1

2

( )

( ) ( )

( ) ( )

( ) 1 ( ) ( )
F

F

E F E F

E F E F

P F P F I





− −

− −

−

− −

− −



=  − 

  − 

= − =

  θ θ

θ θ

θ

θ θ

θ θ

θ

  (2.9) 

A coefficient of variation (c.o.v.) 

2 ˆ( ( )) ( )P F P F =  can be defined as a measure of 

the efficiency of the sampling method, with lower 

values of   meaning a higher efficiency of the method 

in converging to the exact value of the probability. Eq. 

(2.9) demonstrates that the c.o.v. of estimator in Eq.  

(2.6) as given by the LS method is always smaller than 

the one given by the standard MC, implying that the 

convergence rate of the LS is always faster than, or as 

fast as, that of the standard MC. 

 

2.1.2 New developments 
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Fig. 2 - Scheme representing the approximations 

used to express the variance of the LS method as 

a function of the probability estimate. 

While in the case of the standard MC Eq. (2.9) is 

easy to treat, since 

( ) ( ) 
1 1

2

1 1 1 1
( ) ( )E F E F

− −
− −

 =   θ θ
θ θ , in the LS case 

( )
1

2

1 1
( )E F

−
−

  θ
θ  is a continuous variable, defined 

through the integral 

 

( )

( )

1

2

1 1

2

1 1 12

1

( )

... ( ) ( )
d

j jj

d

E F

F d 

−
−

− −=

−



= 

  

 

θ
θ

θ θ
  (2.10) 

which cannot be easily manipulated analytically due to 

the presence of ( )2

1 1
( )F

−
 θ . For this reason, it is 

chosen to express this term with an approximation. 

The definition of ( )
1 1
( )F

−
 θ  given in Eq. (2.5) can 

be further expanded as 

 

( )

( ) ( )
1

1 1 1 1 1 1

1 1 1 1 1
( )

( ) ( ) ( )

( ) 1 ( ) ( )

F

c

F I d

d c c

  

  
−



− −
−



− −

 =

= = − =  −



 θ

θ θ

θ θ

 (2.11) 

with 
1

( )c
−
θ  defined as the border of the region F 

displayed in Fig. 2 as a red line. 
1

( )c
−
θ  is then 

expanded as 
1 1

ˆ( ) ( )c c c
− −

= +θ θ , with the first term 

defined as an “average” value of 
1

( )c
−
θ  (represented as 

a dashed blue line in Fig. 2) such that 

( )  ( ) ( )
1

1 1 1 1
ˆ( ) ( ) ( )P F E F F c

−
− −

=  =  =  −
θ

θ θ , and 

the second term as a variation with respect to this 

average value. 

The hypothesis is made that 
1

( )c
−
θ  represents a 

small variation with respect to the average value ĉ , as 

in the case of a quasi rectilinear border of the region F 

orthogonal to the sampling direction α . Under this 

hypothesis, the integral in Eq. (2.11) can be rewritten as 

 

( )

( )

1 1

1

1 1

1 1 1 1 1 1ˆ( ) ( )

ˆ ( )

1 1 1 1 1 1ˆ ˆ

1

( )

( ) ( )

( ) ( )

ˆ ˆ( ) ( )

c c c

c c

c c

F

d d

d d

c c c





     

     

 

− −

−

−

 

+

 +

−



= =

= −

  − −

 

 

θ θ

θ

θ

θ

  (2.12) 

resulting in 

( )

( )( )

( ) ( )

( ) ( ) 

 

1

1

1

1 1 1

1 1

2

1 1

2

1

2 2 2

1 1

2 2 2

1 1

2 2 2

1 1

( )

ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ2 ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ2 ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) 2 ( ) ( ) ( ) ( )

E F

E c c c

E c c c c c c

E c E c c c E c c

P F P F c E c c E c

 

   

   

   

−

−

−

− − −

− −

−

−

− −

− −

− −



  − −

=  − −  − +

=  − −  − +

= −  + 

  

  

  

      



θ

θ

θ

θ θ θ

θ θ

θ

θ

θ θ

θ θ

θ θ  

  (2.13) 

 

Taking expression (2.13) into account, and defining in a 

compact way  
1

1 1
( ) ( )c E c

−
− −

 =
θ

θ θ , the variance 

given by the LS in Eqs. (2.7) and (2.9) becomes 

 

( ) ( )( )

( )

( )  

1

1

2 2

1 1

2 2

1 1

2 2

1 1

1

2

( ) ( )

( ) ( )

ˆ ˆ( ) 2 ( ) ( ) ( ) ( )

ˆ( ) 2 ( ) ( )

( ) 1 ( ) ( )
F

P F F

E F P F

P F c c c E c

P F c c

P F P F I

 

  





−

−

−

−

− −

−

= 

=  −

 −   + 

 −  

 − =

  

  

θ

θ

θ

θ

θ θ

θ

θ

 (2.14) 

Highlighting the new terms in Eq. (2.15) 

 
( )( )

( )  

2

1 1 1

2

ˆ( ) ( ) 2 ( ) ( )

( ) 1 ( ) ( )
F

F P F c c

P F P F I

 



− −
  −  

 − =

θ θ

θ
  (2.15) 

this means that a new estimation for the worst 

covariance given by the LS method (nominally, from 

Eq. (2.9), equal to the one given by the standard MC) 

was obtained, which takes into account the probability 

level through the term ˆ( )c , and the shape of the region 

F and the direction of sampling through the term 

1
( )c

−
 θ . When the approximation of small 

1
( )c

−
θ  is 

valid (that is, when the region F has a regular shape and 

is distributed across the initial uncertainty, and the 

sampling direction is chosen properly so that it points 

toward it) and the probability level is low, the term 

1

2 2

1
ˆ( ) ( )c E c 

−
−

   θ
θ  is also small, and we can say 

that the variance given by the LS is below a value 

( )1( ), ( )f P F c − θ  such that 

δc(θ) 

ĉ  
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( ) ( ) ( )2 2

1( ) ( ), ( ) ( )
LS MC

P F f P F c P F −  θ , thus 

increasing the convergence rate of LS with respect to 

standard MC. On the contrary, when the approximation 

does not hold (that is in cases with high probability 

levels, non-optimal sampling direction, or badly shaped 

impact regions), ( )1( ), ( )f P F c − θ  grows toward the 

covariance level of the MC. 

 

2.2 Fly-by detection 

2.2.1 Explanation 

As already pointed out in previous works [2], close 

approaches with planetary bodies critically influence the 

accuracy of the numerical propagation, due to an 

increase of the nonlinearity of the dynamics with respect 

to the interplanetary phase of the propagation. This 

effect is stronger for very close fly-bys and was 

observed to affect in similar ways any integration 

method that was examined. 

For this reason, a technique that uses information 

from the dynamics to identify numerically a fly-by 

condition has been developed as a criterion that can be 

evaluated automatically during the integration. The 

Jacobian of the equations of motion (expressed via its 

eigenvalues and their derivatives) is used to detect when 

the propagated object is approaching a planet, looking at 

both the relative position (already accounted for when 

considering distance-based criteria such as Sphere of 

Influence SOI radius) and the relative velocity between 

the planet and the object. This method was already 

introduced in a previous work [2], while here it will be 

explained in detail and applied to more test cases. 

The equations of motion of the barycentric restricted 

n-body problem can be written as 

 
3

0

( )

( )

n

j

j

j
j

t

t


=

−
= = −

−


r r
a r

r r
  (2.16) 

with the Jacobian matrix defined as 

 
d

d
= =

 
 
 

0 If
J

G 0x
  (2.17) 

where x  is the state vector, containing position and 

velocity vectors r  and v ), I  is the identity matrix, and 

G  results from the derivation of the gravitational 

accelerations defined in Eq. (2.16): 

 

0

n

j

j=

=

 
  

= =
 
  

G
a

G
r

  (2.18) 

where the index j=0 corresponds to the main attractor of 

the system. The set of eigenvalues of the complete 

Jacobian are given by 

 det( ) det( )  = − = −GI I G I   (2.19) 

with   being the eigenvalue with the maximum 

absolute value. In this case, as an approximation, only 

the contributions to the Jacobian given by each planet 

alone are considered: 

 det( ), 1, ...,j j j N = − =G I   (2.20) 

with j  being the set of eigenvalues given by the 

contribution of j-th planet, and 
j

  the maximum 

eigenvalue of such set (it is clear that 
j j  ). 

Debatin et al. [7] propose a simplified expression for   

that can be estimated as 

 
3

2
j

j

j


 =

−r r

  (2.21) 

With this criterion, not only the single eigenvalues 

are considered, but also their derivative in time: 

 
( ) ( )

5

3
2

T

j j

j j

j


− −

 =

−

r r v v

r r

  (2.22) 

The value of the eigenvalue contributions given by 

the single planets are compared with the one given by 

the main attractor (the Sun in the case of an 

interplanetary trajectory), and the same is done for their 

derivatives. A fly-by event is identified when one or 

both ratios in Eq. (2.23) reaches a given threshold: 

 
0 1

0 2

j

j





  

  
  (2.23) 

For the application of this method, one or both 

expressions in (2.23) (ratio of the values and ratio of the 

derivatives of the eigenvalues) can be used, separately 

or together, as shown in the next section. 

 

2.2.2 Example 

The application of this method can be seen in Fig. 3, 

which shows the case of multiple close approaches 

between the launcher upper stage od Solo and Venus. In 

both cases the variations of the eigenvalues and of their 

derivatives are compared with the crossing of the SOI 

and Hill sphere of Venus, to show the differences 

between the two criteria. 
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a)  b)  

Fig. 3 - Variation in time of the eigenvalues corresponding to the single contribution of the Sun and Venus 

during the propagation of the nominal trajectory of Solo’s launcher upper stage: values (a) and 

derivatives (b) of the eigenvalues, compared with the crossing of SOI (red area) and Hill sphere (green 

area) of Venus. The vertical dashed lines refer to the epochs where the ratio between the eigenvalues of 

Venus and the Sun is equal to 1.0.

Fig. 3 shows the variation in time of the eigenvalues 

relative to Venus and the Sun and their associated 

derivative (respectively (a) and (b)) during the 

propagation of the nominal trajectory of the launcher 

upper stage of Solo. In both cases, the comparison is 

done on the 100 years propagation (top), with a focus on 

the 1st close approach with Venus during the first year 

of the mission (centre), and on a second close approach 

80 years later (bottom). In both graphs, different 

information is reported: the red and green areas 

represent, respectively, the crossing of the SOI and the 

Hill sphere of Venus; the vertical dashed lines indicate 

the epochs where the ratios defined in Eq. (2.23) are 

both equal to 1.0 (only one value is used for both ratios 

for simplicity). 

The plots show that both close approaches can be 

successfully identified using the definitions defined 

previously. In particular, a threshold value of 1.0 for the 

ratios correctly identifies the not only the 1st CA (where 

an actual crossing of the SOI occurs), but also the 2nd 

CA, which happens at a larger distance from Venus, 

with no SOI crossing. This is possible due to the 

information about the relative velocity between the 

propagated body and the planet contained in the 

derivative in Eq. (2.22). Notice also that a tolerance 

equal to 1.0 allows to determine initial and final epochs 

for the close approach in a broader sense than the ones 

defined by the SOI and Hill sphere crossings, 

particularly for the derivative ratio, meaning that a 

lower value can be also used in the case of 

interplanetary trajectories. 

 

 

3. Planetary protection analysis 

3.1 Test case definition 
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The techniques presented in the previous sections 

were implemented into the SNAPPshot tool [5][6] and 

used to perform a Planetary Protection (PP) analysis for 

the Atlas V upper stage of ESA’s SolO (Solar Orbiter) 

mission (according to the October 2018 launch option 

[8]. The analysis will focus on the fly-by with Venus the 

is expected during the first year of the mission with the 

given launch option. Although this planet has no 

explicit planetary protection requirements, the Venus 

fly-by represents an interesting case to test the LS 

technique. Initial data are taken from [5], with initial 

conditions and covariance matrix expressed in Cartesian 

coordinates. 

A series of test cases is defined by modifying the 

covariance matrix used for the simulation to reproduce 

the effect of different shapes of the initial uncertainty 

distribution on the performance of the LS method. In 

particular, it is chosen to perform a transformation 

composed of a rotation into the local-vertical-local-

horizontal frame, followed by a squeezing 

transformation in the along-track direction expressed by 

the matrix F defined as 

 

1 / 0 0

, 0 0

0 0 1 /

f

f

f

= =

 
   
    

  

sq

sq

sq

F 0
F F

0 F
  (3.1) 

where the elements of the rotated covariance matrix 

referring to the along-track direction (of both the 

position and the velocity) are increased by a factor f  , 

while the components in the radial and normal-to-plane 

directions are reduced by the same factor, in order to 

preserve the total volume of the uncertainty distribution. 

This choice was made following the observations 

reported in [3], where the method was successfully 

applied to different test cases involving the propagation 

of NEOs, as in those cases the initial uncertainty 

distribution appeared highly elongated in the along-

track direction of the orbit. 

 

3.2 Dynamical model and propagation setup 

The propagations are carried out in Cartesian 

coordinates with respect to an EME2000 reference 

frame centred in the Solar System Barycentre (SSB), 

with the inclusion of the gravitational contributions of 

the Sun, all the major planets, and the Earth’s moon. 

Most of the physical constants (gravitational 

parameters, planetary radii, etc.) are obtained from the 

JPL Horizons database via the SPICE toolkit*. 

Propagations are stopped according to 3 conditions: 

the maximum time is reached; an impact with one of the 

included celestial bodies occurs; an escape from the SOI 

of the Sun occurs. 

                                                           
* https://naif.jpl.nasa.gov/naif/ 

The propagations are carried out with the use of an 

8th order Dormand-Prince RK method, with an 

embedded scheme to adapt the time-step (already 

available in SNAPPshot) with absolute and relative 

tolerances of 10-12. 

 

3.3 Results 

In this Section the results of the application of LS to 

the selected test case for different shapes of the initial 

uncertainty, obtained by setting different values for the 

squeezing factor of the covariance matrix. 

Fig. 4 shows the uncertainty distributions in two 

different cases: the unmodified one in Fig. 4a, and one 

elongated in the along-track direction using a squeezing 

factor f=16 in Fig. 4b, with the impact region (found via 

standard MC) highlighted in red, and its boundary. The 

results of the corresponding simulations are reported in 

Table 1 and Table 2 respectively, in terms of number of 

random samples, number of orbital propagations, impact 

probability and the relative standard deviation (which is 

used as a measure of the accuracy of the methods, with 

smaller values corresponding to a higher accuracy). 

Note that in the LS more propagations are performed 

than in standard MC due to the numerical iterations 

necessary to identify the zeroes of the performance 

function that defines the border of the impact region, as 

already specified in [2]. In particular, in all cases 

presented here 10 iterations were used in order to 

identify the border to ensure a correct identification of 

the boundary. 

 

a)  

https://naif.jpl.nasa.gov/naif/
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b)   

Fig. 4 – Representations of the initial velocity 

dispersions for the launcher upper stage of Solo 

mission, shaped differently according to a 

squeezing factor f=1 (no squeezing) in (a), and 

f=16 in (b). The initial conditions leading to an 

impact with Venus (and identified via standard 

MC simulation) are shown in red, while the 

boundary of the impact region (computed via 

LS) is shown in green. The blue arrow represents 

the sampling direction. 

 

 Nsamples Nprop P̂(I)  σ̂  

MC 54114 54114 4.34e-2 8.76e-4 

LS ~46000 ~460000 4.63e-2 4.41e-4 

Table 1 – Results of the application of standard MC 

and LS to the test case with unmodified initial 

distribution (squeezing factor f=1), as in Fig. 4a. 

 

 Nsamples Nprop P̂(I)  σ̂  

MC 54114 54114 2.01e-2 6.15e-4 

LS ~46000 ~500000 2.01e-2 2.15e-4 

Table 2 – Results of the application of standard MC 

and LS to the test case with modified initial 

distribution (squeezing factor f=16), as in Fig. 

4b. 

From Fig. 4 one can see that the impact regions with 

Venus in the two cases are identified by the same initial 

conditions, but while in case (a) the impact region is 

lumped and all contained inside the uncertainty 

distribution, in case (b) the impact region goes from side 

to side of the distribution, thus representing one of the 

favourable cases already shown in [3]. This is 

confirmed by the results reported in Table 1 and Table 

2, showing that the value of standard deviation given by 

the LS, already lower than the one of the MC, decreases 

when the distribution has an elongated shape. 

Similar considerations can be made by considering 

Fig. 5, where the variation of the values of impact 

probability and the associated standard deviation for 

more values of the squeezing factor f. It shows that even 

a low elongation of the initial distribution can decrease 

the value of the standard deviation, thus improving the 

accuracy of the LS. 

 

 
Fig. 5 – Variation of the impact probability with 

Venus (top) and of the associated standard 

variation (bottom) with the variation of the 

squeezing factor f, comparing standard MC and 

LS. 

 

 

4. Conclusions 

The work presented here describes some 

developments of the state of research about the LS 

method, by providing a better understanding of the 

performance of the method with respect to the one of 

the standard MC simulations. This is done both 

theoretically, by providing an approximated formula 

that highlights the dependency of the method both from 

the level of impact probability (as already proven by the 

existing literature and the previous works related to the 

method) and from the shape of the impact region, and 

numerically, by providing a test cases devised to show 

how the accuracy of the LS depends on the shape of the 

initial uncertainty distribution. The information gained 

from this work can be used to identify in advance in 

which cases the LS (compared with the standard MC) 

will be more efficient (in terms of number of random 

samples needed to reach a given confidence level) 

depending on the expected impact probability and the 

shape of the initial distribution. 

Future work to further improve tools for PP analysis 

will focus on the extension of the LS algorithm to the 

case of multiple impact events with different bodies and 
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the improvement of the preliminary analysis to identify 

impact conditions. Aside from sampling methods, 

different ways and parameterisations to express the 

initial uncertainties will be explored to make the 

sampling more efficient, together with the direct 

propagation of uncertainties.  
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