Pulsed Laser Ablation: Advances and Applications in Nanoparticles and Nanostructuring Thin Films

Pulsed Laser Ablation: Advances and Applications in Nanoparticles and Nanostructuring Thin Films

Edited by Ion N. Mihailescu and Anna Paola Caricato

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Pulsed Laser Ablation: Advances and Applications in Nanoparticles and Nanostructuring Thin Films

Copyright © 2018 by Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4774-23-9 (Hardcover) ISBN 978-1-315-18523-1 (eBook)

Printed in the USA

Contents

Prefa	асе			xiii
1.	Surfa	ce Energy	and Nucleation Modes	1
	Maura Cesaria			
	1.1	Introd	uction	2
	1.2	Therm	odynamic Background Concepts	5
		1.2.1	Thermodynamic Potentials and Surface	
			Free Energy	5
		1.2.2	Phase Transformations of a	
			Thermodynamic System and	
			Supersaturation	8
		1.2.3	Strain and Epitaxial Growth	9
	1.3	Therm	odynamic Nucleation Theory and Growth	
		Modes	;	13
		1.3.1	Principles of Nucleation Theory	14
		1.3.2	Growth Modes at Thermodynamic	
			Equilibrium	20
	1.4	Eleme	ntary Kinetic Processes on Surfaces and	
		the En	ergy Landscape	25
		1.4.1	Adsorption, Real Substrates, and	
			Surface Elementary Processes	26
		1.4.2	Characteristic Kinetic Coefficients,	
			Energy Barriers, and Timescales	30
	1.5	Conde	nsation Processes and Kinetic-Driven	
		Growt	h Modes	34
		1.5.1		35
		1.5.2	5 5 7	
			Island Coalescence, and Growth Modes	37
		1.5.3	Microstructure Evolution	42
	1.6	-	ition Techniques in Nanoscience and	
			tages of the Pulsed Laser Approaches	46
	1.7		h Opportunities by the PLD Technique	50
		1.7.1	Distinctive Characteristics of the PLD	
			Approach	51

vi Contents

	1.8	1.7.2 Conclı	Growth Manipulations by PLD isions	59 68
2.			aser Ablation and Processing of Solid uum or in a Low-Gas Atmosphere	85
	Vincen	zo Resta	a, Ramón J. Peláez, and	
		Paola Ca	-	
	2.1	Introd	uction	85
	2.2	Plasm	a Dynamics and Expansion	86
		2.2.1	Plasma Parameters: Temperature	
			and Density	91
		2.2.2	Plasma Composition: Atom and Ion	
			Distribution/Yields	93
	2.3	Produ	ction of Metal Nanoparticles by Pulsed	
		Laser	Deposition	100
		2.3.1	Dependence with the Number of	
			Laser Pulses in the Metal Target	101
		2.3.2	Dependence with the Laser Fluence	106
		2.3.3	Peculiarities of Pulsed Laser	
			Deposition in Nanoparticle Formation	
			and Dependence with the Substrate	110
	2.4	Therm	nal Process	113
		2.4.1	Substrate Temperatures	113
		2.4.2	Postheating by Laser Irradiation	115
3.	Nanos	econd L	aser Ablation of Solid Targets in a	
	High-P	ressure	Atmosphere	131
	Sebast	iano Tri	usso, Fortunato Neri, and	
	Paolo	Maria O	lssi	
	3.1	Introd	uction	132
	3.2	Compa	arison between Some Basics of Laser	
		Ablati	on in Vacuum and in a Gas at High	
		Pressu	ire	133
	3.3	Nanop	particle Synthesis and Assembling	
		upon A	Ablation in a High-Pressure Gas:	
		Select	ed Examples	136
	3.4	Depos	ition of Noble Metal Nanoparticle	
		Arrays	s for Application in Biomedical Sensing	142
	3.5	Conclu	isions	150

4.		second Laser Ablation of Solid Targets in n and Low-Pressure Gas Atmosphere	155		
	Salvatore Amoruso				
	4.1	Introduction	156		
	4.2	Experimental and Theoretical Analyses of			
		the Early Stage of Femtosecond Laser Ablation	161		
	4.3	Experimental Analysis of Late Stages of			
		Femtosecond Laser Ablation and Plume			
		Propagation	167		
		4.3.1 High-Vacuum Expansion	168		
		4.3.2 Propagation in a Low-Pressure	. – .		
		Background Gas	174		
	4.4	Femtosecond Laser Ablation of Thin Films	179		
	4.5	Nanoparticles and Nanoparticle-Assembled	100		
	1.0	Films Conclusions	180		
	4.6	Conclusions	182		
5.	Short-F	Pulse Laser Near-Field Ablation of Solid Targets			
	under Liquids				
	M. Ulmeanu, P. Petkov, F. Jipa, E. Brousseau, and				
	M. Onneuna, F. Feckov, F. Jipa, E. Brousseau, and M. N. R. Ashfold				
	5.1	Introduction	193		
	5.2	Working Principle of the LILAC Lithography	170		
		Technique	195		
		5.2.1 Preparing the Si Substrates	196		
		5.2.2 Preparing the Colloidal Mask	197		
		5.2.3 Laser Processing Parameters	198		
		5.2.4 Focusing the Laser Beam through the			
		Liquids	198		
		5.2.5 Finite-Difference Time Domain			
		Simulations	200		
	5.3	Experimental Demonstrations	202		
	5.4	Conclusions	204		
6.	MAPLE	Deposition of Nanomaterials	207		
	Enikö György and Anna Paola Caricato				
	6.1	Introduction	208		
	6.2	Ultraviolet Matrix-Assisted Pulsed Laser			
		Evaporation	215		

	6.3	Infrared Matrix-Assisted Pulsed Laser				
		Evaporation				
	6.4	Inverse Matrix-Assisted Pulsed Laser				
		Evaporation				
	6.5	Conclu	isions		236	
7.	Thin Films and Nanoparticles by Pulsed Laser					
	Deposi	tion: W	etting, Ad	lherence, and Nanostructuring	245	
	Carme	n Ristos	cu and Ior	n N. Mihailescu		
	7.1	Introd	uction		246	
	7.2	Wettin	ıg		248	
		7.2.1	Definitio	ons	248	
		7.2.2	Case Exa	amples	251	
	7.3	Adhere	ence		254	
		7.3.1	Basic Me	echanisms	254	
		7.3.2	Investig	ations and Examples	255	
	7.4	Nanos	tructuring	5	258	
		7.4.1	Definitio	ons	258	
		7.4.2	Imaging	of Nanostructures	259	
			7.4.2.1		259	
			7.4.2.2	Differential evanescent light		
				intensity imaging	260	
		7.4.3	Nanostr	ucturing with Advanced PLD		
			Techniq		262	
		7.4.4	Applicat		265	
			7.4.4.1	0 0 0	265	
			7.4.4.2		266	
			7.4.4.3	Nanoparticles for SERS	267	
	7.5	Conclu	isions		268	
8.	Core-S	hell Nan	oparticle	s for Energy Storage Applications	277	
	Manisł	n Kothak	konda, Bri	ley Bourgeois, Brian C. Riggs,		
	Venkat	a Sreen	ivas Puli, İ	Ravinder Elupula,		
	Muhan	nmad Ej	iaz, Shiva	Adireddy, Scott M. Grayson,		
	and Do	ouglas B	. Chrisey			
	8.1	Introd	uction		278	
	-	8.1.1		rticle Property Selection	280	
		8.1.2	-	rticle Synthesis	281	
			8.1.2.1	Core-shell nanoparticles		
				prepared by the grafting-from		
		route				

			8.1.2.2	Core-shell nanoparticles	
				prepared by the grafting-to	
				route	283
	8.2	Experi	mental Se	ection	286
		8.2.1	Nanopai	ticle Synthesis	286
		8.2.2	Nanopai	ticles Synthesis by Pulsed	
			Laser Ab	olation	288
		8.2.3	Synthesi	s of BaTiO ₃ Nanoparticles	
			by the Se	olvothermal Method	289
		8.2.4	Polymer	ization of Nanoparticles	292
			8.2.4.1	Synthesis of PGMA-BaTiO ₃	
				core-shell nanostructures	
				by grafting-from	292
			8.2.4.2	Synthesis of PVDF-HFP-	
				GMA-BaTiO ₃ core-shell	
				nanostructures by grafting-to	294
	8.3	Materi	als Chara	cterization	295
	8.4	Experi	mental Ol	oservation	296
		8.4.1	Dielectri	ic Properties and Leakage	
			Current	Behavior	299
	8.5	Conclu	sions		303
					505
~					505
9.	-	article G		n by Double-Pulse Laser	
9.	Ablatic	article G on	ieneratio		313
9.	Ablatic	article G on	ieneratio	n by Double-Pulse Laser a E. Itina, and Jörg Hermann	313
9.	Ablatic Emanu 9.1	article G on el Axent Introdu	Generatio <i>te, Tatiano</i> uction	a E. Itina, and Jörg Hermann	
9.	Ablatic Emanu	article G on <i>eel Axent</i> Introdu Typica	Generation <i>te, Tatiano</i> uction l Experim	a E. Itina, and Jörg Hermann ental Design for Laser–Matter	313
9.	Ablatic Emanu 9.1	article G on <i>lel Axent</i> Introdu Typica Interac	Generation te, Tatiand uction l Experim ctions wit	a E. Itina, and Jörg Hermann ental Design for Laser–Matter h Double Pulses	313
9.	Ablatic Emanu 9.1	article G on <i>eel Axent</i> Introdu Typica	Generation te, Tatiano uction l Experim ctions wit Collinea	a E. Itina, and Jörg Hermann eental Design for Laser–Matter h Double Pulses r Double-Pulse Interaction	313 314 317
9.	Ablatic Emanu 9.1	article G on Introdu Typica Interac 9.2.1	Generation te, Tatiano uction l Experim ctions wit Collinea Geometr	a E. Itina, and Jörg Hermann nental Design for Laser–Matter h Double Pulses r Double-Pulse Interaction Ty	313 314
9.	Ablatic Emanu 9.1	article G on <i>lel Axent</i> Introdu Typica Interac	Generation te, Tatiano uction l Experim ctions wit Collinea Geometr Orthogo	a E. Itina, and Jörg Hermann eental Design for Laser–Matter h Double Pulses r Double-Pulse Interaction ry nal Double-Pulse Interaction	313 314 317 318
9.	Ablatic Emanu 9.1	article G on Introdu Typica Interac 9.2.1 9.2.2	Generation te, Tatiano uction l Experim tions wit Collinea Geometr Orthogo Geometr	a E. Itina, and Jörg Hermann eental Design for Laser–Matter h Double Pulses r Double-Pulse Interaction ^{Ty} nal Double-Pulse Interaction	313 314 317
9.	Ablatic Emanu 9.1	article G on Introdu Typica Interac 9.2.1	Generation te, Tatiano uction l Experim tions wit Collinea Geometr Orthogo Geometr Experim	a E. Itina, and Jörg Hermann eental Design for Laser–Matter h Double Pulses r Double-Pulse Interaction ry nal Double-Pulse Interaction ry eent for NP Generation with	 313 314 317 318 318
9.	Ablatic Emanu 9.1 9.2	article G on Introdu Typica Interac 9.2.1 9.2.2 9.2.3	Generation te, Tatiano uction l Experim ctions wit Collinea Geometr Orthogo Geometr Experim Delayed	a E. Itina, and Jörg Hermann eental Design for Laser–Matter h Double Pulses r Double-Pulse Interaction ^{Ty} nal Double-Pulse Interaction ^{Ty} eent for NP Generation with Short Laser Pulses	313 314 317 318
9.	Ablatic Emanu 9.1	article G n lel Axent Typica Interac 9.2.1 9.2.2 9.2.3 Investi	Generation te, Tatiano uction l Experim ctions wit Collinea Geometr Orthogo Geometr Experim Delayed gation of	a E. Itina, and Jörg Hermann eental Design for Laser–Matter h Double Pulses r Double-Pulse Interaction 'y nal Double-Pulse Interaction 'y eent for NP Generation with Short Laser Pulses Nanoparticles Produced by	 313 314 317 318 318 319
9.	Ablatic Emanu 9.1 9.2	article G on Introdu Typica Interac 9.2.1 9.2.2 9.2.3 Investi Short I	Generation te, Tatiano uction l Experimi tions wit Collinea Geometri Orthogo Geometri Experimi Delayed gation of Double-Pu	a E. Itina, and Jörg Hermann eental Design for Laser–Matter h Double Pulses r Double-Pulse Interaction ry nal Double-Pulse Interaction ry eent for NP Generation with Short Laser Pulses Nanoparticles Produced by ilse Laser Ablation of Metals	 313 314 317 318 318
9.	Ablatic Emanu 9.1 9.2	article G n lel Axent Typica Interac 9.2.1 9.2.2 9.2.3 Investi	Generation te, Tatiano uction l Experim tions wit Collinea Geometr Orthogo Geometr Experim Delayed gation of Double-Pu Correlat	a E. Itina, and Jörg Hermann eental Design for Laser–Matter h Double Pulses r Double-Pulse Interaction y nal Double-Pulse Interaction y eent for NP Generation with Short Laser Pulses Nanoparticles Produced by ilse Laser Ablation of Metals ion between Ablation	 313 314 317 318 318 319
9.	Ablatic Emanu 9.1 9.2	article G on Introdu Typica Interac 9.2.1 9.2.2 9.2.3 Investi Short I	Generation te, Tatiano uction l Experim tions wit Collinea Geometr Orthogo Geometr Experim Delayed gation of Double-Pu Correlat Efficience	a E. Itina, and Jörg Hermann ental Design for Laser–Matter h Double Pulses r Double-Pulse Interaction Y nal Double-Pulse Interaction Y ent for NP Generation with Short Laser Pulses Nanoparticles Produced by Ilse Laser Ablation of Metals ion between Ablation Cy and Nanoparticle Generation	 313 314 317 318 318 319 321
9.	Ablatic Emanu 9.1 9.2	article G n Introdu Typica Interac 9.2.1 9.2.2 9.2.3 Investi Short I 9.3.1	Generation te, Tatiano uction l Experim ctions wit Collinea Geometr Orthogo Geometr Experim Delayed gation of Double-Pu Correlat Efficienc in the Si	a E. Itina, and Jörg Hermann eental Design for Laser–Matter h Double Pulses r Double-Pulse Interaction 'y nal Double-Pulse Interaction 'y eent for NP Generation with Short Laser Pulses Nanoparticles Produced by ilse Laser Ablation of Metals ion between Ablation cy and Nanoparticle Generation ngle-Pulse Regime	 313 314 317 318 318 319
9.	Ablatic Emanu 9.1 9.2	article G on Introdu Typica Interac 9.2.1 9.2.2 9.2.3 Investi Short I	Generation te, Tatiano uction l Experim ctions wit Collinea Geometr Orthogo Geometr Experim Delayed gation of Double-Pu Correlat Efficience in the Si Influenc	a E. Itina, and Jörg Hermann ental Design for Laser–Matter h Double Pulses r Double-Pulse Interaction Y nal Double-Pulse Interaction Y ent for NP Generation with Short Laser Pulses Nanoparticles Produced by Ilse Laser Ablation of Metals ion between Ablation Cy and Nanoparticle Generation	 313 314 317 318 318 319 321

x Contents

		9.3.3	Influence of Interpulse Delay on	
			Ablation Depth and Crater Morphology	327
		9.3.4	Overview of Other Investigations in the	
			Field of Double-Pulse Laser–Matter	
			Interactions	330
	9.4	Modeli	ng of Double-Pulse Laser Ablation	334
		9.4.1	Fundamentals of Laser–Matter	
			Interactions	334
		9.4.2	Numerical Simulations of Short	
			Double-Pulse Interaction with Materials	337
	9.5	Conclu	sions and Perspectives	339
10.	Ultrafa	st Laser	-Induced Phenomena inside Transparent	
	Materi	als		353
	Felix Si	ima, Jiar	n Xu, and Koji Sugioka	
	10.1	Introd	uction	354
	10.2		teristics of Glass Material Processing	
		by Ultr	afast Laser Pulses	355
		10.2.1	Interaction Mechanism of Ultrafast	
			Laser Pulses with Glasses	355
			10.2.1.1 Nonlinear multiphoton	
			absorption	355
			10.2.1.2 Heat accumulation effects	358
		10.2.2	Spatial Resolution in Ultrafast Laser	
			Processing of Glass	359
	10.3	Undefo	ormative Processing: ULP-Induced	
		Interna	al Modifications	362
	10.4		ctive Processing: Formation of 3D	
			and Nanofluidic Structure	366
		10.4.1	Ultrafast Laser-Induced Modification	
			Followed by Selective Wet Etching	366
			Liquid-Assisted ULP Processing	370
		10.4.3	Pros and Cons of the ULP 3D	
			Subtractive Process	371
	10.5		e Processing: ULP-Induced	
		-	oolymerization of Photoresists	372
			Mechanisms and Limitations	372
		10.5.2	Applications of Two-Photon	
			Polymerization	375
	10.6	Hybrid	ULP 3D Processing	377

		10.6.1 Combination of Subtractive and		
		Undeformative Processing	377	
		10.6.2 Combination of Subtractive and		
		Additive Processing	379	
	10.7	Challenges and Perspectives	381	
11.	Ultrafa	st Processes on Semiconductor Surfaces		
	Initiate	ed by Temporally Shaped Femtosecond Laser		
	Pulses		395	
	P. A. Lo	ukakos, G. D. Tsibidis, and E. Stratakis		
	11.1	Introduction	396	
	11.2	Experimental Details	398	
	11.3	Theoretical Details	399	
	11.4	Results and Discussion I: Si	399	
	11.5	Results and Discussion II: ZnO	412	
	11.6	Conclusions	416	
12.	Atomis	tic Simulations of the Generation of		
	Nanop	articles in Short-Pulse Laser Ablation of Metals:		
	Effect	of Background Gas and Liquid Environments	421	
	Cheng-	Yu Shih, Chengping Wu, Han Wu,		
	Maxim	V. Shugaev, and Leonid V. Zhigilei		
	12.1	Introduction	422	
	12.2	Computational Setup for the Simulation of		
		Laser Interactions with Metals in a		
		Background Gas or Liquid Environment	425	
		12.2.1 Representation of Laser Interaction		
		with Metals	426	
		12.2.2 Representation of Background Gas		
		and Liquid Environments	429	
	12.3	Large-Scale MD Simulations of Laser Ablation		
		in Vacuum	431	
	12.4	Ablation in a Background Gas	438	
	12.5	Ablation in Liquids	441	
	12.6	Concluding Remarks	450	
13.	Laser N	anostructuring of Polymers	467	
	Esther Rebollar, Tiberio A. Ezquerra, and			
	Marta	Castillejo		
	13.1	Introduction	468	

	13.2	LIPSS Formation Using Nanosecond Pulses	471	
	13.3	LIPSS Formation Using Femtosecond Pulses Formation of LIPSS on Nonabsorbing Polymers Formation of Alternative Periodic Structures		
	13.4			
	13.5			
	13.6	Applications of Polymer LIPSS	480	
		13.6.1 Polymer LIPSS for Cell Culture	480	
		13.6.2 Polymer LIPSS for SERS Substrates	481	
		13.6.3 Polymer LIPSS for Nonvolatile Organic		
		Memory Devices	482	
	13.7	Conclusions	484	
14.	Laser N	Naterials Processing for Energy Storage		
	Applica	ations	495	
	Heung.	soo Kim, Peter Smyrek, Yijing Zheng,		
	Wilhel	m Pfleging, and Alberto Piqué		
	14.1	Introduction	496	
	14.2	Background and Overview of Materials for		
		Energy Storage	497	
	14.3	Growth of Energy Storage Materials by		
		Pulsed Laser Deposition	499	
		14.3.1 PLD of Cathodes	501	
		14.3.2 PLD of Anodes	504	
		14.3.3 PLD of Solid-State Electrolytes	506	
	14.4	Printing of Energy Storage Materials by LIFT	508	
		14.4.1 LIFT of Ultracapacitors	510	
		14.4.2 LIFT of Li Ion Microbatteries	512	
	145	14.4.3 LIFT of Solid-State Electrolytes	516	
	14.5	3D Processing of Energy Storage Materials	517	
		by LS and LA 14.5.1 LA and LS of Thin-Film Electrodes	517	
		14.5.1 LA and LS of Thin-Finn Electrodes 14.5.1.1 Laser annealing	510	
		14.5.1.2 LS of LCO thin films	520	
		14.5.1.3 LS of SnO_2 thin films	520	
		14.5.1.4 LS of LMO thin films	523	
		14.5.2 LS of Thick-Film Electrodes	523	
		14.5.3 LS Turns Electrodes into Superwicking	524	
	14.6	Challenges and Future Directions	529	
	14.7	Summary	530	
	±/		000	

Index

541