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a b s t r a c t

Horizontal ground reaction forces (GRFs) due to human walking and swaying have been
investigated (respectively) through direct measurements using a treadmill and a set of
force plates. These GRFs have also been measured (or estimated) indirectly using accel-
eration data provided by inertial measurement units (IMUs).
One motivation for this research has been the lack of published data on these two forms of
loading that are generated by movements of the human body in the medio-lateral plane
perpendicular to the direction of walking or the direction faced during swaying. The other
motivation, following from successful developments in applying IMUs to in-situ vertical
GRF measurements, has been to identify best practice for estimating medio-lateral GRFs
outside the constraints of a laboratory.
Examination of 852 treadmill measurements shows that medio-lateral GRFs at the first
sub-harmonic of pacing rate can exceed 10% of body weight. Using a smaller and more
recent set of measurements including motion capture, it has been shown that IMUs can be
used to reconstruct these GRFs using a linear combination of body accelerations at each of
the lower back and sternum positions. There are a number of potential applications for this
capability yet to be explored, in particular relating to footbridge performance.
A separate set of measurements using force plates has shown that harmonic components
of medio-lateral dynamic load factors due to on the spot swaying can approach 50% of
body weight. Such forces provide a capability to excite horizontal vibration modes of large
civil structures with frequencies below 2Hz that are problematic for mechanical excita-
tion. As with walking, the ability to use IMUs to estimate medio-lateral swaying GRFs
outside laboratory constraints has been demonstrated. As for walking a pair of IMUs is
needed, but the best linear combination varies strongly between individuals, according to
swaying style. In-situ application of indirect measurement has been successfully demon-
strated through a very challenging application of system identification of a multi-storey
building, including estimation of modal mass.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC
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1. Introduction: lateral human forces on structures

The effects of lateral human dynamic forces on structures became infamous due to the well-publicised behaviour of two
footbridges celebrating the new millennium, Pont de Solferino [1] (now Passerelle L�eopold-S�edar-Senghor) and London
Millennium Bridge (LMB) [2]. These footbridges exhibited large amplitude lateral vibrations induced by lateral ground re-
action forces (GRFs) associated with a passage of crowds of pedestrians. Similar behaviours have since been identified on a
number of new [3,4] and also old [5] structures. The issue has been recognised as so critical to footbridge operators in respect
of pedestrian comfort and even safety, that provisions against this phenomenon have been made in a number of footbridge
design codes [6,7].

Early explanations of the build-up of vibrations relied solely on the notion of synchronisation of pedestrian footsteps to the
lateral structural motion [8]. Indeed, Arup e the consulting engineers behind the LMB, describe this mechanism as 'syn-
chronous lateral excitation' (SLE) or ‘lateral synchronous vibration’ and to this day this seems to be the most often purported
cause of excessive lateral response of bridges under the action of walking pedestrians [9]. According to this notion, there exists
a form of positive feedback between the pedestrian and structural behaviour whereby the vibrations prompt the pedestrians
to change their stride frequency, i.e. half the pacing frequency, such as to coincide with the frequency of structural motion.
Moreover, they adjust their phase so as to input energy into the vibrating structure thus increasing the vibration amplitudes,
which in turn causes more pedestrians to lock-in their steps [2]. Based on themeasurements from the LMB, Arup proposed an
empirical model for the critical number of pedestrians at which the structural instability is initiated, where each pedestrian is
treated as a source of negative damping to the structure. Although this model seems to agree with some full-scale obser-
vations [4], since it is based on the measured bridge response only it lacks insight into pedestrian behaviour hence its general
applicability can be considered uncertain. This motivated researchers to seek to explain the mechanics of human lateral
stability during walking and the bi-directional exchange of energy between the pedestrian and laterally oscillating structure
[10e12]. It has been shown that positive work on the structure can be done by the component of the pedestrian GRF in the
medio-lateral plane of the human body (medio-lateral GRF) even if the pedestrian stride frequency does not coincidewith the
frequency of bridge lateral oscillation. Study of the phenomenon has continued with laboratory experiments using laterally
oscillating treadmills [13e15]. The absence of pedestrian synchronisation in the presence of SLE has been observed experi-
mentally in a full-scale investigation [3] and in controlled laboratory conditions [16] so a more comprehensive explanation is
required. So far there has been no direct measurement of human lateral forces in situ on a full-scale footbridge experiencing
SLE, but while there is clear motivation to do this there are challenges.

The first challenge in doing this is in finding an SLE-prone footbridge not already fixed and whose owner will allow full-
scale study. This can, to some extent, be addressed using a laboratory analogue of a swaying bridge [17,18].

The second challenge, that has motivated the research described in this paper, is in measurement of the medio-lateral
GRFs synchronous with the bridge response in situ and during SLE. For a laboratory analog, limited direct measurement of
medio-lateral GRFs may be possible. However, for in-situ measurements the only possibility seems to be to use wearable
sensors such as pressure insoles [19,20] or inertial measurement units (IMUs) [21,22].

The medio-lateral GRFs that have caused problems in footbridges have themselves the potential to be used for the
identification of dynamic (modal) properties. The benefit of this approach for vertical GRFs has been proven [23e25] recently
by studies on footbridges using inertial measurement units (IMUs) conventionally used in biomechanics research. It is logical
to extend the idea to using and measuring medio-lateral GRFs.
1.1. Humans as lateral force generators for experimental investigation of structure dynamic properties

Using humans to force vibrations in structures during dynamic investigations is particularly common in the study of
vibration serviceability of floors, footbridges and stadia. Proof testing of the first Wembley Stadium in 1923 used a crowd
swaying and stepping [26], and metronome-prompted walking is now standard procedure during vibration serviceability
checks for footbridges and floors [27,28].

Until recently only the response to human dynamic loads has been measureable, not the loads themselves. With proven
capability to measure in-situ vertical forces due to both walking [23] and jumping [24] it is now possible to study the
excitation mechanism in detail as well as to evaluate the dynamic characteristics using standard procedures of experimental
modal analysis (EMA) [29].

The idea of EMA using human dynamic forces is attractive for twomain reasons. First, it avoids the logistical complexity of
mechanical excitation that is heavy, cumbersome and requires an electrical power supply, sometimes driving a hydraulic
power pack. Second, the dynamic forces generated can be substantial.

These dynamics forces in the vertical direction (vertical GRFs) are usually defined in terms of their activity rate fp which for
walking and jumping is the footfall rate. The activity rate fp is also used for bobbing which is like jumping but involves
constant double stance. The GRFs are normalised by body weight (Wp), to form the dynamic load factors (DLF) an, which can
reach almost twice body weight [30]. Typically a GRF is represented as a summation of perfect sinusoids at multiples of fp and
scaled by DLFs:
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where 4n is the phase angle of the nth harmonic of fp and NT is the total number of harmonics.
These GRFs are greater than those that can be generated by the type of shaker typically used for modal testing [31] for

which the maximum sinusoidal force amplitude of 445 N is available only above 2.3 Hz.
The frequency range of GRFs is also self-evidently better matched to natural frequencies of structures sensitive to human

dynamic loading. The feasible range of human activity rates fp is limited to a narrow frequency band up to approximately 4 Hz,
depending on the activity, but because the vertical forces are not perfectly sinusoidal, much of the force is contained in higher
harmonics.

The capability for forced vibration testing using human ‘shakers’ has been explored in more detail elsewhere for vertical
forces and response [24], so the aim of this paper is to study the nature of human medio-lateral GRFs and their application to
study of loading and response mechanisms for lateral vibrations in relevant structures.

Jumping is known to generate medio-lateral GRFs [32], but the greatest interest is for walking, where the largest medio-
lateral GRFs are generated at half the footfall or pacing rate, fh¼ fp/2. Very little information is available about these forces.
Published information in Ref. [33] gives a single DLF example as 0.04 for walking, while more recent data summarised in
Ref. [11] provide an average DLF¼ 0.04. Code provision for walking [34] in design for vibration serviceability is for a single
medio-lateral DLF value i.e. 0.1; for running, the quoted DLF is 0.2.

There is also very little information available on lateral forces generated by on the spot activities such as stepping or
swaying. Deliberate swaying has been used for free vibration testing of tall buildings and masts [35] and there is clear po-
tential for reliable structural characterisation if the forces can be measured.
1.2. Measuring medio-lateral GRFs

In the case of walking, the ideal means of recovering GRFs is to cover the entire walking path with force plates, but this
approach is prohibitively expensive and presents problems of data acquisition. Some studies have instrumented short sec-
tions of walkway [36,37] but these have not reported medio-lateral GRFs. Instrumented in-soles [38] are an alternative, also
complicated by expense and data fusion, but they do offer the possibility of measuring GRFs on a structure in motion.

In the case of jumping or swaying on the spot, individual force plates can be used for measuring GRFs both in the lab and
in-situ, although many force plates are too small for reliable use. Even so single force plates have been used for capturing
individual footfalls that have been used (with some assumptions) to generate DLFs used in practically all the current the UK
for design of floors, stadia, footbridges, etc.

The estimation of the GRFs using measured body kinematics and Newton's Second Law is an appealing alternative,
eliminating the need for force sensors at the point of contact:

GRFðtÞ ¼
XN
i¼1

miaiðtÞ (2)

wheremi is the mass of a body part i and ai is the corresponding acceleration at the centre of mass and the productmiai is the
inertia force. By summing inertia forces across N body parts the GRF can be estimated.

Initial investigations with this approach used Coda cameras to track active optical markers in a trial [39] that validated the
approach using a force plate as the reference sensor for recovering vertical jumping and bobbing forces. Body part masses for
this study were based on cadaver data and data from live humans [40] scaled by mass of the test subject. The same principle
has been used in optical motion capture systemmeasurements to estimate vertical GRFs for walking on the spot [41], showing
that a marker model with 19 passive markers can reproduce directly measured GRFs reliably.

The key challenge here for applying the principle to field measurements is that for reliable operation, optics-based motion
capture is effectively confined to laboratory environments within a limited spatial volume. IMUs are not restricted to labo-
ratory use but their previous use in fieldmeasurements [22] has been to recover timing information, not the GRFs themselves.

The discovery [23] that a single carefully placed inertial measurement unit (IMU) can capture the important features of
acceleration of a human body centre of mass has led to their application in moving force identification and experimental
modal analysis of a footbridge using the vertical component of GRF for walking and jumping [24]. This paper extends the
concepts to investigation of the medio-lateral GRF components and their use in forced vibration testing.
1.3. Structure of the paper

Initially a large database [42] of 852walkingmeasurements obtained using an instrumented treadmill and 85 volunteers is
used to identify the characteristics of medio-lateral GRFs for walking.
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Next a smaller sample of more recent treadmill walking tests is used to evaluate reliability of recovering medio-lateral
GRFs using IMUs and the reference (treadmill) GRFs checked against the larger data set. The process for estimating the
GRFs is described in detail, highlighting the difficulties in the process which are:

1. correctly resolving the IMUs accelerations to the medio-lateral plane,
2. fusing data streams from IMUs and treadmill using a separate acquisition system and
3. identifying the body location or the weighted combination of body locations required to provide the most reliable GRF

estimate.

Medio-lateral walking GRFs are relatively small compared to those that can be generated by deliberate swaying designed
to excite lateral vibrations of certain types of structures. Such swaying activity is not natural during human locomotion or (so
far) even entertainment and only has the purpose of modal testing. However, the potential of this approach is worth studying
as it would greatly simplify study of certain types of structure that are logistically challenging for conventional forced vi-
bration testing and EMA. Hence, using themethodology developed for walking, medio-lateral GRFs aremeasured for swaying
both directly and indirectly with a view to application in field testing.

The paper finishes with such an application, to vibration testing of a multi-storey building.

2. Medio-lateral walking GRFs

Experiments were carried out using an ADAL3D-F instrumented treadmill at the University of Sheffield [42]. This treadmill,
which is now out of service, was able to measure the vertical, medio-lateral and anterior-posterior components of the GRFs
for each foot for ambulation with belt speeds up to 10 km/h. The treadmill used a pair of belts moving on smooth surfaces
supported by piezoelectric triaxial load cells so as to capture the triaxial forces of the left and right feet (see Fig. 1).

2.1. Walking GRF database

From its installation in 2007 until 2014 the treadmill was used to acquire a database of 852 walking force time histories
from a diverse set of 85 volunteers: 57 males and 28 females, body mass 75.8± 15.2 kg (1s), height 174.4± 8.2 cm, age
29.8± 9.1 years [42,43]. Fig. 2 shows two samples from this database, for the same subject but different ends of their walking
speed range, as time series and discrete (fast) Fourier transforms (FFTs). The FFTs are (sinusoidal) amplitudes of GRF
component normalised by body weight and calculated using a time window T that includes an integer number of left and
right footfall pairs to minimise spectral leakage. These GRF samples are from the same subject for two pacing rates. The time
Fig. 1. Student on instrumented treadmill.



Fig. 2. Samples of medio-lateral GRF directly measured by treadmill as time series and FFT for the same subject at two different pacing rates and speeds: a)
1.66 Hz and 0.66m/s b) 2.17 Hz and 1.62m/s.
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series ofM data points sampled at fs¼ 200Hz are shown fromM/4 to 3M/4 samples for clarity, and FFT line spacing is fs/M¼ 1/
T.

For all subjects, the shape of the GRF time series changes from resembling a squarewavewith raised corners at low pacing
rates to one having enhanced edges at higher pacing rates, with increasing emphasis on higher harmonics.

The natural variability in what is effectively a narrow band random process [44] appears as a spread of spectral lines in
Fig. 2. For a perfectly periodic process, there would be a single line representing each harmonic, and the DLF would be simply
the value of the FFT line. Because vertical GRFs used to derive DLFs provided in design guidance [45,46] were obtained by
replicating a single footfall trace (from a force plate), they are by definition perfectly periodic and will have single lines at
multiples of the pacing rate fp so it is natural to assume the same applies to medio-lateral GRFs.

Since, GRFs obtained from continuous walking using a treadmill are a narrow band random process [44], the DLF is
calculated as the square root of the sum of the squares (SRSS) of FFT amplitudes centred on the frequency of the peak
value± 5% for all harmonics i.e. at multiples of fp. Gait asymmetry results in subharmonics in vertical GRFs at oddmultiples of
half the pacing rate fh¼ fp/2.

For medio-lateral GRFs the fundamental frequency is fh since the human body centre of mass executes a complete lateral
oscillation cycle for every pair of left and right footfalls. What Fig. 2 shows is force at oddmultiples of fh and (remembering the
logarithmic scale) negligible force at integer multiples of fp (evenmultiples of fh). This is significant because the constraints of
treadmill walking and the certain orientation of the force transducers mean that medio-lateral GRFs are orthogonal to the
walking direction. Hence it should be expected that medio-lateral GRFs measured indirectly using IMUs, whose local axes are
aligned with the canonical body axes, should also have negligible force at multiples of fp.

The DLFs obtained from all 852medio-lateral GRFs are summarised in Fig. 3. The first harmonic component at fh indicates a
DLF well above other published values corresponding to rigid surfaces [33,47] but consistent with the ISO 10137 value [34].
The first harmonic shows limited frequency dependence compared to 3rd, 5th and 7th harmonic components at 3 fh, 5 fh and
7 fh.

Subject to the constant treadmill belt speed, treadmill data naturally include variations in timing, shape, and level even if
(like force plate data) real world data freed of laboratory constraints would in some sense be different. They are however the
only currently available technology for direct measurement of walking GRFs and they provide the 'gold standard' for checking
indirect measurements via Equation (2) using optical markers and IMUs which can then be used as proxies in less restricted
environments.



Fig. 3. Lateral harmonics from walking (after [41]). The white diamonds are obtained from the experiments described in section 2.2.
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2.2. Walking GRF recovery using optical markers and IMUs

The ADAL treadmill was used in 2014 and 2015 as a reference in two studies on medio-lateral GRF recovery by application
of Equation (2). Six student subjects (s1-s6, 33 measurements) participated in 2014 and three subjects participated in 2015
(s7-s9, 24 measurements). Eight male students and one female participated, with weight mean and standard deviation 77 kg
and 12.5 kg, respectively. All tests involving human subjects were approved by the College of Engineering, Mathematics and
Physical Sciences Research Ethics Committee at the University of Exeter.

In both studies APDMOpal IMUswere used and treadmill analog signals were acquired using the data acquisition function
of a Codamotion (Coda) motion capture system. For the 2014 measurements (only), which are reported in Ref. [23], the full-
body 3D motion data were recorded using Coda active markers, but these data are not reported here.

The Opal IMUs were set to acquire data at 128 Hz. The Coda systemwas operated at 100Hz acquiring treadmill signals for
the anterior-posterior, medio-lateral and vertical directions from each belt, a total six channels. Low pass zero lag fourth-
order Butterworth digital filter was used to remove noise while preserving the frequency content corresponding to the
first four harmonics of fp and sub-harmonics (multiples of fh) of the walking GRF signal for the fastest pacing rate.

Themarker placement protocol was based on the full-body Plug-in Gait [48] and themarker arrangement is shown in Figs.
4 and 5 for tests conducted in 2014 & 2015, respectively. On both occasions IMUs were attached to seventh cervical (neck)
vertebra (C7) using medical tape, and sternum (ST), lower back (LB) and navel (N) using APDM straps. The data from the navel
were not used in the analysis as they produced poor quality data compared to the IMUs attached closer to bones.

The procedure described in Ref. [23] for validating the use of IMUs for recovering walking vertical GRFs has been adapted
for the case of medio-lateral GRFs. The IMUs were attached without particular concern for orientation since a major role of an
IMU is to report the orientation of its local coordinate system (LCS) and axis alignment compared to a world coordinate
system (WCS) of (magnetic) north, west and up. The process for identifying the IMU orientation is not specifically described
but manufacturer literature states that it uses “… a state space model with a Kalman Filter for orientation estimation. This
approach uses a complex fusion of the accelerometer, gyroscope, and magnetometer.” The orientation for each sample is reported
in the form of a quaternion, which is a four-component (time varying) vector that can be used (offline) to convert acceler-
ations reported by the IMU in LCS to accelerations in WCS. This is the first step in the processing.

Because the IMU and Coda data acquisition operated independently and used differing sample rates, the next step is to
resample the treadmill data (at 100 Hz) to the IMU sample rate (fs¼ 128Hz) then to align and merge two data streams.

The alignment is a two-step process. Opal IMUs can operate in two modes depending on the distance between a group of
synchronised IMUs, using 2.40e2.48 GHz industrial, scientific, and medical band radio for communication. For field use of a
set of IMUs in 'synchronised logging' mode, each IMU stores its own data and communicates with others to preserve syn-
chronisation. The IMUs start recording immediately they are removed from the docking station and stop when they are re-
docked, so an acquisition sessionwill record a continuous sequence of events. For laboratory use in 'synchronised streaming'
mode awireless access point (WAP) collects data transmitted by each IMU. In this mode, data acquisition can easily be started
and stopped in software for individual events and the WAP can be configured to output start and stop voltage trigger signals



Fig. 5. 2015 measurements with s7:s9.

Fig. 4. (a) Subject instrumentation layout for 2014 measurements with s1:s6. (b) location of Coda markers (blue circles) and Opal IMUs (orange squares). (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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to enable synchronisation with external devices. In the measurement sequence the Coda systemwas started before the IMUs
so the reference (treadmill or force plate) signal preceding the trigger can be truncated. This provides imperfect alignment so
a second alignment step finds a time shift for highest correlation between vertical GRF in the reference and the vertical signal
for an IMU at C7. C7 is used because it has been shown [23] to provide the closest match to the (treadmill) reference GRF. The
output from this process is GRFs in the treadmill or force plate (reference) coordinate system or RCS and IMU accelerations in
WCS.
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A second conversion is then required to rotate (yaw) IMU signals in WCS to the RCS. The rotation angle could be obtained
from the angle between RCS and magnetic north based on local magnetic declination data and maps and drawings of the
Fig. 6. Raw acceleration data from IMU on lower back (LB), in WCS, for subject s6 at natural pacing rate. N-north, W¼west, Z¼ up, (a) as time series and (b) as
FFTs.
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reference system location. For the treadmill at University of Sheffield, the anterior-posterior axis (walking direction) is 14�

west of north. This means that in WCS the north component of GRF should already be dominated by anterior-posterior GRF
which occurs at fp while the west component should be dominated by medio-lateral GRF at fh.

Fig. 6 shows, as time series (M samples) and as FFT lines (with spacing fs/M), one example of raw IMU accelerations inWCS,
before alignment with treadmill data, for lower back (LB) during pacing at 2 Hz. The character of vertical and anterior-
posterior GRFs is clear and as expected in the N (north) and Z (up) components respectively, but it is less clear that the
west (W) component for the IMU signal contains a medio-lateral GRF signal with the nature shown in Fig. 2. This leads to the
question of whether the IMU magnetometers provide for a reliable orientation consistent with the true orientation, and
whether there might be an alternative approach.

One such approach to obtain an improved alignment of data dominated by medio-lateral forces expected at fh and odd
harmonics is to rotate (yaw) theWCS acceleration data about the vertical axis so as tomaximise the force component at fh. The
resulting ‘optimal rotations’were found to differ between IMUs for the same subject so this approach was abandoned. Before
Fig. 7. Comparison of DLFs from individual IMUs with treadmill DLFs for a) C7, b) sternum (ST) and c) lower back (LB).
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reverting to the default 14� rotation, the reliability of the IMUmagnetometers for absolute and relative accuracy was checked
in laboratory and outdoor environments close to a range of different buildings around the campus of the University of Exeter
and confirmed to be within 5� in most cases and (with one exception) not exceeding 20�.

No IMU measurement had been made for an IMU aligned exactly to the treadmill axis (to check its reliability in that
specific case) so the default method used the 14� rotation before the time alignment step.

The final step in the process compares the medio-lateral GRFs obtained by IMU to the reference GRFs. As previously
mentioned, because a continuously recorded GRF is a narrow-band process, DLFs are obtained using SRSS of FFT line am-
plitudes and comparison is expressed as a ratio of GRFs obtained using IMUs to the directly measured reference values. Fig. 7
shows the comparison result for each IMU (C7, ST, LB) for the entire data set of 2014 and 2015 measurements, shading-coded
according to test subject. There is large scatter, reduced somewhat for LB measurements.

The scatter for ratios for a single IMU could be due to trunk sway, which varies among subjects with different gait styles, so
a better approachwould be a linear combination of IMU signals instead of the single IMU approach that workswell for vertical
GRFs [23]. The ideal approach would be an optimisation of a set of weighting factors for the four markers, summing to unity,
but a semi-qualitative approach was adopted for just two markers due to the strong requirement for minimal instrumen-
tation. Considering that pedestrians rotate their trunks about the anterior-posterior axis to some degree during the gait cycle,
a mix of upper trunk (C7, ST) and lower trunk (N, LB) should better reflect the inertia forces. Hence all possible pairs of C7 with
N or LB, and of ST with N or LB were examined individually in time and frequency domains and collectively by convergence of
DLFs around unity. Navel (N) data were less useful and while C7 was the best marker for recovering vertical GRFs [23], ST
worked better for recovering medio-lateral walking GRFs, in combination with lower back (LB) data.

A weighting of 30% lower back (LB) and 70% sternum (ST) appears to work best in terms of minimum standard deviation
around unity, and is a moderate compromise between best weighting for LB of 40% for 2014 data and 20% for 2015 data. Fig. 8
shows an example comparison for the record corresponding to Fig. 6, showing the time series ofM samples from 3M/8 to 5M/
8 samples in Fig. 8(a) and the FFT (with resolution fs/M) in the vicinity of fh in Fig. 8(b). The comparison for DLFs over all nine
subjects is shown in Fig. 9.

All records were used to generate the result, although it is clear from cross-talk between fh and fp frequency components,
and from other quality indicators such as fit of vertical GRFs and intra-subject pacing rate variability that some data points
could be excluded. These indicators could be used to judge reliability of field-acquired IMU data for reconstructing medio-
lateral GRFs.

Better results for a specific individual could be possible if a reference (treadmill) is always available to check, but the
complexity and cost of such a device defeats the simplicity of the process for general application. Hence applying a small
adjustment and adding a tolerance for data obtained using twomarkers would be a good approach. Given the stronger higher
harmonic components in IMU data compared to the reference it would not be advisable to use the method directly for
components at 3fh, 5fh etc. However, this might not be true for medio-lateral GRFs for a different type of motion such as
Fig. 8. Comparison of 30% lower back (LB) and 70% sternum (ST) signal with treadmill force for the record of Fig. 6 as: (a) time series and (b) FFT.



Fig. 9. Combining IMUs: ratio of DLF using IMU to DLF using treadmill for all subjects using comparison data of which Fig. 8 is an example.
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swaying on the spot, where contribution at higher harmonics can be very relevant and where IMUs could more reliably
represent forces at higher harmonics.

In summary, the best approach to indirect recovery of medio-lateral walking GRFs appears to be to transform the IMU data
toWCS, then to apply a second rotation about the vertical axis to alignwith the walking direction and finally tomultiply body
mass by a linear combination of lower back and sternum accelerations. The second rotation can be based on a static mea-
surement (if available) from an IMU aligned with the walking direction, alternatively using the known alignment of walking
direction. In most cases differences in IMU and actual alignment should lead to small cosine errors.
3. Swaying GRFs

Research to date on GRFs generated by swaying has focused on the effects of coordinated spectator swaying on grand-
stands. These studies have therefore usually considered the context of the vibrations by simulating the stadium environment
and swayingmotion, for example [49] where swayingwas used to inducemotion of a platform behaving as a horizontal single
degree of freedom oscillator. That study measured horizontal swaying forces with DLFs approximately 0.2, but dropping to
0.07 when swaying and platform natural frequencies coincided, and the authors found it impossible to sway at frequencies
above 2 Hz. More recently [50] sway forces due to swaying while standing or sitting were studied along with forces generated
as a side effect of jumping, again aimed at application to assembly structures such as grandstands. Sway forcesweremeasured
at five frequencies up to 1.5 Hz, with DLFs peaking at 0.15. Apparently in all these studies swaying was always with double
stance simulating conditions on assembly structures.

On the other hand, the maximum levels of sway forces that could be generated to shake buildings and towers for free
vibration testing [35] have not yet been measured. The technique has been demonstrated for the seven storey University of
Exeter Physics Building (Fig. 10 (a)). This is a substantial reinforced concrete structure with 22m� 16m floor plan for storeys
Fig. 10. Vibration testing of University of Exeter Physics building a) Physics Building, b) human shakers and c) build-up of response and decay on ceasing.
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2e7. Ambient vibration data established that the fundamental natural frequency in the y-direction as denoted on the left plot
in Fig. 10(a) is approximately 2.1 Hz. Hence three researchers (not instrumented with IMUs) attempted to excite this mode by
stepping at fp¼ 4.2 Hz, timed by a metronome to produce a cyclic lateral force at fh¼ 2.1 Hz, as shown in Fig. 10(b). The
induced response, shown in Fig. 10(c), was half the peak allowable acceleration level for vibration serviceability in a one-year
return period according to [34].

The exercise shows that human forcing is an attractive proposition for certain types of structure where forced vibration
may be unfeasible. It would be particularly attractive if the forcing function could be reliably measured, so that classical
experimental modal analysis techniques could be applied to the input/output data without the considerable logistical
expense of mechanical shaking. To test the hypothesis a laboratory study was used to compare medio-lateral GRFs obtained
by IMUs with reference GRFs.

3.1. Swaying GRF measurement using force plate array

A series of experiments on 15th September 2016 at Shuguang Hospital, Shanghai, was designed to measure the medio-
lateral GRFs during swaying both directly (as a reference) using an array of four force plates and indirectly using Opal
IMUs. The arrangement of four AMTI force pates (Fig. 11) ensured that the complete GRF was recorded with very little re-
striction on stance so that feet could be planted quite far apart for maximum effect.

Test subjects were s10 (weight 868 N), s11 (875 N) and s12 (645 N), swaying with metronome-prompted stepping rates
from a sedate 40 footfalls per minute to a very energetic 240 footfalls per minute (fp¼ 0.667Hz to fp¼ 4Hz), corresponding to
sway frequencies of fh¼ 0.333 Hz to fh¼ 2 Hz. For these datasets, the test subjects alternately lifted left and right feet. In
addition, s10 swayed without lifting feet at frequencies from fh¼ 0.417 Hz to fh¼ 1.167Hz, above which it was physically
impossible to maintain a double stance, keeping both feet on the ground at all times. Selection of participants and the test
protocol satisfied the requirements of the Tongji University Medical Ethics Committee.

Fig. 12 shows three sample time series of M samples at fs¼ 128Hz and their corresponding FFTs with resolution fs/M.
Review of the time series shows that as fh increases, the shape of the medio-lateral GRFs (when lifting feet) begins with sharp
accentuated corners as with Fig. 12(a), leading to relatively strong odd harmonics to high order. The corners flatten to make
the footfall sequence more closely resemble a squarewave (Fig. 12(b)), increasing the third harmonic at the expense of higher
harmonics, while at the highest frequencies the GRFs adopt a triangular shape with relatively weak third harmonic
(Fig. 12(c)).

GRFs peak for a stepping rate around 180 footfalls per minute (fh¼ 1.5 Hz) and it is difficult (but not impossible) to sway
faster than 240 footfalls per minute, corresponding to horizontal structural modes above 2 Hz.

Medio-lateral DLFs for the set of 53 records are summarised in Fig. 13 for first and third harmonics, reflecting these ob-
servations. The third harmonic peaks around 3fh¼ 2.5 Hz and declines slowly, showing the potential to excite modes above
2 Hz.
Fig. 11. Swaying on force plate array.



Fig. 12. Sample swaying medio-lateral forces as time series and as FFTs. (a) s10 swaying at 90 footfalls per minute (fh¼ 0.75 Hz) (b) s10 swaying at same rate but
without lifting feet (c) s12 swaying at 180 footfalls per minute (fh¼ 1.5 Hz).

Fig. 13. DLFs for swaying showing peak force amplitude and (for reference) the APS 400 characteristic.
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For comparison with capability of mechanical shakers, the theoretical maximum force output for an APS 400 shaker (APS
Dynamics Ltd) is shown by the gray line in Fig. 13. This force characteristic is based on the shaker stroke (158mm), mass of
armature plus the standard set of reaction masses and peak motor force (445 N), and in real world conditions is not easily
achieved. The theoretical DLF is obtained based on shaker total mass of 91 kg so it can be compared (almost) directly with s10
and s11 DLFs. The ‘human shaker’ is clearly more effective below 2Hz.

The APS 400 is commonly used for forced vibration testing of a range of structures, although its mass of 73 kg for themotor
body and armature and 18 kg for themasses makes it logistically challenging tomanage on construction sites. Fig.14(a) shows
an example of this type of shaker in use for modal testing of Changi Mezzanine Bridge, Singapore [51] where the force output
at the first lateral mode natural frequency was below 100 N. The rising force characteristic of the APS 400 (Fig. 13) can be
shifted to a lower frequency band (reaching maximum value at 0.5 Hz) to achieve better performance at low frequencies by
setting the shaker to drive a slip table loaded with 600 kg of extra mass (Fig. 14(b)). Even more powerful systems can be
arranged using hydraulic actuators driving a slip table, but such arrangements are even more challenging logistically. The
trolley arrangement (Fig. 14(b)) while remaining a ‘gold standard’ has been used once only, since the process of shipping and
assembling almost 1000 kg of equipment per shaker dominates all other considerations. The opportunity to use the test team
themselves as shakers for low frequency structures is very attractive, trading off some reduced accuracy and controllability
with far simpler and much more efficient site application.
3.2. Swaying GRF recovery using IMUs and comparison with force plate data

For the Shuguang Hospital study, Opal IMUs were attached to test subjects at C7 (taped), navel (N, using a tensioned belt),
sternum (ST, taped), lower back (LB, taped), forehead (H, taped) and right foot (RF, using a tensioned strap). A similar process
to that described in 2.2 was adopted to compare IMU and reference GRF data.

First the IMU data were converted to WCS, then the independently collected force plate data were resampled to the IMU
sample rate. Next, force plate data were time-aligned with the IMU data. The acquisition system provided no means for
acquiring an IMU trigger signal so a single alignment step was used based on stamping three times on the force plate and
aligning C7 and force plate vertical signals. Without pre-alignment by trigger signal, the starting point for searching for the
optimal alignment included a manual step of approximate visual alignment using a graphical cursor.

As for the treadmill walking data, optimal alignment was checked by maximising content at fh, but results were incon-
sistent, so the actual alignment of the force plate axis to the known direction of magnetic north was used.

GRFs obtained using IMUs were compared to the reference (force plate) DLFs using the same process used with the
treadmill data. A variety of combinations of ST, LB and C7 were tried (in pairs) for the four data sets: s10, s11 and s12 swaying
with no requirement for double stance and for s10 with both feet always on the force plate.

Fig. 15 shows the comparison (to force plate data) for combination of 10% of ST and 90% of LB for s10 in the two types of
swaying in the sameway that Fig. 8 compares walking M-L forces using a treadmill. Where a comparison can be made for the
lower range of fh, lifting feet induces a larger component of third harmonic.

Among the four data sets there was no overall best result, so the best combination is shown in Fig. 16 for each case, i.e. for
each test subject due to their personal styles of swaying. C7 data are not used in any of the combinations since they provide
worse comparisons than using ST. The average ratios are remarkably close to unity with small standard deviations whose
calculationweights the individual values by the correlation functions in time domain, and which are reflected by the shading
(dark is high correlation coefficient).
Fig. 14. APS 400 electrodynamic shaker (a) in use for footbridge testing and (b) with high-mass slip tables to extend low frequency capability.



Fig. 15. Comparison of 90% lower back (LB) and 10% sternum (ST) signal with treadmill force for s10 at 80 footfalls per minute (fh¼ 0.667Hz) as time series and as
FFT (a) with and (b) without lifting feet.
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4. Application of human shaker

Two potential applications of IMUs for investigating the effect of lateral GRFs on structural response in situ are to study
human-structure interaction (HSI) on footbridges and for forced vibration testing of a range of structures for which horizontal
modes are important (including footbridges). Study of HSI merits a separate investigation and also requires access to a
swaying footbridge, but there are many opportunities to evaluate the capability for modal testing. A simple example is
illustrated for the Tumu Building, Fig. 17, which houses the College of Civil Engineering at Tongji University.

The building is an irregular shape, and there has been nomodal test of the building, hence it presents an ideal opportunity.
A simple experiment was set up using a pair of low-noise (model: Lance) accelerometers and a set of Opals IMUs. The low
noise accelerometers were used based on experience with the University of Exeter Physics Building (Fig. 10(a)). In that study
IMUswere used only tomeasure structural response, and it was found that the 128 mg/√Hz noise floor resulted in a very noisy
signal. The low-noise (~1 mg/√Hz) accelerometers used in parallel produced a much clearer signal so the dual-sensor
approach was used at Tumu, with a pair of (Lance) piezoelectric accelerometers measuring the transverse response, in the
weak (narrow, YT) direction.



Fig. 16. Combining IMUs: ratio of (DLF using IMU) to (DLF using force plates) for three subjects and four data sets using comparison data of which Fig. 8 is an
example. (a) s10 with 10% ST and 90% LB (b) s10s with 45% ST and 55% LB (c) s11 with 100% ST (d) s12 with 55% ST and 45% LB.
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Among the various swaying exercises, themost useful waswith a single test subject (s10), with IMUs attached to C7, LB and
ST. One IMU was fixed to and aligned with the Lance accelerometer.



Fig. 17. Tumu Building, Tongji University a) front view, b) plan at measurement point. XT, YT are Tumu Building axes with shaking and Lance accelerometer
alignment in YT direction. Xm, Ym are magnetic north and west and Xo, Yo are orientation of Opal on Lance accelerometer according to quaternion data.
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Building natural frequency was estimated as 1.623 Hz using low level ambient acceleration signals acquired using the
Lance accelerometers, so stepping at metronome-prompted 194 footfalls per minute was used in an attempt to generate
maximum response. It was found that for the response levels generated, the building responded most with a stepping rate of
190 footfalls per minute. Acceleration data for the building during one of the four short swaying sequences are shown in
Fig. 18. The data have been band-pass filtered (1e2 Hz) and reveal clear build up and fast decay of building response. Despite
the filtering, the IMU (Opal) attached to the Lance accelerometer remains very noisy.

The Lance accelerations are already aligned transverse to the building axis (YT direction in Fig. 17) and IMU signals were
rotated to alignwith the same axis. The orientation of the IMU on the Lance accelerometer with respect tomagnetic north and
west (Xm, Ym) was found to be 27.5� (Xo, Yo) using the quaternion data from the IMU.While this differed from the true building
orientation (59.5�), the quaternion-based IMU orientationwas used to align body-mounted IMU accelerations to the building
coordinate system because the same quaternion data had been used to convert the accelerations in IMU LCS to accelerations
in WCS. In other words any error in the quaternion estimate is assumed to be common to all IMUs and is therefore cancelled.
The Lance and IMU signals were time-aligned using a similar procedure to the foot-tapping for the force plate alignment,
instead shaking the pair of (Lance and Opal) sensors gently to induce a common and recognisable signal.
4.1. System identification using IMU data

Data of Fig. 18 were used to estimate modal properties, specifically natural frequency, damping ratio and modal mass.
Natural frequency and damping estimation alone can rely on simple fitting of an exponentially decaying sine wave to free
decay data, a variant of the logarithmic decrement procedure. However, estimation of modal mass is a much harder prop-
osition, in fact it is extremely rare to find full-scale studies of tall buildings wheremodal mass estimation is reported, and rare
in general for all civil structures.

System identification (modal parameter estimation) was performed on the four swaying sequences of the sample data
shown in Fig. 18. Force (input) used 10% of sternum and 90% of lower back (0.1STþ0.9LB) scaled by body mass (89 kg) and
response (output) used the Lance signal.



Fig. 18. Lance and IMU accelerometers data signals in sensors or WCS with s10 swaying close to 190 footfalls per minute.
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The transfer function estimation tool of the MATLAB system identification toolbox [52] was used to estimate models with
two poles and one zero. Fig. 19 shows fitting of the third swaying sequence; the fitted model is:

a1sþ a2
s2 þ a3sþ a4

(3)
where s ¼ iu and which represents a receptance function [28]

1=kn
ð1� u=unÞ2 þ 2iznðu=unÞ

: (4)
This is ratio of displacement rather than acceleration-to force, but the fit did not work when the numerator of Equation (3)
was adjusted to be quadratic in s to represent the inertance function [29] (ratio of acceleration to force). The simple fix was to
correct a2 (which is at least 100 time larger than a1) using the (almost constant) squared circular frequency. The fit of the
model response to the (Lance) acceleration response in Fig. 19 corresponds to natural frequency (fn ¼ un=2p) 1.617 Hz,
damping (zn) 2.6% and modal mass (mn ¼ knu2

n) 2447 tonnes.
From the four jump sequences the estimates are summarised as:
Fig. 19. Curve fit of model (Equation (3)) using IMU-estimated forces to acceleration measuring by Lance accelerometer.
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mðmnÞ ¼ 2970 tonnes sðmnÞ ¼ 1140 tonnes
mðfnÞ ¼ 1:6905 Hz sðfnÞ ¼ 0:008 Hz
mðznÞ ¼ 2:8% sðznÞ ¼ 0:1%
The modal mass variance reflects the challenge in its identification which is problematic even with conventional input-
output data. [53] reports an error margin of 15% compared to modal mass estimates using a finite element model (FEM)
but such an approach can be highly inaccurate where mode shapes are not straightforward. An alternative approach is to
assume a simple mode shape and use construction drawings to estimate mass distribution. For Tumu Building, assuming
linear mode shape suggests a figure of 4000 tonnes, on the edge of the experimental estimates. Due to the complicated shape
of the building it is more likely that the experimental estimate is the more reliable, even with the high variance.

5. Discussion

In principle, the most reliable estimation of medio-lateral GRFs through application of Newton's Second Law would
require tracking of a large number of points on the human body, which is not feasible in open space using optical systems. So
far, the commercially available IMUs with the required capability are relatively expensive (in the range of a few thousand
dollars each) so they could not yet be used in large numbers. There is also a desire to reduce the scale of data acquisition since
one aim of in-situ recovery of GRFs is to investigate coordination, loading and HSI for multiple footbridge pedestrians [25]. It
was initially hoped that a single IMUwould be a reasonable proxy but it was found to be necessary to use two. Forwalking, the
general rule seems to be a 30% weighting of lower back and 70% of sternum accelerations, while for swaying it seems to be
necessary to use different combinations for different test subjects, due to very different swaying styles. In both cases it seems
remarkable that even with some apparently poor-quality data, the two-IMU proxy works well.

The biggest difficulty in this research has been the reliability and believability of IMU orientation data. The obvious tactic of
rotating data to resolve acceleration (hence force) components at fh and fp into separate directions fails because of large inter
and intra-subject variability. The alternative is to trust either actual orientation or orientation realised with the IMU. To check
the latter requires a separate IMUmeasurement in a known direction (i.e. treadmill or force plate axis), but the importance of
this tactic has only been revealed after the investigation. The tactic should, however be used in field application of the
method.

Applications to measuring medio-lateral walking GRFs in-situ remain to be explored, but the human shaker has been
evaluated and found to work in limited applications. In fact, the limitations are similar to those applying to mechanical
shaking. Specifically, the vibration mode should be distinct (in frequency) from other modes and it should be below 2Hz. The
human shaker experiment on the University of Exeter Physics Building (Fig. 10) was repeated with instrumented test subjects
with the aim of system identification as for the Tumu Building. The attempt was unsuccessful primarily because the building
fundamental mode frequency in the apparent stiffer direction is quite close, complicating system identification. Further, it
appeared that IMU orientation using quaternion data experienced unusually strong local variation so the tactic of measuring
in a known direction (i.e. the natural axes of the building for measuring its acceleration response) failed. The achievement
reflected in Fig. 10 could be repeated with some practice and greater care but that partially defeats the purpose of the simple
approach. The method is likely to be most effective for taller buildings and towers with fundamental mode frequencies not
close but below 1Hz, and for footbridges.

Finally, the method is not limited to a single human shaker. Following the principle identified in Ref. [53] for jumping, the
shaking is limited to only a few cycles, which is enough to build up response but not enough that slight differences in building
frequency have any significant effect. Hence a few well-coordinated volunteers could multiply the effect almost linearly. An
extra measurement on the Tumu Building used two people to test this, successfully.

6. Conclusions

Using a large dataset of treadmill-measured ground reaction forces (GRFs), medio-lateral dynamic load factors (DLFs)
exceeding 0.1 have been identified for first sub-harmonic of walking pacing rate. These DLFs are larger than those previously
published based on single footfall (force plate) measurements.

Inertial measurement units (IMUs) have been used successfully as a proxy for direct measurements of medio-lateral
walking GRFs, using a linear combination of body accelerations measured at the lower back (LB) and sternum (ST) posi-
tions, scaled by bodymass. Based on 57measurements form nine test subjects, themean DLF someasuredwas 3% higher than
the direct measurement with coefficient of variation 16.5%.

The main difficulty with the approach is the correct alignment of the IMU data with the walking data, although the
resulting cosine error based on a set of alignment checks around University of Exeter campus shows that usually this will have
little impact on the outcome. Orientation estimated using a fixed IMU can mitigate the error.

So far, the ability to measure medio-lateral walking GRFs in-situ has not been explored, but applications could include
investigations into coordination of pedestrian groups and energy flow in resonance excitation and synchronous lateral
excitation of footbridges.
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For swaying, direct measurements of medio-lateral GRFs for three test subjects using a set of force plates show that DLFs
can reach almost 0.5, with peak forces approaching 0.4 kN.

Unlike walking, there appears to be no ideal single linear combination of IMU body locations, but in each case a combi-
nation of ST and LB accelerations can be used as a reliable proxy. The reason for not being able to find a single best linear
combination is not yet identified but is likely to be due to very different swaying styles that can be expressed far more than for
walking.

It is possible to use the IMU-estimated GRFs for system identification of sway modes of civil structures, including esti-
mation of modal mass. Modal mass is rarely reported in examples of system identification as it is notoriously difficult to
measure accurately, so the reported application to a tall building is particularly useful.

To mitigate the effects of IMU accelerometer noise on low level vibration measurements (e.g. in tall buildings) it is sug-
gested to use simultaneous measurements with a low noise accelerometer, manually providing a clearly identifiable common
signal to both sensors for synchronisation. Alignment information from the same structure-mounted IMU can also be used to
orient the body-mounted IMU data.
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