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Abstract— Knock is an undesired phenomenon occurring in
spark ignited engines and is controlled acting on the spark
timing. This paper presents a closed-loop architecture that
makes possible to address the knock control problem with
a standard model-based design approach. An engine knock
margin estimate is feedback controlled through a PI regulator
and its target value is computed starting from the desired knock
probability. A black-box modelling approach is used to identify
the dynamics between the spark timing and the knock margin
and a traditional model-based controller synthesis is performed.
Experimental results at the test bench show that, compared to a
conventional strategy, the proposed approach allows for a better
compromise between the controller speed and the variability
of the spark timing. Moreover, another advantage w.r.t. the
conventional strategies is that closed-loop performance prove
to be constant for different reference probabilities, leading to
a more regular engine behaviour.

I. INTRODUCTION

Knock is a limiting phenomenon in spark ignited engines;
it is the autoignition of the end gas in the combustion
chamber which generates large pressure oscillations causing
potential engine damages and performance decreases, [1].
However, in order to maximize the engine efficiency and in
particular during low speed and high torque operations, the
engine needs to run close to the knocking condition: thus
a closed-loop knock margin regulation, acting on the spark
timing, is a crucial component.

The scientific literature has dedicated considerable effort
to the problem of knock sensing and knock control. While
the detection of knock events is a relatively easy task [2]–[5],
the control part is more challenging. Due to the stochastic be-
haviour of engine knock and its binary nature (i.e an engine
cycle knocks or not), the use of classical standard control
strategies is limited and not-trivial. Strategies proposed in
literature can be divided in two groups: those controlling
properties of knock, derived by knock occurrence and others
controlling a knock-related (usually model-based) metrics.

Among the strategies controlling the stochastic properties
of knock events, the most simple one is referred to in
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literature as the conventional strategy. It consists of rapidly
retarding the spark timing if a knock event is observed, and
slowly advancing the timing during non-knocking cycles [6].
Due to its easy implementation and tuning, the conventional
knock controller is widely used in industrial applications.
However, it results in a late average (i.e., low efficiency)
and a high variance of the spark timing. More advanced
methods monitor the cumulative summation of knock events
and compare it with the desired knock rate [7], [8]. Instead
of acting at each knock event, those controllers retard the
spark timing when the difference between the observed and
the desired knock rate exceeds a positive threshold and
advances the spark timing when the difference falls below
a negative threshold. The methods proposed in [7] and [8]
use fixed amplitudes of the retarding and the advancing
actions. A further improvement can be made by relating the
action intensity to the discrepancy between the observed and
the desired knock rate: the likelihood ratio is an indicator
of this discrepancy and is employed in [9]. The so-called
likelihood-based approach shows satisfactory results on both
simulation end experimental data [10]. Although effective,
advanced stochastic knock controllers rely on non-standard
tuning procedures, have a delayed transitory response and
present a sub-optimal trade-off between the controller speed
and the steady-state variability of the spark timing.

Due to the difficulty of modelling the combustion inside a
cylinder chamber, methods based on the control of a knock-
related metrics are less developed. The most trivial knock
metric is the cycle peak pressure [11]. Cycles with higher
peak pressures are more likely to be knocking, thus the
maximum pressure can be controlled at a reference value that
is a compromise between the engine torque output and the
knock tendency. Another possibility consists in quantifying
the knock intensity through the engine casing acceleration to
build a knock energy indicator controlled via a proportional
integral (PI) controller [12]. However, the estimation of the
mean and the variance of the energy indicator slows the
controller action. An alternative method makes use of an
Arrhenius-like function to model the autoignition of the end-
gas and the probability of knock, [13].

The knock control strategy proposed in this paper is based
on the estimation approach introduced in [14], where the
authors build a gray-box model of the knock margin that
proves to effectively extract important information from the
cylinder pressure traces and describes the knock behaviour
in various engine operating conditions, outperforming more
traditional physics-based approaches. The estimator provides,



for each engine cycle, the knock margin (i.e. the distance
from knocking conditions) and an estimate of the expected
knock probability.

In the present work a closed-loop control is used to
regulate the estimated engine knock margin at the target
value, which is computed starting from the desired knock
rate. In addition to the use of the real time estimated knock
margin as feedback variable, another significant contribution
is that the tuning of the proposed controller makes use of
classical black-box identification and model-based control
design techniques, overstepping the difficulties of the afore-
mentioned approaches.

The experimental results at the test bench show the effec-
tiveness of the method, in addition to the repeatability and
satisfactory closed-loop performance. A comparison with a
conventional knock control strategy is also provided.

The paper is organized as follows. Section II recalls
the knock margin estimation and describes the black-box
modelling approach, which is at the basis of the controller
design. Section III introduces the proposed control scheme
and describes the conventional controller used for the com-
parison. In Section IV the experimental results are shown and
discussed. The paper ends with some concluding remarks and
future works.

II. KNOCK MARGIN MODELLING AND BLACK-BOX
IDENTIFICATION

A. Experimental setup

The experimental test bench is equipped with an electric
brake and a four-stroke SI engine installed in ETH facilities
in Zürich. The engine is equipped with direct gasoline
injection, a turbocharger, and a variable valve camshaft.
Injection timing was set at 270◦ before top dead center
(bTDC) and intake valve closing was set at 180◦ bTDC.
Table I summarizes the main characteristics of the engine.
A sensor at the exhaust measures the air-to-fuel ratio which

TABLE I
MAIN ENGINE CHARACTERISTICS

Units Value

Cylinders [-] 3

Combustion type [-] SI

Unitary displacement [cc] 499.6

Bore [mm] 82

Compression ratio [-] 10.1:1

is regulated at stoichiometric conditions by closed-loop using
the amount of fuel injected. The air mass flow is measured by
a hot-film anemometer and controlled by a waste-gate valve
at the turbocharger. All the tests are performed at a speed
of 1500 rpm, an air mass flow of 667 mg/stroke, a coolant
temperature of 85 ◦C, a rail pressure of 200 bar, and throttle
fully open. Time units are considered in crank angle domain
(one time unit is a complete crank angle cycle). Shown data
only refers to cylinder 1, as other cylinders response appears
similar.

B. System modelling and identification

Knock margin is not a directly available quantity and
it has to be estimated using available engine measures, in
particular the in-cylinder pressure ones. Moreover, in order
to set the control problem in a standard model-based design
framework, a dynamic model between the spark timing (ST)
and the estimated knock margin is identified.

A block scheme diagram of the system under analysis
is shown in Figure 1. The solid line block represents the
physical system i.e., the engine itself, that is considered as a
SISO system whose input is the control variable (ST) and the
output is the measured in-cylinder pressure pcyl. The control
results shown in this paper refer to a single engine operating
point, thus no additional signals are considered, whereas of
course the relationship between the spark timing and the in-
cylinder pressure highly depends on other parameters like
engine speed, intake air temperature etc.

ST KM
pcyl

Engine
· · ·

G(z)

KM
estimator

Fig. 1. Block diagram representation of the open loop system.

The dashed blocks, represent two additional non-physical
systems that are required to properly set the hereby proposed
knock control strategy. The knock margin estimation block is
based on the approach presented in [14] which is here briefly
summarized. The estimation procedure, which uses the in-
cylinder pressure measure, is made up of two steps: the first
exploits a Principal Component Analysis (PCA) to extract
relevant common features (the eigenpressures) from the
pressure traces, in order to reduce the algorithm complexity
and to condense relevant information within few variables
(γi, i = 1, . . . , n, where n depends on the desired model
accuracy). In a second step, a logistic regression model is
trained: this model combines the pressure features in a proper
linear model (whose coefficients are βi, i = 1, . . . , n and α)
and relates them to the measured knock probability, which is
indirectly estimated by using knocking/not-knocking cycles
data.
As a result, the found linear combination defines the knock
margin:

KM =

n∑
i

βiγi + α

which can be used to estimate the knock probability using
the logit function:

Pest =
eKM

1 + eKM
(1)

For more details the reader is referred to [14]. A stepwise
ST test, ranging from 0 to 13◦ bTDC, has been used



for model identification. Considering that a single engine
operating point is here analysed, it has been found that
a single feature γ1 is enough to properly model engine
knock probability. However it should be recalled that the
knock margin estimation method provides excellent results
even in a wider operating point scenario, for varying engine
speed, load, intake temperatures and air-to-fuel ratios at the
cost of increasing the number of features considered and
the additional engine operating point descriptive measures.
Therefore, the single operating point simplification here
considered should not be seen as a limitation of the proposed
knock control strategy. The knock probability modelling
results are shown in Figure 3.

The outer block named G(z) completes the overall system;
it is meant to describe the whole system dynamics between
the control variable and the estimated knock margin and as
such it will be used for the design of the knock margin
controller, within a standard SISO model-based framework.
A comment on the proposed approach is important: another
possible choice would have been to identify the engine
dynamics, from ST to the in-cylinder pressure, and then to
compute the overall model as a series connection between
such model and the knock margin estimator. However the
engine pressure modelling, though undertaken with a black-
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Fig. 2. Spark timing stepwise test example for model identification.
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Fig. 3. Knock probability modelling results.

box approach, is well known to be a difficult task and usually
requires nonlinear complex models; aiming at the knock
margin control, a precise description is not required since
the knock margin estimation steps already extract from in-
cylinder pressure data all the necessary information (thanks
to the PCA) combining them in the appropriate nonlinear
fashion (thanks to the logit function).
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Fig. 4. ARMAX identification of G(z).

In Figure 4 identification results are shown: the identified
model output is compared to the measured one on the ST step
test (using validation data). The identified model is a linear
first order ARMAX model and turns out to have a negligible
dynamic (the step response steady-state is reached after 2
cycles). From this comparison it is possible to appreciate
how even a simple linear model is capable of describing the
relationship between the spark timing and the knock margin
despite the wide range of ST analysed. Moreover, the well-
known highly stochastic nature of knock, which cannot be
captured by the model, is visible.

III. KNOCK MARGIN CONTROL ARCHITECTURE

The proposed control architecture is shown in Fig. 5. The
knock margin, expressing the distance from the knocking
condition, is provided by the knock estimator which uses
cylinder pressures. The margin is used as a virtual mea-
surement and is closed-loop controlled acting on the spark
timing. The PI controller is tuned on the ARMAX model
that relates the spark timing (i.e., control variable) and the
knock margin (i.e., output variable). The highly stochastic
nature of knock, which is visible in the modelling results,
causes added noise on the estimated knock margin. The PI
controller should be tuned to cut-off the high frequency noise
while reacting to slow variations of the margin. As expected
a slower controller presents slower responses to changes in
the reference and lower variance of the control variable.
In addition to the knock margin, the logistic regression
modelling approach provides an open-loop estimate of the
knock probability. In fact, equation (1) shows the relation
between the knock margin and the estimated probability.
Given the desired knock rate, this expression can be inverted
to obtain a reference for the knock margin controller.

The knock margin control approach is compared with the
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Fig. 5. Knock margin control scheme.

well-known conventional controller. Equation (2),

ST (j) =

ST (j − 1)−Kret if knock,

ST (j − 1) +Kadv otherwise,
(2)

implements the strategy where ST (j) is the spark timing at
cycle count j, Kret is the retarding quantity on knock events,
and Kadv is the advancing quantity during non-knocking
cycles. Under the assumption of stable operation (i.e., knock
occurs deterministically at a fixed spark timing), advances
and retards cancel each other, and the following equation
relates the desired knock probability (Pref ) to the controller
parameters (see [15]):

Kadv =
Pref

1− Pref
Kret. (3)

While Pref is an engine design parameter related to its
structural strength, the variable Kret can be considered as
a control parameter and determines the reactivity of the
controller. Large values of Kret allow for shorter controller
transients, but increase the variance and retard the average of
the spark timing at steady-state operation. Here, the ampli-
tude of Kret is set to 1.5◦, which is typical for production
systems and provides a good trade-off between speed and
spark timing variability.

IV. CLOSED-LOOP EXPERIMENTAL RESULTS

A. Knock margin controller experimental validation

Knock margin control is tested using time-varying profiles
of demanded knock probability Pref and its correspondent
KM reference. Step responses have been selected in order
to evaluate controller performance during transients as well
as its steady-state behaviour. In particular, the step duration
was set to 3500 cycles in order to have enough data to
correctly compute steady-state performance. In the following,
the estimated knock probability has been evaluated using a
moving average (MA) filter with a window of 1000 samples
giving an accuracy in the estimation of 0.1%.

In Figure 6 the functioning of the knock margin closed-
loop control is shown, for the slowest controller tuning. In the
first plot the control variable is shown and in the second the
controlled variable along with the reference value. The third
plot illustrates the comparison between probability predicted
by (1) and with the one estimated with the moving average
filter. It should be remarked that the transient behaviour of
the estimated probability is due to the MA filter dynamics
that requires 1000 cycles to get to steady-state; it is thus
reasonable to consider its estimate reliable after half of the

step duration. In the last plot the detected knock events are
shown.
The experimental results validate the expected and desired
behaviour of the proposed knock control approach. Reference
knock margin is tracked as requested, meeting the desired
knock probability target and repeatability of the perfor-
mance can be appreciated by noting the similar closed-loop
behaviour of subsequent steps. Another valuable property
is that the spark timing variability does not change for
different reference values: this guarantees a consistent engine
behaviour throughout all possible operating conditions.
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Fig. 6. Example of closed-loop knock margin control.

In order to check the effectiveness and the feasibility of
the model-based tuning approach, Figure 7 shows the com-
parison between the closed-loop measured knock margin and
the designed response; each plot of the comparison shows a
different controller tuning. The consistency between expected
and measured results is clear and shows the reliability of the
model-based tuning approach. In Table II a summary of the
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Fig. 7. Comparison between measured and designed closed-loop perfor-
mance of KM controls.

main closed-loop properties is reported: for each controller,



designed convergence time and the corresponding model ref-
erence poles are proposed in the first two columns. The third
column reports the identified closed-loop system behaviour:
the comparison with the designed closed-loop pole values
quantitatively state the results of Figure 7. Finally, in the last
column, the standard deviation of the ST recalls the discussed
trade-off between speed of convergence and ST variability.

TABLE II
KNOCK MARGIN PI CONTROLLERS: MODEL REFERENCE REQUIRED

SETTLING CYCLES TIME tcyc , REQUESTED MODEL REFERENCE

CLOSED-LOOP POLES p, EXPERIMENTALLY IDENTIFIED CLOSED-LOOP

POLES pid ON SYSTEM RESPONSE AND STANDARD DEVIATION ON

CONTROL VARIABLE ST.

tcyc p pid ST std [◦]

PI 1 100 0.95 0.96 0.12

PI 2 50 0.90 0.91 0.18

PI 3 25 0.80 0.79 0.28

PI 4 10 0.50 0.52 0.51

B. Conventional controller comparison

The same probability stepwise signal has been used as
reference for the event-based, state-of-art knock control strat-
egy. The overall performance of the controller are presented
in Figure 8 where axis scales are kept equal to those of
Figure 6 in order to ease a visual comparison. Of course, no
knock margin plot is provided for this controller, since such
variable is not anyhow evaluated in this strategy (as discussed
in section III). The conventional knock controller features
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Fig. 8. Example of closed-loop conventional knock control.

an optimal tracking of the reference probability; however
this happens at a cost, which can be seen by inspecting the
control variable in the upper plot. In fact, the ST presents
a greater variability, if compared with those of the knock
margin control. Moreover, recalling equation (3), it should be
noted how controller parameters are not constant but change
with the reference probability: as a result, the behaviour of

the spark timing change according to the operating conditions
which is not a desirable engine property. In particular, when
the reference probability is high, the controller acts more
sharply and indeed this results in higher ST variance than
the low probability case. In general, the ST variabiliy of the
conventional controller is higher than any of the proposed
KM controller tunings. In Figure 9, the ST distribution of
all four KM controllers, in grayscale, is compared with the
ST distribution of the conventional controller, in red.

Fig. 9. Comparison between knock margin controllers and conventional
one during a reference step decrease.

Another interesting comparison between conventional and
KM control can be done by inspecting the steady-state
settling time in response to the step change of reference
probability. In Figure 10 this comparison is shown for an
increasing probability step; the light grey lines represent
the KM controllers (each for one of the different tuning
considered) whereas the heavier red line shows the ST of the
conventional controller. The dashed-dotted line indicates the
moment when the reference changes. Conventional controller
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Fig. 10. Comparison between the knock margin controllers and the
conventional one during a reference step increase.

response proves slower than the slowest KM controller,
despite its parameters are tuned such that a higher pref
corresponds to a higher speed of the controller (see (3)).
It should be remarked that the conventional controller has
an additional degree of freedom in its tuning that would
allow a further increase of the speed (Kret): however, as
previously discussed, such a choice would lead to an increase



of ST variance (which is already higher than those of KM
controllers).

The comparison for the step-down scenario is provided
in Figure 11, where in the upper and lower plots are
shown two different steps. With this comparison it is pos-
sible to highlight the non-deterministic behaviour of the
conventional controller. In fact, the ST reduction law of
the conventional controller depends on the detection of a
knock event (which is a non deterministic phenomenon,
as already discussed): thus the steady-state settling time
cannot be precisely-evaluated. This makes the overall engine
behaviour non-constant, which is not a desirable feature.
Opposite, the consistency of the KM control performance
can be appreciated.
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Fig. 11. Comparison between knock margin controllers and conventional
one during two different reference step decrease.

V. CONCLUSIONS AND FUTURE WORKS

The knock phenomenon is highly stochastic and this
complicates the process of fitting the problem of controlling
it in a standard model-based design framework. Here, this
is achieved by exploiting an advanced black-box modelling
approach which provides an estimator of the knock margin
and the knock probability. The knock margin is closed-loop
regulated via a PI controller acting on the spark timing,
while the probability model is inverted to compute a margin
reference, given a reference probability. Results obtained
on a experimental test bench show the effectiveness of
the proposed control architecture. It allows a better trade-
off between controller speed and spark timing variability,
compared to a conventional control. Differently from the
conventional strategy, the proposed one shows consistent
performance for all the considered values of the knock
probability reference. However, for a fair comparison, it
should be remarked that the conventional controller could
outperform the KM one in case of evident knock margin
modelling error or in case of its changes during the engine
lifetime. In this case the reference probability would be
transformed into a wrong knock margin target. To overcome

this issue, the authors are currently working on an adaptive
strategy, flanking the discussed KM control and capable of
compensating slow-varying modelling errors and changes.
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