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Abstract—The scenario approach is a general methodology for
data-driven optimization that has attracted a great deal of
attention in the past few years. It prescribes that one collects a
record of previous cases (scenarios) from the same setup in which
optimization is being conducted and makes a decision which
attains optimality for the seen cases. Scenario optimization is by
now very well understood for convex problems, where a theory
exists that rigorously certifies the generalization properties of
the solution, that is, the ability of the solution to perform well in
connection to new situations. This theory supports the scenario
methodology and justifies its use. This paper considers non-
convex problems. While other contributions in the non-convex
setup already exist, we here take a major departure from previous
approaches. We suggest that the generalization level is evaluated
only after the solution is found and its complexity in terms of the
length of a support sub-sample (a notion precisely introduced in
this paper) is assessed. As a consequence, the generalization level
is stochastic and adjusted case by case to the available scenarios.
This fact is key to obtain tight results. The approach adopted in
this paper applies not only to optimization, but also to generic
decision problems where the solution is obtained according to a
rule which is not necessarily the optimization of a cost function.
Accordingly, in our presentation we adopt a general stance of
which optimization is just seen as a particular case.

Keywords: Scenario approach, stochastic programming, non-
convex optimization, robust decision-making, robust control.

I. INTRODUCTION AND GOAL OF THE PAPER

Many problems in the theory and practice of systems and
control can be formulated as decision problems. For instance,
in PID controller tuning, the proportional, integral and
derivative gains may be seen as decision variables that must
be selected so as to satisfy given performance specifications.
In optimal input design, instead, the decision variable is the
input signal, which must be decided so as to minimize some
given cost functional. Likewise, optimal state filtering can be
seen as a decision problem where one minimizes the state
prediction error (e.g. in the mean square sense), and the
decision variables are the filter parameters.

In this paper, we deal with data-driven decision-making
where a procedure generates a decision based on a collection
of observations coming from previous experience. The
observations are used to account for the variability of the
conditions to which the decision can possibly be applied.
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Some definitions help to rapidly focus on the main ideas. Let
A be a probability space, endowed with a o-algebra D and
a probability measure P. An element 6 € A is interpreted as
a potential situation to which the decision can be applied,
while P describes the chance of such a situation to occur.
Moreover, let (A™, D™, P™) be the m-fold Cartesian product
of A equipped with the product o-algebra D" and the
product probability P™ = P x -+ x P (m times). A point
in (A™, D™ P™) is thus a sample (6, ... §(™)) of m
elements drawn independently from A according to the
same probability P.! Each §( is regarded as an observation,
and in the following we will also call it a scenario. A set
O, called the decision space, contains the decisions. It can
possibly be infinite, and no particular structure, e.g. that of
vector space or convex set, is assumed. The decision-maker
is equipped with a procedure to make a decision based on
(6 ... 60m))2 Later, we shall provide various examples of
procedures. Formally, the procedure is modeled as a family of
functions A,, : A™ — ©, indexed by the size m = 0,1,...
of the sample,® and the decision 0% := A,, (6, ... §(™)
is called the scenario decision.

The following assumption is in force throughout this paper.

Assumption 1: To every § € A there is associated a
constraint set ©5 C ©, which identifies the decisions that
are admissible for the situation represented by 6. For all
m = 1,2,... and for any sample (6, --- §0™), it holds
that A,,, (6, -+, 6(™) € 5 forall i =1,--- ,m. O

Remark 1: The requirement that A, (60, .- §0™) € O,
for all 7 is natural in many problems where this requirement
prescribes that the decision is admissible for all the collected
situations, see e.g. the examples below. Note that this
requirement establishes a link, albeit weak, between the
functions - -, Apm—1, Am, Amg1, - O

Remark 2: The requirement that A, is a function amounts to

'One could as well introduce a probability space (2, F,P) and define
5D as independent random elements over this probability space. This is
completely equivalent to the construction considered in this paper, since
(92, F,P) can be taken as (A°°, D>, P>), which always exists thanks to
the Ionescu-Tulcea theorem, [35].

>The decision-maker has access to (6<1>, e ,6(’")), and her/his decision
is therefore based on knowledge that comes from experience. S/he is not
required instead to know P in order to apply the results of this paper, that is,
all theoretical certificates hold independently of P.

3For m = 0, Ap has no argument and it is meant that it gives a fixed
element in ©.



requiring that the solution to the decision problem is unique.
To conform to this condition, when a decision problem admits
multiple solutions, one has to implement a “tie-break rule”
to single out one solution. For example, if © is a normed
vector space, a simple tie-break rule is to choose the solution
with minimum norm. In this paper, the tie-break rule is seen
as an inherent part of the decision process, included in A,,,. [J

The present setup is quite broad and encompasses problems
of various kinds. We next give some examples (optimization,
feasibility, ...) that are of particular interest to us. A more
concrete example in control is presented in Section IV. In
Section V we come back to the generality of the setup
introduced by Assumption 1 and show that this assumption
can be applied also to problems that are not born in an
optimization context.

Example 1 (Optimization): Let © be a subset of R? (R is the
set of real numbers), f : © — R be any function and, for each
§ € A, let O be a subset of R%. Given (61),--. 50™) ¢
A™ consider the following constrained optimization program:

min f(6) 0
subject to 6 € Oy¢iy forall i =1,--- ,m.

Assuming that a unique solution 6, exists, possibly after

applying a tie-break rule, (1) defines a map .4,,, that associates
0 to (6, ... §(m), O

When f, ©, and ©4 are convex, program (1) is a convex
scenario program in the form that has been studied in [5],
[6], [11]. These seminal papers have introduced the so-called
scenario approach, which, as witnessed by many contributions
like e.g. [12], [39], [22], [33], [15], [28], [16], [29], [17], [43],
has rapidly gained recognition, and has found application
to various problems in control, [36], [37], [21], [31]. The
optimization program (1) is much more general than the setup
of [5], [6], [11] since no assumptions on f, ©, and Oy are
made. It includes mixed-integer constrained optimization as
a particular case, which we shall consider more in detail in
Section IV. An example of application to a control problem is
given in Section IV-A, while system identification problems
along a similar approach have been considered in [14].

Example 2 (Algorithms for optimization): In Example 1, the
decision is the solution to an optimization problem. However,
obtaining the optimal solution can be difficult, especially in
a non-convex setting. In practice, one often uses a numerical
algorithm A,,, to compute a solution 6, that can as well be a
sub-optimal solution. The algorithm 4,,, can be seen as a map
from (61, ..., (™) to 6%, and the theory of this paper can
be applied to the sub-optimal solution é;‘n returned by A,,. O

Example 3 (Feasibility problems): Suppose that one wants to
find a feasible point for a set of constraints, that is,

find 0 € ©
subject to 6 € Og;) foralltv=1,--- ,m,

and that a rule is set to determine one such feasible point.
Again, this defines a map 6, = A,, (61, -+, 5(mM). O

A. Goal of the paper

Up to here, we have considered m scenarios to introduce
Assumption 1 where m was a running variable and the
requirement A, (61, ---  §0™) € O, i = 1,...,m, had
to hold for any m. We henceforth call N the actual, fixed,
number of scenarios that we observe in a given application.
The goal of this paper is to study how well a scenario
decision 0% = Ay (6™, 6(V)) generalizes to yet unseen
situations 6 € A. This is important to certify how “robust”
6% is against new situations in which 3 may be applied.
To explain what “how well” means, we start by introducing
the terminology that 6% generalizes to § € A if 03 € Os;
in the opposite, we say that 0% violates 6. “How well” is
formalized in probabilistic terms as follows.

Definition 1: The violation probability of a given decision 6 €
© is defined as

V(@):=P{deA: 0¢ 06}

For a given reliability parameter € € (0, 1), we say that § € ©
is e-feasible (or e-robust) if V(0) < e. O

The violation of the scenario decision V(6%), which is the
composition of V(-) with 0% = Ax(6M, .- §M)) is a
random variable defined over AY. We want to study the
distribution of V(#}) and find a suitable confidence bound
1 — 3 for the validity of the relation V(0% ) < £.* Depending
on the problem at hand, violating a constraint means that a
control performance (a settling time, a certain level of noise
rejection, etc.), a prediction result (the next point is within a
given prediction interval), or a correct classification (the case
at hand is classified within the right class) is not achieved, and
knowing a bound on V(87%;) provides guarantees on the chance
of this to happen. In the context of optimization (Example
1), establishing that V(0%) < e can be interpreted as an
assessment of the feasibility of 0% for a chance-constrained
problem at level ¢, see e.g. [32], [19], [30], [27], [4], [34] for
contributions on chance-constrained optimization. We do not
further dwell on the interpretation of the violation probability
and for this we refer the reader to the existing literature, e.g.
[13], [9], [10], [18]. In particular, paper [6] discusses a number
of applications to control. Later in Sections IV and V we
shall exhibit various examples to illustrate the theory of this
paper, and this will provide further examples of the concept
of violation.

4The perspective of this paper, as suggested by the fact that 07 is required
to belong to all the © NO) ’s, is that the smaller the violation, the better the
solution. In some cases, especially in optimization, this may not be true,
since too small a violation may correspond to obtaining a poor performance.
If this is the case, alternative approaches can be adopted to accommodate the
requirement that V(87%;) should not be too small. For instance, one may want
to allow that 0% fails to belong to some of the ©;)’s, see e.g. [12], [22].
This is not further investigated here and is left for future research.



B. Discussion on existing results

The distribution of V(%) has been the object of intense study
for the case when 673, is obtained as the solution of a convex
optimization program, [5], [6], [11]. The deepest result is
established in [11], where it is shown that the distribution of
V(6% ) is dominated by a Beta distribution, namely,

PN {V(0y) >} < B, )

where

i N—i
/f—g(i)s(l o, 3)
and d is the number of optimization variables. This result
is tight in that (2) holds with equality for a whole class of
convex optimization problems, those named fully-supported
in [11]. Moreover, the result is distribution-free, that is, it
holds for any P, which is important to make the theory of
[11] practical and applicable in a purely observation-based
framework, where no information on P is available other than
that carried by 61, ...  §(N),

The fundamental fact on which the theory of [11] stands is that
the number of support constraints® in a convex optimization
problem with d optimization variables never exceeds d. This
fact fails to be true in non-convex optimization; an example is
given in Figure 1, where the removal of any of the 6 constraints
generates a new solution. Hence, routes alternative to that used
in [11] have to be pursued in a non-convex context.

optimization
direction
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Figure 1. In this non-convex program, all constraints are of support since
eliminating any one of them generates a new feasible point that outperforms
the solution with all constraints in place.

Some previous attempts to address a non-convex setup are
the following. Paper [1] uses concepts from the statistical
learning literature, [40], [41], [42], to bound the probability
that V(0%) < e in non-convex scenario optimization. While
inspiring, this approach suffers from the conservatism inher-
ent in the Vapnik-Chervonenkis theory, [38]. A non-convex
cost function optimized under convex constraints is instead

SA constraint § € © 5(i) 1s said to be a support constraint if the program
obtained by removing that constraint, while keeping all the others, has a
solution different from the solution of the initial program.

considered in [23]. In this paper, the feasibility domain is
restricted to a region which is obtained as the convex hull
of few points to enable the application of the result from [11].
Again, the result is conservative, besides being applicable to
a restricted class of problems only. Papers [7], [20] consider
mixed-integer problems, and a theory akin to that of [11] is
applied after showing that the number of support constraints
can be a priori upper bounded in mixed integer problems.
However, this bound turns out to be very large.

C. The approach of this paper

In this paper, we address the evaluation of the feasibility of 673,
along a different route, which, in a somewhat different context,
has been recently discovered by two of the authors of the
present contribution, [8]. We abandon the idea that the number
of support scenarios is computed a priori; instead, we assume
that after computing 0% one is able to isolate a sub-sample
of scenarios sufficient to yield the same solution 0} that is
obtained with all the scenarios in place (we show that this task
can be accomplished at a relatively low computational cost).
In the new approach, the reliability guarantee depends on the
cardinality s}; of the sub-sample of scenarios, and the smaller
the cardinality, the higher the reliability. More precisely, the
obtained result takes the form:

PV {V(0x) > e(sh)} < B, (4)

which closely resembles (2), albeit with the fundamental
difference that € is here no longer fixed in advance and
it depends on s};. Along this approach, the assertion on
V(6%) is adjusted to the seen scenarios and this by and
large improves over previous evaluations established for the
non-convex case.

It is worth remarking that the result in (4) does not allow us
to a priori compute a number N of scenarios sufficient to
obtain a chance-constrained solution at a given level ¢. This
is because the level depends on the probabilistic outcome and
can only be a posteriori computed. This sets a fundamental
difference with the results of [11] where a priori conditions
are established such that, with high confidence, the solution
is a chance-constrained solution at a specified level €. While
this fact may appear to weaken the quality of the result
established here compared to previous achievements in a
convex setup, we remark that this is due to the generality
of the problem considered in this paper, where an a priori
bound on the number of support scenarios does not exist. On
the other hand, a posteriori establishing the level of violation
has great importance in the practical use of scenario-based
solutions because, based on the a posteriori value for the
violation probability and also in the light on the cost value
that has been achieved, one can decide whether the solution
is or is not satisfactory and therefore is or is not adopted.

It is further worth highlighting that the fundamental difference
between the present paper and [8] is that the latter paper deals
with optimization problems under a crucial non-degeneracy
assumption. In the language of this paper (see Definition 2



in the next Section II), such assumption is phrased as: with
probability 1, the problem has a unique irreducible support
sub-sample, consisting precisely of the support constraints. In
paper [8], the emphasis is on convex optimization problems
where this assumption is very mild. In contrast, in a non-
convex setup this assumption is very restrictive, a fact that is
discussed in detail in Section 8 of [8]. In this paper, we succeed
in removing the non-degeneracy assumption. Moreover, the
results we obtain are very general and apply to generic
decision problems and not only to optimization. However, we
must also mention that the theory of this paper does not allow
one to recover as a particular case the results of [11], which
is instead possible by using the results of [8]. This is the price
we pay for generality, and it is a fact that the results in [11] fail
to be true at the level of generality adopted in this paper. See
Appendix A where a more detailed discussion on this point is
provided.

D. Structure of the paper

Section II provides the technical background and states the
main result in formal terms. After the proof of the main
result is given in Section III, Section IV revisits mixed-integer
scenario optimization in the light of the new theory of this
paper. A more general perspective is then taken in Section V,
which presents a collection of other problems to which the
results of this paper can be applied.

II. GENERALIZATION RESULT

We start with the definition of support sub-sample.

Definition 2: Given a sample (6(V),--- 60V)) € AN, a sup-
port sub-sample S for (60 --.  §(N)) is a k-tuple of elements
extracted from (61, 60V, ie. § = (601) ... §0x))
with 47 < 49 < --- < 1, which gives the same solution
as the original sample, that is,

Ap(800) oo 50y = A (6D g,
O

A support sub-sample S = (501),... §0#)) is said to
be irreducible if no element can be further removed from
S leaving the solution unchanged. In general, multiple
irreducible support sub-samples can be found for the same
sample (601 ... §(N)),

To apply the results of this paper, the user has to determine
a support sub-sample for the problem at hand. Clearly, the
whole sample (6(1),---  6(V)) is itself a support sub-sample.
In general, the smaller the support sub-sample, the stronger the
generalization result; the goal is therefore that of determining
a small support sub-sample, possibly an irreducible one, or
even the irreducible support sub-sample with minimal length.
Finding a minimal-length irreducible support sub-sample can
be computationally intensive and it may require brute-force
exploration. We stress, however, that, while failing to find a
minimal-length support sub-sample leads to results that are
not the strongest possible, the conclusions of this paper hold

rigorously for non-minimal support sub-samples as well. A
greedy algorithm to search for a support sub-sample, which
in many cases is computationally efficient and effective, is
as follows (|L| denotes the length of a sequence L, and
L\ is the sub-sequence obtained by removing §(*) from L):

1) Set L « (6),--.
97\, — AN(L);
2) Foralli=1,---,N:
o set I/ « L\ 0 and compute the solution § <

,6(™) and compute the solution

A (L);
o if  =0%, then set L + L;
3) Output the set {iy, - ,ix}, i1 < -+ < iy, of the

indexes of the elements in L.

For scenario optimization programs in the form (1), it is easy
to prove that this algorithm returns an irreducible (although
possibly not minimal) support sub-sample. For more general
scenario decision problems there is no guarantee that the
algorithm returns an irreducible support sub-sample. In these
cases, one can iterate over the above algorithm, each time
initializing with the value of L returned by step 3 of the
previous iteration; this procedure will eventually converge
to an irreducible support sub-sample. The greedy algorithm
above requires to solve a decision problem N times. At
worst, each time one has to deal with N scenarios while,
in typical cases, the size of the scenario set decreases as
elements 6() get removed from L. In some situations, solving
even one problem is time-consuming (e.g. when one deals
with a non-convex optimization problem) so that running the
greedy algorithm can become computationally intensive. In
these cases, alternative algorithmic choices can be conceived
to achieve better computational efficiency at the price of
obtaining a larger support sub-sample, but we do not dwell
on further describing this issue here because it is problem
dependent. It may also be of interest to note that in some
specific problems (see e.g. the problems in Section V), there
is not even the need to run any greedy algorithm, since
the size of the minimal support sub-sample is immediately
evident from the structure of the problem.

An algorithm to determine a support sub-sample like the one
above can be regarded as a function By : (6(1), .- §(V))
{i1, -+ ,ir}, i1 < --- < ig, such that (601 ... (%)) is a
support sub-sample. Let

sh o= By (6D, - 50N

be the cardinality of By (6™),---,6™)) (ie., the length

of the support sub-sample (601), ... §0))).  Since
By(6W, ... §V)) is a random variable over A", so
is sy

We are now ready to state our main result.

Theorem 1: Suppose that Assumption 1 holds true, and
set a value B € (0,1) (confidence parameter). Let &



{0,--- ,N} —[0,1] be a function such that

e(N) =
N-1
N 5
> (k)<1—s<k>>N-k=6. ®
k=0
Then, for any Ay, By, and probability P, it holds that
PY{V(0x) > e(sy)} < 8. (6)
O

The proof of Theorem 1 is postponed to Section III.

A simple choice of () obtained by splitting 3 evenly among
the NV terms in the sum (5) is

1 if k=N,

_ Nep_B . (N
1— N—p N otherwise.

N =500, N = 1000,

e(k) ==

Figure 2 shows a plot of this (k) for
and N = 2000, with 3 = 1076,
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Figure 2. Plot of ¢(k) in (7) for N = 500 (dash-dotted line), N = 1000
(dashed line), and N = 2000 (solid line) (3 = 10~9%).

The interpretation of Theorem 1 is as follows. The decision-
maker computes the decision 07 along with the length s%
of the support sub-sample. The violation of 0% is judged to
be no bigger than (s%). For example, with N = 1000 and
B = 1075, if the support sub-sample has s% = 6 elements,
then from the graph in Figure 2 one obtains £(6) = 5.4% and
the claim is that 6% is 5.4%-feasible. If, instead, si = 11,
then ¢(11) = 7.7% and the claim would be that 6% is
7.7%-feasible. Theorem 1 asserts that the claim is true with
high confidence 1 — 3, that is, with confidence 1 — 10~% in the
present case. When [ is so close to 0 to become practically
negligible, one achieves “practical certainty” that the claim is
true.

For a given problem, s%; is stochastic since it depends on the
scenarios 6(1), §5(2) ,0(NV) 5o that the conclusion drawn
about the violation of the solution depends on the stochastic
realization. This is not surprising and reflects the fact that
the solution itself is stochastic. In the example in Section IV,
s has a tendency to be small as compared to IV, and the
same happens in various problems of the type discussed in
Section V. Still, in general it is not always possible to find
a support sub-sample that has a priori a small cardinality

for any N and it is indeed possible that s3; goes to co as
N — oo. An example is offered by the problem in section
V.C where, if the probability distributes over infinitely many
symbols, then s}, goes to oo as N grows unbounded. On
the other hand, it should also be noted that the fact that s},
goes to oo does not mean that the violation goes to 1 since
the violation is governed by the mutual size of s3 and N
according to the result in Theorem 1. Finally, there are cases
where s3, goes to oo at the same rate as N for which one
cannot draw any good conclusion about the violation rate
(and indeed the violation rate remains high even for very
large values of IV); the reader is referred to the last part
of Section V.C for an example. The fundamental message
conveyed by Theorem 1 is that one does not need to a
priori upper bound sj and the violation can be judged by
a posteriori computing the value taken case by case by s}.
In other words, given the specific realization of the program
one has just solved, the value taken by s3; can be computed,
and, based on this value, one can draw useful conclusions on
the actual violation probability for the program at hand. This
sets the fundamental contribution of the paper: even if one
cannot a priori claim a chance-constrained result, the actual
level of violation probability can be a posteriori evaluated for
the obtained solution.

Remark 3: Note that (k) in

6(k)z1—exp< ( 1/ ))
1 1 N
=1- log N
exp( N o~ g (k))
1 N
1 log N

og - 3 + N _& 0g ( k)
®)
where the last inequality follows from the relation 1—e™* < z.
This inequality reveals that £(k) has a logarithmic dependence

on f3, so that a very small value for 8 (“practical certainty”)
can be obtained without significantly affecting (k). This is

(7) satisfies

< —
= N-—k
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Figure 3. Plot of the s(k) in (7) vs. k for N = 500 and for 8 = 1076,
1078, 10710, 1012

clearly visible in Figure 3, which displays the graphs of the
e(k) in (7) for different values of 5 when N = 500. The
weak dependence on [ was one of the main advantages of
the scenario approach for convex optimization problems, [6],



[2], and is here preserved.

Remark 4: Choices for ¢(-) other than (7) are possible and,
at times, advisable. For example, if from the structure of the
problem it was known that s7; is always less than some 5, then
it would make sense to deliberately ignore all the situations
where s}, > 5, thus allowing for stronger claims when s}, <
5. One possible choice, where (3 is split evenly among the
terms of (5) corresponding to k < 5, is

1 if k> 3,

1— N—k/{%) otherwise. ®)
S\ k

Nevertheless, we notice here that any possible improvement
over the £(+) in (7) has an almost negligible payoff. This is
easily understood because, even assigning the whole [ to just
one k (thus providing the maximum possible improvement for
the corresponding £(k)), yields

e(k) ==

which is only marginally different from the (k) in (7)
(repeating the computation in (8) one gets log (N ) in place
of logN( )) For example, with N = 1000 and 8 = 107,
for the choice in (7) we have £(10) = 7.26%, while a551gn1ng
the whole 8 to k& = 10 yields £(10) = 6.61%.

III. PROOF OF THEOREM 1

Let Ij be a selection of k indexes {i1, -+ ,ix}, 11 < -+ < ig,
from {1,---, N}, and let

Consider the subsets A}, .-, AY defined as follows:

AN = {(5(1> MY € AN By (6D, 6| = k}
The subsets AY,---,AY form a partition of AY. Let us
refine such partition by defining for each £k = 0,--- ;[N and

for any I the set A, C A} according to the following rule:
(M ... 6Ny ¢ Aivlk if and only if By (6™, .- (V) =

Iy. Tt holds that A =J, A}, and

UUAM

k=0 I
Let moreover
B={@W, -, 6M)e AV V(o) > e(si)}
and

B, ={(8W,---,6™)

e AN Vv(0;,) > e(k)}.

We have that

B = ANﬂB UUAkhm{V QN)>5(SN)}

k=0 I
= [in A{Q’Ik, sy =k and 0y = 0r,]
UUAHN{V Or,) > e(k)}

k=0 I

= [5(N) =1 so that {V(0;,) > e(N)} = 2]

U Ual, n{vier) > e(k)}

k=0 Iy

N-1
= U UA;C\TIk mBlk'
k=0 Iy
Now focus on any selection I; of k£ indexes; to fix ideas,
consider [, = {1,---,k}. Since the definition of By ... 1y
only involves the first k& components, By ... x) is a cylinder
with base in A*, the Cartesian product of the first k sets
A. Suppose that (6(V),-.. §*)) is a point in the base of
such a cylinder; then, a necessary condition for a point
(5(1)’ ... 75(’6),(5(%1),... ’5(1\7)) to belong to AkN,{l,---,k} a)
Byi,... ky is the satisfaction of the constraints 0;.. xy €
On the other hand, by the

@5(1«4-1), s ,9{17.“ k) S @5(1\7)
-,0()) in the base of

definition of By ... 1y, for any (61, -
the aforementioned cylinder, it holds that

V(@{L...,k}) =P {5 eEA: 9{1,~~~,k} ¢ @5} > €(k)
Therefore, by the independence of 61 ...  §(N)
PN—k{((s(kH)’... LSy (3L

, We obtain

€ AQ{{LM w N B 7,6}}
N
< PN—k{ m {(5(k+1 oy
i=k+1
9{17... kY S @5(1‘)}}
N .
= H P{é(l) : 9{17---7k} S @5(1‘)}
i=k+1
N
< I a—em) =0 —ct)™*.
i=k+1

Integrating over the base of the cylinder By ... 1) now yields

PN {A]IC\{{17 ,k} n B{]_7 )k;}}
< (1 —e(k))N~* P* {base of B, iy}
< (1—e(k)N*.

®Note that, contrary to scenario optimization, in the general setup
of this paper this condition is not sufficient to guarantee that
(6, 5 slkrD) o 5(N)) e AN k{1, k) () B1 k) sinee it
may happen that after addmg some satisfied constramts the decision proce-
dure A returns a solution which is not 7, anymore. Hence, the condition
of constraint satisfaction is here only necessary. This is one reason why
arguments like those used in [11] are not applicable in the context of this
paper.
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Recall that the choice I = {1,---,k} was made for the
sake of exemplification. In fact, using the same argument, we

obtain that PV Aﬁlk N By, ¢ < (1 —e(k)N=F for any Ij.
Therefore, by sub-additivity,

PY{V(0x) > e(siy)} = PV {B}
N

<3 ()N

k=0 Iy
N
(kz) choices of Ik]

I
=t
=
]
=
o
8

IV. EXAMPLE: MIXED-INTEGER SCENARIO OPTIMIZATION
AND APPLICATION TO CONTROL WITH QUANTIZED INPUT

We have already observed that our setup contains as a particu-
lar case mixed-integer scenario optimization problems. These
are programs of the form

min
0ce’'n(R¥1 x2%2)

subject to § € Oy foralli=1,--- N,

(10)

where © C R%+42 is a closed subset and Z is the set of
integer numbers. Program (10) is an instance of (1) where
0=0'nN (Rdl X Zd2). Its peculiarity is that the optimization
vector 6 is partitioned in two parts, the second of which has
integer components, namely 6 = (y,60,), where 6; € R%
and 0y € Z%.

Mixed-integer restrictions to decision variables are often
encountered in practice, and scenario programs as in (10)
find application in manifold contexts. On the other hand,
developing a generalization theory for mixed-integer scenario
optimization along ‘“classical” routes where one a priori
bounds the length of the support sub-sample leads to
conservative results. In [7] it is shown that, when f(6) = ¢76,
©' is convex and ©y are convex for all §, the length of a
minimal support sub-sample is bounded by (d; + 1)2% — 1,
see also [3]. The exponential growth in dy poses severe
limitations to the applicability of this result to problems other
than those with a low dimensional optimization vector, [20].
Things get worse if the convexity assumption on ©' and
O; is relaxed since no bounds to the length of the minimal
support sub-sample are available in this case.

Despite the large a priori bound (d;+1)2% —1, often a support
sub-sample with way fewer elements than (d; + 1)2% — 1
is a posteriori found. Hence, by adjusting the value of € to
the length of the support sub-sample computed a posteriori
as the theory developed in this paper suggests, one can draw
significant conclusions about the violation of the solution 67,.

All these aspects are more concretely presented on an example
for the control of an uncertain linear system with quantized
inputs.

A. Control with quantized inputs

Consider the discrete-time uncertain linear system
z(t + 1) = Az(t) + Bu(t), (11)

where z(t) € R? is the state variable, u(t) € R is the control
. T N .
input, B =[ 0 0.5 | is deterministic, and A € R?*? is
uncertain, with independent Gaussian entries with means

0.8

- -1
A= { 0 -09 } ’
and standard deviation 0.02 each. Here, we identify a
matrix A with a § in the general theory. The initial state
. T
of the system is zg = [ 11 ] . Moreover, due to

actuation constraints, the input is chosen from a finite set:
u(t) el :={-5,---,-1,0,1,--- ,5}.

z(0) = xo,

The control objective is that of driving the system state close

to the origin in 7' = 8 time instants by choosing a suitable

input sequence u(0),--- ,u(T — 1). Since z(T) = ATxy +
AT Bu(), if we let

R=[B AB AT1B ]

and

w=[u(T-1) wT-2) - w©)]

the problem can be formulated as that of selecting w in order
to make ||ATzq + Ru“OO = ||z(T)||,, as small as possible,
where || - || is the maximum norm. Finite-horizon, open-loop
problems like this one are common as single steps of more
complex receding-horizon MPC schemes; other times, they
arise as stand-alone problems in sensor-less environments
in which no feedback is possible (e.g. positioning of an
end-effector when no exteroceptive sensors are available).
The example here is a toy version of these problems used for
the purpose of illustrating the theory.

Figure 4 shows the final states z(8) for N = 1000
draws of A®) when: (a) no control action is applied
(u(t) = 0 for t = 0,---,7); (b) the optimal control
sequence for the nominal system (A,B), which is
u = [—2 3 -2 4 3 -5 2 —5} , is applied.
Figure 4(a) shows that relying on the state contraction
property alone does not suffice to get close to the origin in
8 time instants, and Figure 4(b) gives evidence of the fact
that relying on a nominal controller design is inappropriate
because there is too much dispersion due to uncertainty in
the final state. Hence, some robustness must be incorporated
in the design.

To this purpose, we resorted to the scenario approach. Pre-
cisely, the N = 1000 scenarios A()’s were used to construct
the scenario program:
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0.5 :
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Figure 4. Final state for 1000 systems: (a) no control action; (b) nominal
controller.

min  h
heR,ucld
subject to H(A(i))To:O + R(i)uH <hforalli=1,---,N,
- (12)
which aims at finding a discrete control sequence w so as
to minimize the largest deviation (for the various A()’s)
of x(8) from the origin. Program (12) is a mixed-integer
program in the form (10), with d; = 1 corresponding to
h and do = 8 corresponding to u. It can be tackled by
means of standard numerical solvers like those supported
by the optimization modeling interfaces YALMIP [26] and
CVX [2T§4], [24]. We used yaLMIP equipped with TBM ILOG
cPLEX and the solution was (h*,u*) with h* = 0.0257
anduw*=[1 -1 -4 3 5 —4 -2 4]

Figure 5(a) displays the final states x(8) for the 1000 A()’s
used in (12) (note the different scale on the axes of this figure
as compared to Figure 4) when the controller obtained from
(12) is used. The same figure also represents the box in the

0.1 @) 0.1 ®)
0.05 0.05
o]
0 0 %

-0.05 -0.05

-0.1 -0.1
-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1

Figure 5. Final state for 1000 systems: (a) scenario controller; (b) validation
test.

maximum norm of size h* = 0.0257.

The final states plotted in Figure 5(a) refer to situations that
have been used in (12) to determine (h*,w*). A natural ques-
tion to ask is how well u* performs when it is applied to a new
matrix A. This question refers to the robustness of the method
against cases that have not been incorporated in the design.
In answering this question, we feel advisable to compare
alternative approaches. The upper bound of [7] to the length
of the minimal support sub-sample is (d; + 1)2% — 1 = 511,
which is too large to draw any meaningful conclusion. On the
other hand, by resorting to the greedy algorithm 5y of Section

length of s%, | 3 4 5 6 7

emp. frequency - N = 250 16% 32% 38% 10% 4%
emp. frequency - N = 500 9% 35% 40% 13% 3%
emp. frequency - N = 1000 | 5% 26% 35% 26% 8%
able 1
EMPIRICAL FREQUENCIES WITH WHICH s*N TOOK VALUE 3, ...,7 FOR

N = 250, N = 500, AND N = 1000.

IT — which here consists in removing one constraint
H(A(i))Txo + R(i)uH <h
o0

at a time in succession and to discard it if the solution
remains the same — we were left with an irreducible support
sub-sample with length s3,0, = 3. Hence, choosing 3 = 1076
(practical certainty), and using the function £(-) in (7), we
found e(sip99) = €(3) = 0.039. According to Theorem
1, with confidence at least 1 — 3, the solution (h*,u*)
is e(s}goo)-feasible, which in the present context means
that ||z(T)|,, = HAT$0+R“*||OO > h* happens with
probability at most £(sig). In our case this becomes
P{|lz(8)||,, > 0.0257} < 3.9%, ie. (8) is in the box
in Figure 5(a) with probability at least 96.1%.” To further
illustrate this point, Figure 5(b) shows the final state reached
by a new sample of 1000 simulations.

The whole problem was then repeated 100 times, each time
with a new sample of 1000 scenarios A(*). Different u* were
obtained, but h* was always within the range [0.0211, 0.0326],
and sy, was always between 3 and 7, resulting in £(s ()
within the interval [0.039,0.0591]. We also verified whether
the claim P {||z(8)||, > h*} < e(s7p00) Was true and this was
so in all the experiments. This behavior was expected since
Theorem 1 guarantees that P {||z(8)| > h*} < &(s7p00)
holds true with very high confidence 1 — 1075,

Finally, the sensitivity of s% to the sample size N was tested
via Monte-Carlo simulation with N = 250, 500, 1000. The
value of s}, was always between 3 and 7, and Table I gives
the empirical frequencies with which s, took each of these
values. One can notice a slight tendency to have longer support
sub-samples for larger values of N. This tendency is however
very moderate and the growth of IV outdoes that of s3; so that
the guarantee £(s7%) turns out to be systematically higher for
larger values of V.

V. MISCELLANEA OF OTHER PROBLEMS

This section is meant to illustrate the generality of the theory
and a selection of decision problems taken from various fields,
including number theory, computer science, and geometry, is
presented to which the results of this paper are applied.

A. Greatest Common Divisor and Least Common Multiple

Let A = N = {1,2,3,---}, equipped with a discrete
probability P. Let ®© = N and, for any § € A, let Os be

"Notice that to rigorously obtain this result we do not have to require that
our software returns the optimal solution to the problem.



the set of all the divisors of d, that is, ©5 = {n € N: n | §}
where n | 6 means that n divides §. Consider an independent
sample (61, ... 6(™)) and construct the following scenario-
based optimization problem®
Oy = arg maxn
neN
subject to n | 8@ foralli=1,---,N.

Its unique solution is of course the Greatest Common Divisor
(GCD) of the numbers 61, ... §(N),

In this problem, 8% violates O; if 83, does not divide §. Hence,
the interpretation of the statement PY {V(6%) > e(s%)} < 8
in Theorem 1 is that the probability of extracting a number
not divisible by 07 is with confidence 1 — 3 less than or equal
to e(s%), s being the cardinality of the smallest sub-sample
of (6, ... §(")) having the same GCD as (61, ..., §(V)),

Similarly, let A=N,©=N,0; ={n€©: ¢ | n} be the
set of all the multiples of §. The corresponding scenario-based
optimization problem
Oy = arg min n
neN
subject to 6 | nforalli=1,--- N

yields the Least Common Multiple (LCM) of (61, .. §(N))
as its unique solution. Theorem 1 establishes that the
probability of extracting a number which does not divide 6%
is with confidence 1— 3 less than or equal to e(s%;), s} being
the length of the smallest sub-sample of (5(1) ... §(N))
having the same LCM as (61, ... (M),

To illustrate this application we generated N = 4000 integers
from a geometric distribution with p = 0.85 and obtained for
the LCM problem a support sub-sample of length 12, whose
elements were 23, 27, 29, 31, 32, 33, 34, 38, 39, 41, 42, 50.
The corresponding LCM was 63,5, = 5920545668637600.
Using Theorem 1 with 8 = 1076 and the £(-) in (7), we
obtain that a further extraction will divide the LCM that has
been found with probability at least 1 —(12) =1 —2.52% =
97.48%.

B. Subspaces and bases

Let A be a vector space (not necessarily finite-dimensional),
equipped with a probability. Let © be the set of all the linear
subspaces of A, and, for any § € A, let O5 = {0 € © :
d € 0}. Let moreover f(f) = dim#, the dimension of the
subspace . Consider now an independent random extraction
(6, ..., 6()) and consider the following scenario-based

problem
Oy = argmin  dimé
0 {subspace of A}

subject to 8D ehforalli=1,--- N,

8This optimization problem can be cast within the framework of Example
1 in Section I by taking f(6) = —6. Similarly, in the examples of Sections
B, C and D we make reference to the optimization program in Example 1.
Subsection E, instead, presents a decision problem that cannot be formulated
in the form of Example 1.

whose unique solution is
0% = span{6), ... sV},

An irreducible support sub-sample for this problem is a
sub-sample of (61, .- 7<5(N)) whose elements form a basis
for span{d™), ... §(N)}, and the length of such a sub-sample
is sjy = dim#%,. Theorem 1 establishes that the probability
of extracting a vector which is not a linear combination of
s ... 50V) is with confidence 1 — 3 less than or equal to
e(dim 0%).

As an example of use of this result, suppose that a linear sys-
tem 20 — Az(t) + Bu(t), with z(t) € R? and u(t) € R, is
fed by a process u generated by a random source. The matrices
A and B and the structure of the random generator of u are
unknown. The system is initially at rest (x(0) = 0) and we
can observe the state z(7T') at a final time 7. Suppose that the
system is operated N = 1000 times, where each time the input
process is generated independently of the other experiments,
and that 1000 final states (1) (T), - - - | (1990)(T") are recorded
and the smallest subspace 07,,, of R? containing all final
states is computed. If 67, turns out to be a proper subspace of
R?, we may think that the system is not completely reachable
or that the source generating w is not sufficiently exciting. If
the system is not completely reachable, future inputs u will
generate final states x(7T") that do not explore the whole state
space R?. In any case, irrespective of whether the system
is reachable or not, we can apply the theory of this paper
with a given 8 and claim that x(T) € 67,0, holds with
probability at least 1 —e(dim 67,). For example, for d = 300
and B = 1075, if dim#jy,, = 7, then the claim is that
x(T) € 0709, With probability at least 94.1%.

C. Unseen symbols of an alphabet

Let A be a possibly infinite, but countable, alphabet, equipped
with a discrete probability. Let © be the set of all the finite
subsets of A, and forany 6 € Alet ©5 ={# € ©: ¢ €
0}. Let moreover f(0) = |0, the cardinality of #. Given an
independent random extraction (5, ... §(N)), the scenario-
based problem is written as

Oy = arg min 6]
0 {finite subset of A}

subject to 6D echforalli=1,--- N.

It prescribes to find the smallest subset of the alphabet that
contains all the observed symbols and its unique solution is of

course 0% = {60, §(M}. % An irreducible support sub-
sample of this problem is a sub-sample of (61, ... §(V))
containing all the elements appearing in {§(), ... §(N)}

exactly once. Its length s7; is the number of distinct symbols
observed.

The interpretation of Theorem 1 in this case is that the
probability of the set of all unseen symbols is with confidence
1—p3 less than or equal to £(number of already seen symbols).

This is the set containing all the sampled symbols where a symbol that
has been sampled twice or more times only appears once in the set.



This example has practical relevance in many problems in
communication and other, more exotic, fields like e.g.
bounding the probability of finding a new species of insect,
given that s}, species have been observed after capturing N
insects in a closed ecosystem under study.

We ran a simulation with a Poisson distribution with A = 3
over a list of symbols, and randomly extracted N = 1000
symbols. The number of distinct symbols in the extraction
was equal to 11. By an application of Theorem 1 with
B = 107° and using the £(-) in (7) we obtain £(11) = 7.69%,
which is interpreted as an upper bound to the probability of
seeing a new symbol at the next extraction.

A final remark is that if one moves up from considering a
countable alphabet to an uncountable one so that each symbol
in the alphabet has probability zero of being drawn, then each
new extraction will not coincide with a previously extracted
symbol with probability 1. Hence, the violation will be equal
to 1 no matter how large N is. In this case, s3y = N and
applying Theorem 1 coherently gives (N) = 1.

D. Largest substring

Let A = X* be the set of all strings of finite, but otherwise
arbitrary, length from a given alphabet 3 (including the empty
string), equipped with a discrete probability. Let © = ¥*, O
be the set of all the substrings of §, and f(0) = —length(0).
Given an independent sample of strings (61, ... 6(V)),
consider the following scenario-based problem
0y = arg max length(6)
oex*
such that 6 is a substring of 6@ for all i = 1,--- N,

whose solution is the largest substring common to all the
strings 0, 6(™) A solution always exists (possibly,
it is the empty string since e.g. ABC and XYz do not have
non-empty substrings in common), but it is not necessarily
unique (e.g., ABCDEFXYZ and ABCUVWXYZ have both ABC and
XYz as largest substrings). Suppose then that a lexicographical
order is employed as a tie-break rule.

Theorem 1 establishes that the probability of extracting a
string which does not contain 63 as a substring is with
confidence 1 — /3 less than or equal to £(s};), where s} is
the smallest number of strings from 6 ... §™) having
0% as the largest substring.

As an example of practical application of this setup one can
consider text analysis. Various texts of similar nature (e.g.
emails, reviews) are analyzed and their common substring is
determined. If for example 500 texts are analyzed and they
have the largest substring 03,, in common with a minimal
support sub-sample of length 11 (i.e., any group of 10 or
less texts have in common a longer substring), then, by
choosing 3 = 107%, we can claim that the probability that
a future text of the same kind will contain sj, is at least
1—¢(11) = 87.3%.
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E. Ball coverings

For any ¢ € R2 and r > 0, consider the closed ball
B(e,r) = {p € R? : |[p—c| < r}. Given a finite set of
points P = {p1,---,pn} in R? and a fixed radius r > 0, a
centered r-ball covering of P is a finite collection of balls
B; = B(cj,7), j = 1,--- ,n, such that each ball is centered
at a point in P (i.e., ¢; is equal to p; for some %), and such
that P C Uj_, B;. See Figure 6.

Figure 6. Centered r-ball covering.

Let now A = R? equipped with a probability P and let
(6M, ... 6(N)) be an independent sample from A. For a
fixed » > 0, consider the following problem:

find 0%, which is a minimal centered r-ball covering of
{5(1)7... 75(1\7)},

where minimal means that the number of balls of the covering
is the minimum possible.!® Since {B(6®),7)}N, is an
admissible covering, a solution to the problem always exists.
The solution, however, may not be unique (for instance,
in Figure 6, the rightmost ball can be also centered in the
other point contained in it to obtain another covering with
the same number of balls). We decide to single out one
solution by selecting the covering whose ball centers have the
minimum mean distance from the origin. If P admits density,

this tie-break rule isolates a single covering with probability 1.

A practical interpretation of the ball covering problem is
the following. Suppose that a service provider must install
n stations in order to serve N users. Each station must be
maintained by a user (hence it must be located at the user’s
position), and every other user is served if his/her location
is within a distance of r from at least one station. The
overall goal is to minimize the number of stations, while
the proposed tie-break rule minimizes the average distance
from the provider’s headquarters. Given a solution, one can
find a support sub-sample and apply Theorem 1 to establish
the probability of observing a new user who is not within a
distance of r from the deployed stations. If for example, with
1500 users, one finds that the support sub-sample is 12, with
3 =107°, one obtains £(12) = 5.8%, and the claim is that a
new user is not served with probability less than 5.8%.

10Note that, due to the requirement that the balls must be centered at points
taken from (& @ ... sV )), this problem cannot be formulated in the form
of an optimization program as in Example 1 in Section I.



APPENDIX

In this appendix, we further elaborate on the discussion
at the end of Section I and show that the results of [11]
cannot be recovered in the context of this paper. This
is done by exhibiting an example where the irreducible
support sub-sample has always length 2, but the cumulative
probability distribution of the violation is not dominated by
a Beta(2, N — 1) distribution as it would be if equations (2)
and (3) taken from [11] were valid.

Let A = {§ € R? : ||§]| = 1}, equipped with the uniform
probability P over the unitary circumference. Let © = R2. For
any 6 € A, consider the line 75 tangent to the circumference
at 6, and let ©; be the closed half-plane with boundary T}
that contains the origin (and hence the whole circumference).
Let (6(1), e ,5(N)), with N > 2, be an independent sample
of points/tangents from P, and consider the following problem:

among all the points of intersection of two tangent lines, find
the intersection 03 that satisfies all the constraints
0 € Osu, i=1,---, N, and that has maximum distance
from the origin.

(a) (b)
Figure 7. The feasible set: (a) polyhedron; (b) unbounded polytope.

In a typical situation, the intersection of the sets ©;u) is a
polyhedron (see Figure 7(a)), in which case the solution of the
problem is the feasible point furthest away from the center of
the circumference. It may happen, however, that all the points
6(1), ) (N) lie on the same half-circumference, so that the
intersection of the sets Oy is an unbounded polytope (see
Figure 7(b)). In this second case, the previous interpretation
for 6% is not valid any more, and for this reason this problem
cannot be reformulated as an optimization program in the
form of Example 1 in Section I.

A peculiarity of this problem is that s}, = 2 with probability
1. As a matter of fact, it is immediate to recognize that there
is a unique irreducible support sub-sample, given by the two
observations (5(i1),5(i2)) corresponding to the two tangent
lines passing through the solution 607%.

Then, one may be tempted to believe that equations (2) and
(3) with d = 2 hold true for the problem at hand. After all, the
only assumption required in [11] within the context of scenario
convex optimization to prove (2) and (3) with d = 2 is that
sy < 2. This result is however wrong as shown in Figure
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8, where, for N = 10, PN {V(0%) > ¢} for the problem at
hand is plotted'! and compared with Y°;_, (¥)e?(1 — )NV~
for N = 10, which is the dominating distribution in (2) and
(3). It can be seen from the figure that, for a given ¢, the
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Figure 8. PY {V(0%) > e} for the problem at hand (solid line) vs.
Lo (i1 — )N =7 (dotted line) for N = 10.

=0 \ 4

probability that V(0%,) > ¢ is for the problem at hand larger
than that given by (2) and (3). Hence, within the general setup
of this paper, results as strong as those in [11] cannot be
obtained. The very reason for this is that in the present example
one condition is missing which is instead always satisfied in
convex optimization (and, indeed, even in optimization without
convexity conditions): what fails to be true is that adding a
satisfied constraint may result here in a change of the solution
(in Figure 7(b) this is e.g. the case if a tangent with slope
high enough is added at the top of the circle), while this is
instead not possible when 8%, is the solution to an optimization
program.

0.1 0.2 03
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