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Abstract: Risk assessment models are conceptual 

constructs (translated into mathematical forms), built on a 

set of assumptions (hypotheses) made on the available 

knowledge. In this sense, the risk assessment outcomes 

are conditional on the available knowledge.  

Risk assessment provides informative support to 

decision making (DM), and assurance must be provided 

to guarantee that the results are credible and trustworthy 

for the DM purposes, for which they are employed.  

The present paper proposes a four-levels, top-down, 

hierarchical tree to identify the main attributes and criteria 

that affect the level of trustworthiness of models used in 

probabilistic risk assessment. Based on this hierarchical 

decomposition, a bottom up, quantitative approach is 

employed for the assessment of model trustworthiness, 

using tangible information and data available at the basic 

“leaf” sub-attributes level. The analytical hierarchical 

process (AHP) is adopted for evaluating and aggregating 

the sub-attributes. 

The approach is shown by application to a case study 

concerning the estimation of failure probability of the 

Residual Heat Removal (RHR) system of a nuclear power 

plant (NPP). The trustworthiness of two models of 

different complexity is evaluated: a Fault Tree (FT) and a 

Multi-States Physics-based Model (MSPM). 

Keywords: Risk assessment, Risk-Informed Decision 

Making (RIDM), Model Trustworthiness and Credibility, 

Fault-tree, Multi-States Physical Based Model (MSPM), 

Analytical Hierarchical Process (AHP), Strength-of-

Knowledge, Residual Heat Removal (RHR) System, Nuclear 

Power Plant (NPP). 

 

 

I. INTRODUCTION 

In general terms, risk describes the future 

consequences (usually seen in negative, undesirable terms 

with respect to the planned objectives) potentially arising 

from the operation of a system or an activity, and the 

associated uncertainty [1]. Risk should be quantitatively 

assessed in order to be possibly compare it with 

predefined safety criteria, for aiding risk-informed 

decision-making processes [2]. 

In recent times we have witnessed a vivid discussion 

on the fundamental concept of “risk” and related 

foundational issues regarding its assessment. From a 

general perspective, it is understood that the outcomes of 

risk assessments (i.e., the undesirable events/scenarios, 

consequences and the description of uncertainty about 

these) are conditioned on the background knowledge and 

information available on the system and/or process under 

analysis, including assumptions and presuppositions, 

phenomenological understanding, historical system 

performance data and expert judgments [3]; [4]; [5]; [6]. 

Then, the risk assessment outcomes may have a more 

or less solid foundation, depending on the validity of the 

assessment and hypotheses made, and quality and 

quantity of data and extents used: poor models, lack of 

data or simplistic assumptions are examples of potential 

sources of (model) uncertainty “hidden in the background 

knowledge” of a risk assessment [6]. 

As well known in practice the modeling of a system 

or process needs to balance between two conflicting 

concerns: (i) accurate representation of the phenomena 

and mechanisms in the system or process and (ii) 

definition of the proper level of detail of the description of 

the phenomena and mechanisms, so as to allow the timely 

and efficient use of the model. Differences between the 

real world quantities and the model outputs inevitably 

arise from the conflict of these two concerns [7]; [8]. 
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Since (i) the importance placed on modeling and 

simulation is increasingly high within safety-critical 

system engineering contexts and (ii) the fundamental 

value of a risk assessment lies in providing informative 

support to (high-consequence) decision making [9]; [2], 

the confidence that can be put in the accuracy, 

representativeness and completeness of the models is 

fundamental and a satisfactory level of assurance must be 

provided that the results obtained from such models are 

credible and trustworthy for the decision-making 

purposes for which they are employed [4]; [8]; [10]. 

The objective of the present paper is to propose a 

four levels, top-down, hierarchical tree-based decision-

making approach to assess the trustworthiness of models 

used in risk assessment. The level of trustworthiness is 

divided into two attributes (level 2), four sub-attributes 

(level 3), and seven basic “leaf” sub-attributes (level 4). 

At the bottom of the structure, we place the alternative 

models for which we want to assess the trustworthiness 

and credibility. On the basis of this hierarchical 

decomposition the level of trustworthiness is then 

calculated by resorting to a bottom-up, quantitative 

approach. The basic “leaf” attributes represent “tangible” 

attributes that can be directly and quantitatively evaluated 

using data and information available (e.g., past 

knowledge, experts, judgment, historical records, etc.). 

Finally, the Analytical Hierarchical Process (AHP) is 

employed for evaluating and aggregating the sub 

attributes. 

The proposed approach has been applied to assess the 

trustworthiness of two models (of different complexity 

and level of detail) of a Residual Heat Removal (RHR) 

System of the CPY900 Nuclear Power Plant (NPP) [11]: 

the two models are used to estimate the failure probability 

of the safety system of interest. The first model is based 

on a classical Boolean logic-based Fault Tree (FT). The 

components’ failure rates are based on field data and/or 

expert judgment. The model does not consider possible 

dependencies between the states of degradation of 

different components (e.g., a valve and a pump) nor the 

interaction between physical and environmental 

parameters, and the mechanisms of components’ 

degradation [11]. On the other hand, the second approach 

is based on a Multi-States Physics-based Model (MSPM). 

The analysis takes into account multiple time-dependent 

component’s degradation states, the effect of physical and 

environmental parameters on the mechanisms of 

degradation and the dependency existing between the 

degradation of components [12]; [13]. 

A review of approaches for assessing the 

trustworthiness and credibility of a model is presented in 

Section II. In Section III, we present a hierarchical tree-

based decision making approach for assessing model 

trustworthiness. In Section IV, we apply the proposed 

framework to the case study of the RHR system of a NPP. 

Finally, in Section V, we discuss the results and close the 

paper with some conclusions. 

 

II. TRUSTWORTHINESS AND CREDIBILITY OF 

RISK ASSESSMENT MODELS  

In this section, we review some approaches proposed 

in the literature to assess the trustworthiness and 

credibility of mathematical models. This has been, and 

still is, an issue of great significance in the nuclear 

industry, for the need of assuring the technical adequacy 

and trustworthiness of Probabilistic Risk Assessment 

(PRA) models. Indeed, it is an issue that has been at the 

forefront of using PRA for decision making for many 

years. In the Regulatory Guide RG 1.174 of the United 

States Nuclear Regulatory Commission (NRC), PRA 

analysis trustworthiness and appropriateness (how well 

the risk is assessed) in the context of decision making are 

addressed with respect to the scope, level of detail, 

technical adequacy and plant representation [17]. The 

adequacy of the actual modeling and the reasonableness 

of the assumptions and approximations made are 

considered, and the full comprehension and inclusion of 

PRA elements are emphasized together with the need of 

addressing the impact of uncertainty [17]. Following up, 

RG 1.200 provides concrete guidelines on technical 

elements for a technically acceptable PRA, its peer review 

program documentation etc., to apply RG 1.174 for 

evaluating whether a PRA is sufficiently adequate and 

trustworthy to support decision making[18]. More 

recently, EPRI 3002003116 emphasizes the importance of 

evaluating the maturity and trustworthiness of risk 

assessments regarding different hazard groups of different 

natures and proposes an approach to overcome these 

difficulties within the RG.1174 context [19]. While these 

efforts do not use a hierarchical quantification approach; 

they do attempt to establish criteria and processes by 

which technical adequacy, mature, peer review, and other 

aspects are used to build confidence in the use of PRA 

models for regulatory risk-informed decision making use. 

In the literature, the trustworthiness of a method or a 

process is often measured in terms of its maturity. The 

concept of model maturity goes back to the 1970s: at the 

time, it was used to assess the maturity of a function of an 

information system [14]; [15]; [16].  Later, the Software 

Engineering Institute (SEI) has developed a framework 

(the so-called Capability Maturity Model (CMM)) to 

assess the maturity of a software development process, in 

view of its quality, reliability and trustworthiness. 

Recently, the CMM model has been extended into the 

Prediction Capability Maturity Model (PCMM) for 

evaluating and assessing the maturity of modeling and 

simulation efforts [14]. Other examples of maturity 

assessment approaches have been developed in different 

domains, such as master data maturity assessment, 
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Figure 1 A hierarchical tree-based “decomposition” of the 

level of trustworthiness and credibility of a model 

enterprise risk management and hospital information 

system [16]. Finally, a hierarchical framework based on 

the analytical hierarchical process (AHP) has been 

developed to assess the maturity and prediction capability 

of a prognostic method for maintenance decision making 

purposes [16]. 

On the other hand, qualitative and semi-quantitative 

approaches have been proposed for evaluating the 

“strength-of-knowledge” in risk assessment models. In [3] 

a “crude” qualitative, direct grading of the strength-of-

knowledge that supports risk assessment based on 

(mathematical) models is introduced. Actually, the 

authors try to classify the strength-of-knowledge to 

{minor, moderate, significant} with respect to the 

following elements [3]; [6]; [20]; [5]: )i) 

phenomenological understanding of the problem and 

availability of precise and well-understood predicting 

models for the physical phenomena of interest; )ii) 

availability of reliable data; )iii) reasonability of 

assumptions made (i.e., the assumptions do not exhibit 

large simplifications); )iv) agreement (consensus) among 

experts (i.e., low value ladenness). The strength-of-

knowledge is, then, classified according to the following 

criteria [3]; [5]; [6]; [20]: )1) if none of the previously 

mentioned components is met, then the knowledge is 

“weak”; )2) if the “requirements” are partially met, then 

the strength-of-knowledge is considered “intermediate”; 

)3) if all “requirements” are met, then the knowledge is 

considered “strong”. 

In [20], a more detailed, semi-quantitative approach 

(namely the “assumption deviation risk”) has been 

introduced. This approach is based on the identification of 

all the main assumptions on which the analysis is based. 

Then, the assumptions are converted into uncertainty 

factors and a rough evaluation of the deviation from the 

conditions defined by the assumptions is carried out. 

Finally, a score is assigned to each deviation that reflects 

the risk related to the deviation and its implications on the 

occurrence of given events and their consequences. 

In [6], the authors embrace, apply, test and adjust the 

perspectives of [3] and [20] to develop a general and 

systematic framework for treating (uncertain) 

assumptions in risk assessment models. Also, this 

methodology for assessing the importance of assumptions 

is based on evaluating the basic components of the risk 

description mentioned above and previously developed 

and adopted by [20]. The evaluation places an assumption 

in one of six “settings”, each providing guidelines to 

characterize the corresponding uncertainty. In practice, 

these guidelines are based on the precept that the effort 

that should be exerted for characterizing the uncertainty 

associated to an assumption and the effect on the related 

potential deviations, should increase with the importance 

and the criticality of the assumption. Finally, also in [8] 

the effect and importance of “structural” assumptions, 

approximations and simplifications on risk assessment 

model outputs [21] is studied by means of different 

approaches, including subjective and imprecise 

probabilities, and semi-quantitative scores (reflecting the 

degree of uncertainty associated to an assumption and the 

sensitivity of the model output to the assumption). The 

analysis serves as an input to the decision makers to 

understand which assumptions are unacceptable and need 

“remodeling”. 

 

III. HIERARCHICAL TREE-BASED DECISION 

MAKING APPROACH FOR ASSESSING THE 

TRUSTWORTHINESS OF RISK ASSESSMENT 

MODELS 

In section III.A, we present the four levels, top-down 

tree used to characterize the trustworthiness (of a risk 

assessment model) by decomposing it into sub-attributes 

(e.g., number of model’s assumptions, quantity of 

relevant data available, etc.) that can be quantified by the 

analysts; in Section III.B, we describe a bottom-up 

procedure, based on the analytical hierarchal process 

(AHP), to assess the model trustworthiness by evaluating 

and aggregating the sub-attributes (identified as “leaf” 

attributes). 

III.A. Hierarchical tree for model trustworthiness: 

extraction and decomposition 

Many factors affect the trustworthiness and 

credibility of models outcomes. Although they might 

sensibly vary depending on the problem at hand, some 

key factors can be summarized as follows:  (i) 

phenomenological understanding of the problem; (ii) 

availability of reliable data; (iii) reasonability of the 

assumptions made; (iv) agreement among the experts; (v) 
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level of detail in the description of the phenomena and 

process of interest; (vi) accuracy and precision in the 

estimation of the values of the model’s parameter; (vii) 

level of conservatism; (viii) amount of uncertainty, see 

e.g., [3]; [6]; [4]; [5]; [22]; [8]; [16]; [14]; [19]; [9]. Some 

of these attributes (criteria) are not “tangible” and cannot 

be “measured” directly: as a consequence, other sub-

attributes should be identified, which can be easily 

measured and/or qualitatively evaluated. To this aim, we 

propose a method for model trustworthiness 

characterization and decomposition, which is based on an 

analytical hierarchical tree, such as the one in Figure 1. 

The model trustworthiness, represented by T (Level 

1), is characterized by two attributes: modeling fidelity, 

represented by      and strength-of-knowledge, 

represented by       (Level 2). The modeling fidelity 

(    ), measures the adequacy of the model 

representation of the phenomenon and the level of detail 

adopted in the model description. The strength-of-

knowledge (    ) measures how “solid” the 

assumptions, data and information (on which the model 

relies) are. These two attributes are in turn decomposed 

into sub-attributes (Level 3). In particular, the modeling 

fidelity      is defined by level of detail represented by 

      (Level 3), and by the number of 

approximations       , whereas the strength-of-

knowledge      is defined by the quality of 

assumptions represented by        and by quality of 

data       . Note that the number of approximations 

       is considered as a basic attribute, since it can be 

measured directly and, thus, it is not broken further into 

other attributes. The other three attributes of Level 3 are 

instead broken down into more basic “leaf” attributes that 

can be measured directly by “inspection” of the model 

whose trustworthiness we want to assess. In particular, the 

level of detail       is characterized in terms of 

number of equations and correlations, namely       , 

number of model parameters, namely        , and 

number of dependency relations, namely        . The 

overall quality of the assumptions         is measured 

by the number of the assumptions made,        , and 

by their impact        (which can be assessed, e.g., by 

sensitivity analysis). Finally, the quality of the data 

       is described in terms of the amount of data 

available, namely        , and by the consistency of 

the data itself, namely       . 

III.B. Analytical hierarchical process (AHP) for model 

trustworthiness quantification 

Given the hierarchical tree in Figure 1, the assessment of 

model trustworthiness is carried out within a multiple 

criterion decision analysis (MCDA) framework [23]; [24]. 

In this setting, we suppose in all generality that the 

system, components, process or phenomena of interest for 

the risk assessment can be obtained by different 

mathematical models,                  of possibly 

different complexities and levels of detail. The task (i.e., 

the MCDA problem at hand) is to rank these alternative 

models with respect to their trustworthiness, in relation to 

the particular risk assessment problem of interest to 

support MCDA. In the present paper, the Analytical 

Hierarchical Process (AHP) is adopted for this [16].  

In the AHP the top goal of the evaluation, i.e., the 

considered decision problem (in this case, the selection of 

the model with the highest trustworthiness), is placed at 

the first level of the hierarchy and it is usually 

decomposed into several sub-attributes distributed over 

different levels. Finally, the bottom level in the hierarchal 

tree-based AHP model contains the different alternatives 

to be ranked with respect to the top goal (i.e., in this case 

the level of trustworthiness) [25]; [16]. Through pairwise 

comparisons among the attributes of the same level, the 

alternative solutions, i.e., models, can be ranked with 

respect to the decision problem in the top level (i.e., the 

identification of the model with highest trustworthiness) 

[25]; [26]. The AHP model for model trustworthiness 

assessment is represented in Figure 1. 

The first step required to assess the model 

trustworthiness by AHP is the determination of the inter-

level priorities (as weights) for each attribute, sub-

attribute, basic “leaf” sub-attribute and alternative 

solution; i.e.,      ,       ,        , and           , 

respectively. Notice that in practice each weight 

represents the relative contribution or importance of an 

attribute of a given level to the corresponding “parent” 

attribute of the upper level: for example, weight W(    ) 

quantifies the importance of basic “leaf” sub-attribute      

(of Level 4) for sub-attribute     (of Level 3); instead, 

weight           , is the inter-level priority of the      

model with respect to the basic “leaf” sub-attribute     . 

The intermediate priorities      ,  (   ) and 

 (    ) are calculated using pairwise comparison 

matrices: in particular a pairwise comparison matrix is 

constructed for each attribute, sub-attribute and basic 

“leaf” sub-attribute. A comparison matrix is a (     

square matrix where n is the number of elements being 

compared. Attributes in each level are compared to each 

other with respect to their importance in describing their 

“parent” attribute in the upper level. For example, a 

(     matrix is constructed to compare the basic sub-

attributes       ,         and         (Level 4) 

with respect to their” parent” sub-attribute       (Level 

3).  Typically, a scale of 1 to 9 is chosen to evaluate the 

“strength” of each criteria with respect to the other; for 

example, a scale used to carry out a qualitative 
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comparison between two attributes A and B can be as 

follows [25]; [27]:  

1: A and B are equally important; 

3: A is moderately more important than B; 

5: A is strongly more important than B; 

7: A is very strongly more important than B; 

9: A is extremely more important than B. 

Values 2, 4, 6 and 8 can be used to facilitate the judgment 

in intermediate situations.  

A pairwise comparison matrix is made for each group 

of attributes in the same level (say s) that falls under the 

same upper attribute in the upper level (s-1).  The weight 

of each attribute is, then, determined by solving an 

eigenvector problem, where the normalized principal 

eigenvector provides the weighting vector (priorities and 

strengths). Instead, for the tangible, basic, “leaf” sub-

attributes      for which a quantitative evaluation can be 

given, the inter-level weights (or parties)            can 

be obtained as:  

 (       )
        

∑         
 
   

,     (1)   

where         
 is the numerical value that the basic “leaf” 

sub-attribute      
 takes with respect to model    (for 

example, for attributes        variable         
 equals 

the number of equations and correlations continued in 

  ).  Finally, notice that if the basic “leaf” sub-attributes 

cannot be given a direct numerical evaluation, the 1-9 

scaling system explained above can be also adopted to 

evaluate the         
’s. Notice that weights obtained 

should be normalized to 1 as follows: ∑         
  
    

where    is the number of attributes under the “top” 

attribute T (i.e., model trustworthiness); ∑          
   
   

 

where    
 is the number of sub-attributes under attribute 

   ; ∑           
    

    where    
 is the number of basic 

“leaf” sub-attributes under sub-attribute     ; and finally 

∑              
    where n is the number of models. 

After obtaining the weight for each criterion with respect 

to the corresponding upper level criteria, a “global” 

weighting for each criterion with respect to the top goal T 

can also be obtained by multiplying its weight by the 

weights of its upper parent elements in each level: for 

example, the “global” weight (or priority) of basic “leaf” 

sub-attribute       with respect to the “top” attribute (goal) 

T is given by         .        .  

                      . For example, the global 

weighting of the consistency of data with respect to level 

of adequacy is obtained by multiplying its weight by the 

weight of quality of data by the weight of strength of the 

knowledge. Finally, the final trustworthiness        of a 

model    is evaluated using a weighted average of the 

“leaf” attributes as indicated in eq. (2): 

        ∑ ∑ ∑                       (       )
        

∑         
 
   

 
    

   

   
   

  
         (2)  

Where   ,    
, and     

 have been defined above. 

Equivalently, the trustworthiness       can be expressed 

directly as a function of the “global” weights of the leaf 

attributes with respect to the top goal T:  

        ∑ ∑ ∑         (    )
        

∑         
 
   

 
    

   

   
   

  
          (3) 

IV. CASE STUDY 

In this section, the hierarchical tree-based 

trustworthiness assessment approach is applied to a case 

study concerning the modeling of the residual heat 

removal (RHR) system of a nuclear power plant (NPP). In 

section IV.A, the system is described; in section IV.B, the 

characteristics of the two models used to represent the 

system (i.e. the Fault Tree-FT and the Multi-States 

Physics-BASED Model-MSPM) are presented in some 

detail; finally, in section IV.C, the proposed approach is 

applied to evaluate the trustworthiness of the two models. 

IV.A. The system 

The Residual Heat Removal (RHR) system of the 

Electricité de France (EDF) CPY900 reactor is taken as 

reference (REF). RHR is mainly used to remove the decay 

heat (residual power) from the reactor cooling system and 

fuel during and after the shutdown, as well as 

supplementing spent fuel pool cooling in the shutdown 

cooling mode [28]. The main components of the RHR 

system are: pumps, heat exchangers, diaphragms, and 

valves. 

According to a study implemented by EDF, it was found 

that 24.2% of RHR system failures are due to pumps 

failure, 64.4% are due to valves failures, 10.6% are due to 

heat exchanger failures, while only 0.8% of RHR system 

failures are due to other components’ failure [11]. 

IV.B. Models considered 

Two models have been considered for evaluating the 

reliability (resp., the failure probability) of the RHR 

system: a Fault Tree (FT) model (Section IV.B.1) and a 
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Figure 2 MSPM analysis: models of RHR components 

more detailed Multi-State Physics-based Model (MSPM) 

(Section IV.B.2). 

IV.B.1. Fault Tree (FT) Model 

The Andromeda software has been used by EDF for 

the analysis of the RHRs’ components failure modes and 

criticalities (importance analysis) [11]; [12]. Actually, this 

analysis provides a logical framework for understanding 

the different possible ways in which the components and 

the system can fail.  

The failure probabilities used in the FT analysis 

provided by EDF are based on field experience [11].  

IV.B.2. Multi-State Physics-based Model (MSPM) 

In engineering systems, most products and 

components wear and degrade over time due to 

operational and mechanical factors, as well as their 

interaction with the surrounding environment and with 

each other [13]. There are many models of degradation 

processes in the bibliography. Physics-based model 

(PBM) and multi-state model (MSM) are often used for 

the degradation processes of components/systems. 

Physics-based model aims to develop an integrated 

mechanistic description of the component/system life, 

consistent with the underlying degradation mechanisms 

(e.g. wear, stress corrosion, shocks, cracking, fatigue, etc.) 

by using physics knowledge and equations, while multi-

state model can be built upon material science knowledge, 

degradation and/or failure data from historical collection 

or degradation tests, to describe the degradation processes 

in a discrete way [29]; [13]. 

In general, MSM is able to describe the evolution of 

degradation with time, when there is a range of states 

from “perfect functioning” to “complete failure”. 

However, since the degradation process is influenced by 

many factors, there are difficulties in estimating the 

transition rates required for the analysis of the degradation 

process, especially for highly reliable components and 

systems [13]. Besides, it is difficult to define precisely the 

states and the transition rates between states in MSMs, 

due to the imprecise discretization of the degredation 

process and to data insufficiency [12]. On the other hand, 

for PBM, the parameteres might be unknown so they are 

usually left to experts judgment. Accordingly, a 

combination of the two models, namely, the Multi-State 

Physics-based Model (MSPM), has been proposed, in 

which the state transition rate estimates are based on 

physical models rather than operation data [30]. Then, the 

whole process of transition and degradation can be 

described comprehensively by MSPM [13]. 

For the case study, the analysis took into account the 

main critical components (i.e. pump, diaphragm, breaker, 

motor, contactor and valve). The MSM was used to model 

the pump, breaker, motor and contactor, while the PBM 

model was used to model valve and diaphragm, taking 

into account the degradation dependency of the valve on 

the pump. 

Figure 2 illustrates this setting. Three states were 

considered for the pump, including the fully functioning 

state, a degradation state corresponding to external 

leakage, and the failure state: thus, three transition rates 

were taken into account. The breaker was modeled by a 

continuous-time homogeneous Markov chain, taking into 

account the perfectly function, and the fully failed states, 

and four types of failures were taken into account. 

Similarly a continuous-time homogeneous Markov chain 

analysis was applied for the analysis of the contactor and 

the motor, and four and two types of failures were taken 

into account for each respectively. 

On the other hand, the valve is subject to thermal 

fatigue that causes cracks or propagation of manufacture 

defects which are described by physical models and the 

related physical variables, such as; the coefficient of 

thermal expansion of the material, the modulus of 

elasticity, the Poisson ratio of the material, the 

elastoplastic strain concentration factors, the number of 

alternating cycles, etc.. The crack initiation takes place 

when the amplitude of variation of the critical temperature 

      is surpassed, while the failure due to propagation of 

defects takes place when a specific number of cycles 

(operation demands) is exceeded. It should be noted that 

the total number of cycles executed over a period of time 

is calculated considering the degradation dependency of 

the valves on the degradation of the pump. In other words, 

when calculating the number of cycles executed by the 
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Figure 3 Hierarchical tree-based AHP model for the 

assessment of the trustworthiness of risk assessment models 

valve, it is multiplied by a factor > 1 to consider the 

degradation dependency on the other components.  

Furthermore, the cavitation and the erosion are taken into 

account for analyzing the degradation and failure of the 

diaphragm. Different physical parameters are considered 

such as pressure, stress, dimension, and other material- 

based characteristics. A threshold value at which the 

failure takes place is taken into account. The results of 

MSPM and FT (using Andromeda software) are given in 

Table 1. The analysis shows similarities in the results in 

the first eight years. A gap between the two results starts 

to appear in the tenth year, showing a more rapid decline 

in the results obtained by MSPM.  

Table 1 Values of reliability computed over time of Andromeda software (EDF) 

Time (years) 0 1 2 3 4 5 6 7 8 9 10 

Reliability (FT) 1 0.779 

 

0.607 

 

0.473 

 

0.369 

 

0.288 

 

0.224 

 

0.175 

 

0.143 

 

0.107 

 

0.083 

 
Reliability (MSPM) 1 0.775 

 

0.603 

 

0.469 

 

0.366 

 

0.285 

 

0.222 

 

0.173 

 

0.135 

 

0.105 

 

0.060 

 
 

IV.C. Quantitative evaluation 

The analysis is carried out through two main steps: 

the first is an “upward” evaluation of the weight of each 

element in the hierarchy tree with respect the top goal 

(model trustworthiness); the second is a “downward” 

assessment of the model trustworthiness by means of a 

numerical evaluation of the basic “leaf” elements for both 

models FT and MSPM, as shown in Figure 3. 

With respect to the weights evaluation, experts from 

EDF were asked to fill the pairwise comparison matrices, 

in order to evaluate the importance of each attribute 

(criteria). Experts were equally qualified and the inputs 

were averaged for simplicity. The attributes relative 

importance with respect to the parent attributes have been 

evaluated using the 1-9 scaling. 

For the second step of “upward” calculation, two 

types of trustworthiness analysis have been implemented: 

one has been performed through a direct quantitative 

evaluation of the leaf attributes (e.g., the number of model 

parameters are counted, for each model); the second is 

based on a semi-quantitative evaluation of the leaf 

attributes carried out through comparing the two models 

to each other and to the state of the art, and then, 

assigning a relative score (1-9) for each leaf attribute.  

Relying on the data and technical report [11] used by 

EDF to perform the risk assessment, the trustworthiness 

evaluation was performed for both FT and MSPM 

models, as illustrated in Tables 2 and 3. 

The level of trustworthiness was found to be 4.6506 

for FT (M1) and 5.8535 for MSPM (M2). 

We applied the same method also to evaluate the models 

trustworthiness T using the direct quantification of the 

“leaf” attributes. The results are reported in Table 3 and 

Table 4 shows all results. 
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Table 2 Comparison between FT and MSPM trustworthiness 

Parameter  

Symbol 

 

Level 

 

Weight 

Global 

weight 

Fault Tree MSPM 

Score Weighted 

score 

Score Weighted 

score 

Model trustworthiness T  S1 1 1 - 4.6506 - 5.8535 

Modeling Fidelity F (  ) S2 0.35 0.35 - 1.5124 -  2.3678 

Number of 

approximations 

Ap (   ) S3 0.54 0.189 
6 

1.1340 
7 1.323 

Level of detail D (   ) S3 0.46 0.161 - 0.3784 - 1.0448 

Number of equations 

and correlations 
Q (    ) S4 0.4638 0.0747 

3 
0.2240 

8 0.5973 

Number of model 

parameters 
Mp (    ) S4 0.2114 0.0340 

3 
0.1021 

7 0.2383 

Number of dependency 

relations  

Dr (    ) S4 0.3248 0.0523 
1 

0.0523 
4 0.2092 

Strength of Knowledge K (  ) S2 0.65 0.65 - 3.1382  - 3.4857 

Quality of data QD (   ) S3 0.51 0.3315 - 2.0553  - 2.2542 

Amount of data Ad (    ) S4 0.6 0.1989 5 0.9945 8 1.5912 

Consistency of data C (    ) S4 0.4 0.1326 8 1.0608 5 0.663 

Quality assumptions QA (   ) S3 0.49 0.3185 - 1.0829  - 1.2315 

Number of assumptions As (    ) S4 0.2 0.0637 5 0.3185 6 0.3822 

Impact of the 

assumptions 

I (    ) S4 0.8 0.2548 
3 

0.7644 
3.3333 0.8493 

 

Table 3 Comparison between FT and MSPM level of trustworthiness (direct quantification) 

Parameter  

Symbol 

 

Level 

 

Weight 

Global 

weight 

Fault Tree MSPM 

Score Weighted 

score 

Score Weighted 

score 

Model trustworthiness T  S1 1 1 - 57.15 - 111.7 

Modeling Fidelity F (  ) S2 0.35 0.35 - 0.374 -  1.3641 

Number of 

approximations 
Ap (   ) S3 0.54 0.189 

7 0.027 7 0.027 

Level of detail D (   ) S3 0.46 0.161 - 0.347 - 1.3371 

Number of equations 

and correlations 
Q (    ) S4 0.4638 0.0747 

1 0.0747 9 0.672 

Number of state rates 

and parameters 
Mp (    ) S4 0.2114 0.0340 

8 0.2723 18 0.6128 

Number of dependency 

relations  

Dr (    ) S4 0.3248 0.0523 
0 0 1 0.0523 

Strength of Knowledge K (  ) S2 0.65 0.65 - 56.7772  - 110.33 

Quality of data QD (   ) S3 0.51 0.3315 - 55.758  - 109.89 

Amount of data Ad (    ) S4 0.6 0.1989 
275 54.698 549.15 109.22 

Consistency of data C (    ) S4 0.4 0.1326 8 1.0608 5 0.663 

Quality assumptions QA (   ) S3 0.49 0.3185 - 1.0192  - 0.4463 

Number of assumptions As (    ) S4 0.2 0.0637 4 0.2548 3 0.1911 

Impact (Sensitivity 

analysis) 

I (    ) S4 0.8 0.2548 
3 0.7644 3.3333 0.2552 
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Table 4 Summary of models trustworthiness 

Normalized Trustworthiness FT MSPM 

 Scale 1-9 measures 0.4427 0.5573 

Direct measures 0.3365 0.6635 

 

V. DISCUSSION AND CONCLUSION 

In this work, we have developed a hierarchical tree-

based decision making approach to assess the 

trustworthiness of risk models. The approach is mainly 

based on the identification of specific attributes that are 

believed to affect the trustworthiness of the model. This is 

obtained by a hierarchical-tree based “decomposition” of 

the model trustworthiness into sub-attributes. The AHP 

method has been used to perform a weighted aggregation 

of the attributes to evaluate the model trustworthiness. 

The method has been applied to a case study involving the 

Residual Heat Removal (RHR) system of a Nuclear 

Power Plant (NPP). Two models of different complexity 

(i.e., FT and MSPM) have been considered to evaluate the 

system reliability and the trustworthiness of such models 

has been compared. 

FT trustworthiness has been found to score 4.8205 out of 

9, whereas MSPM has scored 5.8535 or 0.3365 and 

0.6635, respectively, by direct measures of “leaf” 

attributes.  The two results confirm the expectation that 

MSBM provides more trustworthy risk estimates than FT 

due to the fact that it takes into account components 

failure dependency relations and time dependency.  

Of course, we do not claim that the trustworthiness 

approach is comprehensive and complete, as there exist 

other factors that affect the level of trustworthiness, which 

were not considered for simplicity. Also, further studies 

should be performed to define the scaling guidelines for 

attributes evaluation.  
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