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In this paper, we describe a novel solution to increase the speed of Time-Correlated Single Photon
Counting (TCSPC) measurements by almost an order of magnitude while providing, in principle, zero
distortion regardless of the experimental conditions. Typically, the relatively long dead time associ-
ated with the conversion electronics requires a proper tune of the excitation power in order to avoid
distortions of the reconstructed waveform due to pileup and counting loss. As a result, the maximum
operating rate of a TCSPC channel is now limited between 1% and 5% of the excitation frequency, thus
leading to relatively long acquisition times. We show that negligible distortion (below 1%) is guaran-
teed if the dead time associated with the converter is kept below the dead time of the detector, and at
the same time the detector dead time is matched to the duration of the excitation period. In this way,
unprecedented high-speed operation is possible. In this paper, we provide a theoretical analysis of the
technique, including the main non-idealities which are introduced by a generic physical implementa-
tion. The results are supported by both numerical simulations and analytical calculations. Published
by AIP Publishing. https://doi.org/10.1063/1.4996690

I. INTRODUCTION

Time-Correlated Single Photon Counting (TCSPC) is a
powerful tool to estimate fluorescence lifetimes. In life sci-
ence, for instance, TCSPC allows the highest time resolution
in Fluorescence Lifetime Imaging Microscopy (FLIM) and
Förster resonance energy transfer experiments.1–4

TCSPC basically consists in the periodical excitation of
a sample with a pulsed laser and in the record of the time of
arrivals of the re-emitted photons. Currently available acquisi-
tion systems can detect only one photon per excitation cycle;
if more than one photon impinges on the detector during a
period, the system undergoes the so-called pileup effect and
the reconstructed waveform is distorted.5 In addition, count-
ing loss due to the finite speed of the acquisition system can
lead not only to a counting efficiency drop of the system, but
it is also another potential source of distortion.5 In order to
avoid both the pileup and counting-loss artefacts, the power
of the excitation source can be adjusted to limit the number
of impinging photons in a period to far less than one (typical
values range between 0.01 and 0.05).5,6 It follows that a rela-
tively high number of excitation cycles, so a long measurement
time are needed to accumulate a statistically relevant number
of events.

Recently, much effort has been done to decrease the dead
time associated with a TCSPC acquisition chain. On one hand,
extremely fast converters have been developed,7–10 with a dead
time in the order of few nanoseconds. On the other hand, the
exploitation of hybrid photomultipliers has led to a reduction
of the detector dead time down to about 1 ns,11 thus increasing
its counting capability, but at the expense of a significant
distortion at high-rate operation.11

a)alessandro.cominelli@polimi.it

A different approach consists in the parallelization of
N independent acquisition chains, which permit, in principle,
to increase the counting capability of the system by a factor N.6

To this aim, many multichannel solutions based on Single-
Photon Avalanche Diode (SPAD) arrays have been proposed
in the literature.12–16 Nevertheless, the exploitation of a large
number of acquisition chains demands for complicated read-
out architectures to cope with a limited bandwidth toward the
external elaboration unit,17 and large arrays proposed so far do
not guarantee a measurement speed proportional to the num-
ber of channels, thus limiting the advantages of having a high
degree of parallelism.17 At the same time, large integrated
arrays suffer from a trade-off between the number of chan-
nels and performance of the system, in terms of precision and
linearity.12,13,15

In this paper, we present a novel solution aimed at maxi-
mizing the operation speed of a single channel while keeping
the distortion under an acceptable level. Our solution is made
feasible by the recently proposed fast time-measurement cir-
cuits,7–10 which feature a negligible dead time, thus limiting
counting loss artefacts, and recent active quenching circuits
for SPADs, which permit a fine tune of the detector dead
time.18,19 In this scenario, we propose a dead time optimiza-
tion technique. In particular, we show that a system oper-
ating with a dead time matched to an integer number of
excitation periods opens the way to a remarkable increase
of the measurement speed up to a factor of 8 while keep-
ing the distortion well below 1%. It is worth highlighting
that our solution can be easily extended to a multichannel
approach to further increase the measurement speed of the
system.

The paper is organized as follows: first of all, a brief
description of pileup and counting loss effects is given in
Sec. II for a typical TCSPC measurement channel which
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features a relatively high conversion dead time. The intro-
duction of a fast time-measurement electronics leads to a
completely different scenario, which is described in Sec. III.
Here an optimum working condition is found, which allows us
to minimize the distortion of the recorded curve. The proposed
solution is analyzed by means of analytical calculations, fully
supported by numerical simulations. Then, in Sec. IV, we ana-
lyze the effects of the major non-idealities which can affect a
physical implementation of the solution, namely, a jitter super-
imposed on the duration of the dead time and the influence
of a finite reset time to restore the biasing condition of the
detector at the end of the dead time. Conclusions are drawn in
Sec. V.

II. PILEUP AND COUNTING LOSS

A TCSPC measurement basically consists in the recon-
struction of the fluorescence decay from the probability density
function (pdf) of the single-photons time of arrival on the
detector. In the simple case of fluorescence decay with a sin-
gle time constant, the pdf is proportional to the following
expression:

Pimp(t)=P0 · e
−t/τ · u(t), (1)

where Pimp(t) dt is the mean number of photons that impinge
on the detector during an infinitesimal-sized interval dt cen-
tered at time t within the excitation period, τ is the decay
time constant, u(t) is the Heaviside step function, and P0

is a constant proportional to the power of the luminous
signal.

In an ideal TCSPC system, every event is accumulated
in a histogram, which is proportional to Pimp(t). Conversely,
in a real TCSPC acquisition system, two phenomena can lead
to loss of events: classic pileup and counting loss due to a
non-zero dead time of both the detector and the conversion
electronics.5

The classic pileup is due to the fact that TCSPC acquisition
systems can typically record only a single event per excitation
cycle; so early photons experience a higher recording probabil-
ity, leading to an artificial reduction of the decay time constant
in the recorded curve. The pileup distortion increases with the
average number of impinging photons in a period, P. In partic-
ular, for P well below unity, the measured time constant τmeas

can be expressed as follows:5

τmeas ≈

(
1 −

P
4

)
· τ. (2)

In order to limit distortion, P is usually adjusted between
0.01 and 0.05; in this way, the estimation error is limited to
about 1.25%.

The pileup model properly describes the systems exploit-
ing the detector and electronics with a negligible dead time,
either operated in nonreversed or reversed start-stop.5 Never-
theless, in real TCSPC experiments, the system remains blind
for a fixed time interval after an event has been measured. This
effect leads to additional counting loss and represents the main
source of efficiency drop in real TCSPC systems, giving rise to
a nonlinear increase of the average number of recorded events
in a period as a function of P.5

III. DETECTOR DEAD TIME AND DISTORTION
MINIMIZATION

In TCSPC experiments, the dead time of the conver-
sion electronics usually represents the main limitation to
the measurement speed. Nevertheless some fast conversion
circuits have been proposed in recent years, providing a
dead time in the order of few nanoseconds.7–9 For instance,
in 2015, we proposed a fast time-measurement circuit,10

which is based on Time-to-Amplitude Converters (TACs).
It guarantees a negligible dead time, along with high per-
formance, that is a Differential Non-Linearity (DNL) of
about 2% peak to peak and a timing jitter as low as 55 ps
FWHM.10

In systems exploiting a fast converter, the detector dead
time represents the only source of counting loss. In this paper,
we demonstrate the existence of an optimum dead time value,
which allows us to minimize distortion, irrespective of the
value of the decay time constant, thus paving the way for high-
speed TCSPC experiments using a single acquisition channel.
In particular, we show that, irrespective of the rate of imping-
ing photons, the distortion is exactly zero if the dead time is
equal to an integer number of laser periods. In principle, the
excitation period can be adjusted to reach this condition, but a
fine tune of the laser frequency is rarely feasible. On the other
hand, the dead time of the detector can be adjusted to match
the excitation period. For instance, recently proposed Active
Quenching Circuits (AQCs) coupled to SPAD detectors fea-
ture a tunable dead time,18,19 thus opening the way to dead
time optimization.

In Fig. 1, the detector-related counting loss mechanism
is shown for a system where the time-measurement circuitry
does not introduce any appreciable loss of events. In this case,
the dead time can end at any time instant of a subsequent
period, depending on the arrival time of the recorded event,
and both distortion efficiency and counting efficiency depend
on the distribution of impinging photons over time, i.e., on the
fluorescence lifetime τ. This situation is analyzed in detail in
Secs. III A–III C.

A. Distortion

In order to evaluate the distortion caused by the detector
dead time, numerical simulations of the mechanism shown in
Fig. 1 have been performed for different values of the dead
time. In particular, a Poisson process has been used to sim-
ulate exponential pulses with a repetition period of 12.5 ns,
considering different values of decay time constant. Then the
recorded events have been accumulated to form a histogram,

FIG. 1. Loss of events due to the detector dead time. Each time the system
records an event, it remains blind for a fixed time interval. Exponential pulses
represent Pimp(t), while the arrow highlights the photon arrival time.
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FIG. 2. Fractional error in the estima-
tion of the time constant, E, as a function
of the detector dead time Tdead . The sit-
uation of Fig. 1 has been simulated using
fluorescence pulses with τ equal to 1 ns
and laser period equal to 12.5 ns. Then,
a single time constant τmeas has been
estimated for the recorded histograms,
using a center-of-mass method, and
E has been calculated. The result is
shown for different values of P, that is,
the average number of photons imping-
ing on the detector during a period.

considering a state-of-the-art resolution of 10 ps. Finally, a sin-
gle time constant, τmeas, has been extracted from the recorded
histograms using a center of mass method,20

τmeas =

∫ Tlaser

0
t · h(t) · dt∫ Tlaser

0
h(t) · dt

, (3)

where h(t) is the recorded curve at the end of the measurement,
while T laser is the excitation period.

It should be noted that expression (3) holds only if the
duration of the fluorescence pulse is limited well below an
excitation period, i.e., τ is far lower than T laser .

Starting from the extracted lifetime, τmeas, the fractional
estimation error E has been calculated as follows:

E =
τmeas − τ

τ
. (4)

The result of a simulation is shown in Fig. 2, where a flu-
orescence time constant of 1 ns has been considered, while the
average number of impinging photons in a period, P, is used
as a parameter. A relatively long measurement time of about
10 s, which corresponds to about one billion excitation cycles,

has been considered to accumulate a statistically relevant num-
ber of events in each histogram. In this way, it was possible
to decrease the noise contribution due to Poisson statistics
down to negligible values,21 in order to concentrate the anal-
ysis on the distortion introduced on the average recorded
curves.

It is evident that the average estimation error is a periodic
function of the dead time, whose period is equal to 12.5 ns,
that is, the duration of an excitation cycle, so the system
features zero distortion at integer multiples of the excitation
period. In this scenario, matching the detector dead time with
the excitation period permits to surpass the pileup limit.

When there is no dead time (Tdead = 0), the system expe-
riences no counting loss and the histogram h(t) is proportional
to the pulse shape expressed in (1), meaning that the fractional
error E is equal to zero. By increasing the dead time, the error
moves to positive values, up to a local maximum (see Fig. 2).
In this region, the dead time is lower than the duration of the
fluorescence pulse, so a photon detected in the first part of the
period does not mask the whole fluorescence signal. The result
is a reduction of the recording probability in the central part
of the pulse, as depicted in Fig. 3(a). It has been demonstrated
that this kind of distortion leads to an overestimation of the
time constant, hence to a positive value of E.6

FIG. 3. Effect of a different duration of the detector dead time. In the top row, exponential pulses represent Pimp(t) and arrows show the arrival time of impinging
photons. In the bottom row, the shape of the average recording probability is shown, along with the recorded photons. In the first case (a), the dead time covers
only a part of the fluorescence pulse, so more than one photon can be recorded in each period. It can be shown that a short dead time leads to a lower recording
probability in the central part of the pulse.6 In the second case (b), the dead time covers the entire signal pulse, so only one photon per period can be detected and
the classic pileup model applies.
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Conversely, if the dead time surpasses the duration of the
fluorescence pulse, only one photon can be recorded in each
period, thus resulting in classic-pileup distortion, as illustrated
in Fig. 3(b). The result is a negative plateau in the curves of
Fig. 2, which is well approximated by (2). When Tdead is higher
than a laser period (Tdead > T laser), photons recorded in a cycle
generate a dead time which also influences the subsequent
period. The effect is a cyclic behavior of E, which tends to
zero when Tdead approaches an integer multiple of T laser .

Given the simulation result reported in Fig. 2, it is evident
that the highest distortion is reached when the system operates
in the pileup regime [Fig. 3(b)], as can be inferred from the
high absolute value of E in the plateau region. The extension
of this region depends on the value of the time constant. In
fact, if the pulse duration is much shorter than the laser period,
a large range of Tdead values permit to mask the whole pulse
[see Fig. 3(b)], so E, expressed as a function of Tdead , features a
large pileup plateau. Conversely, by increasing τ, plateaus tend
to disappear and the absolute value of E reduces. It follows that
low values of the time constant correspond to higher distortion.
In order to consider a worst-case scenario, all the results shown
in the following refer to a relatively low τ of 1 ns.

B. Counting efficiency

As discussed above, the counting loss due to the detec-
tor dead time gives rise to a periodic distortion pattern as a
function of the dead time value. It follows that the system can
be operated with zero distortion exploiting a dead time equal
to any integer multiple of the laser period. Nevertheless, by
increasing the dead time, the average number of photons that
the system records in a period, Prec, decreases. Starting from
the same simulation used to evaluate E in Fig. 2, Prec has been
computed as the total number of recorded events divided by
the total number of periods. The result is shown in Fig. 4.

Here the average number of recorded photons per period
decreases in discrete steps due to the pulsed nature of the
signal. In general, if no dead time is present, every photon

impinging on the detector is collected in the histogram, so Prec

is equal to P. By increasing Tdead , a photon impinging during
the initial part of the period masks a part of the luminous signal
[see Fig. 3(a)], so Prec decreases. This situation holds until the
duration of the dead time is sufficiently high to cover the entire
fluorescence pulse. At this point, a further increase of Tdead

within the laser period does not lead to an efficiency reduction,
so Prec, expressed as a function of Tdead , features a plateau,
which is well described by the classic pileup model,5 as shown
in Fig. 3(b). When the dead time approaches the duration of
the excitation period (that is Tdead = 12.5 ns in the simula-
tion of Fig. 4), a photon impinging during a cycle is able to
cause counting loss in the subsequent period. As a result, Prec

decreased down to a second plateau. The same holds for Tdead

equal to any integer multiple of the laser period.
Considering the simple case of constant illumination of

the detector over time, it is possible to obtain a closed-form
expression for the counting efficiency. In fact, when photons
are uniformly distributed over time, the counting efficiency
(η = Prec/Pimp) is equal to the fraction of the measurement
time during which the system is able to record photons, that
is, 1 � Prec·Tdead /T laser , where Tdead is the detector dead time.
In this scenario, Prec can be expressed as follows:

Prec =
P

1 + P· Tdead
Tlaser

. (5)

This result is shown in Fig. 4 for P equal to 1, along with
the curve obtained for a pulsed illumination. It is evident that
the two curves follow the same trend.

It is worth highlighting that the situation described in
Fig. 4 for periodic illumination is valid only if the time constant
of the fluorescence pulses is far lower than the laser period.
Conversely, if the pulse width is comparable to the excita-
tion period, the measurement speed approaches the model
described in (5) and plateaus tend to disappear. In any case,
the general trend expressed in (5) is confirmed.

FIG. 4. Average number of recorded events in a period,
Prec, obtained by the numerical simulation of the count-
ing loss mechanism of Fig. 1. The result is shown as a
function of the dead time Tdead for different values of
P, that is, the average number of impinging photons per
excitation cycle. The simulation considers a pulsed fluo-
rescence signal with a decay time constant equal to 1 ns
and a repetition rate equal to 80 MHz. Prec in the case
of constant illumination is also reported for P equal to 1
photon per period, as expressed in (5).
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FIG. 5. Effect of a detector dead time equal to one excitation period (Tdead
= T laser ). On the top, exponential pulses represent the impinging probabil-
ity Pimp(t), while the instantaneous recording probability Prec ,i(t) is shown
in the bottom for each period. In the ideal case of Tdead equal to zero,
Prec ,i(t) is equal to Pimp(t). Here the measure lasts for 4 laser cycles, but
two periods remain blind due to the dead time. Nevertheless, this situation
does not involve any distortion of the recorded curve. In fact, every time
the system enters a dead time, it returns active starting from the same value
of Prec ,i(t). It follows that, concerning distortion, the situation is equiva-
lent to consider no dead time and an effective measurement time of two
periods.

C. A better insight into dead time optimization

Starting from numerical simulations, it has been shown
that a TCSPC acquisition channel can work at high speed with
zero distortion, providing that the dead time of the detector is
matched to an integer multiple of the excitation rate and an
extremely fast conversion electronics is used.

It is possible to provide a better insight of this effect,
starting from Fig. 5, where a dead time equal to one exci-
tation period is considered. In this case, each time the system
records a photon at time-instant t within the period, it enters a
dead time, which ends at time t within the subsequent period.
Concerning distortion, this situation is equivalent to consider
a system with zero dead time, thus resulting in a recorded
histogram proportional to the signal pulse. This result can be
also mathematically derived. The average probability Prec(t) to
record a photon at time t within a generic laser period is given
by the product between the impinging probability Pimp(t) and
the probability that the system is able to detect events at time t.
As can be inferred from Fig. 1, the latter is equal to the proba-
bility that no photon is recorded within an interval of duration
Tdead before time t. This result can be evaluated as the inte-
gral of Prec(t) between t�Tdead and t, considering the periodic
behavior of the average recording probability,

Prec(t)=Pimp(t) ·


1 −

t∫
t−Tdead

∞∑
i=−∞

Prec(t ′ + i · Tlaser) · dt ′


.

(6)

In the simple case of dead time equal to an integer num-
ber n of laser periods (Tdead = n·T laser), the integral of the
periodic recording probability is equal to the area of a single
pulse multiplied by n. As a result, Eq. (6) can be simplified as
follows:

Prec(t)=Pimp(t) ·


1 − n ·

Tlaser∫
0

Prec(t ′) · dt ′


. (7)

It is evident that the integral part does not depend on t, so
the ratio between Prec(t) and Pimp(t) is a constant. It follows
that no distortion is affecting the experiment. It is worth noting
that this result applies regardless of the shape of the luminous
signal, for instance, even when more than a fluorescence time
constant is present.

Starting from (7), it is also possible to evaluate the mea-
surement speed of the system. In fact, the factor of proportion-
ality between the recorded curve and the signal represents the
counting efficiency η. As a result,

η = 1 − n ·

Tlaser∫
0

Prec(t ′) · dt ′ = 1 − η · n ·

Tlaser∫
0

Pimp(t ′) · dt ′

(8)

since Prec(t) is equal to η·Pimp(t).
It is well known that the area of the impinging probability

Pimp(t) over a period is equal to the mean number of photons
impinging on the detector over a period that is P; hence the
average number of recorded photons in a period, Prec, can be
expressed as follows:

Prec = η · P=
P

1 + n · P
=

P

1 + P · Tdead
Tlaser

. (9)

It is worth noting that this result is equivalent to the one
expressed by (5), which was derived for a constant illumination
of the detector.

FIG. 6. Comparison between the solution proposed in
Fig. 5, with Tdead = T laser = 12.5 ns (dashed lines), and
a typical TCSPC acquisition system with an electron-
ics dead time of 80 ns (continuous lines). The fractional
estimation error E and the average number of recorded
photons in a period Prec are reported for both architec-
tures as a function of the average number of impinging
photons in a period, P.
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Equation (9) shows that the measurement speed (propor-
tional to Prec) increases with the power of the luminous signal.
At the same time, the system features zero distortion, regard-
less of the value of P, thus allowing unprecedented high-speed
operation in TCSPC experiments using a single acquisition
channel. In Fig. 6, both E and Prec resulting from the optimum
condition depicted in Fig. 5 are compared with the perfor-
mance of a system limited by an electronics dead time equal
to 80 ns, which is a typical value for commercial TCSPC mod-
ules.22 It is evident that the approach of Fig. 5 (dashed lines)
leads to both higher speed and zero distortion.

IV. NON-IDEALITIES OF A PRACTICAL
IMPLEMENTATION

It has been demonstrated how a detector dead time equal to
an integer number n of excitation periods allows the recording
of non-distorted histograms in TCSPC experiments, irrespec-
tive of the average impinging rate. In order to exploit this
optimum working condition, a fine tuning of the detector dead
time is needed. At the same time, it is clear that the highest
counting efficiency is reached for the minimum value of n,
that is, for a dead time equal to one laser period, as expressed
in (9).

In recent years, Active Quenching Circuits (AQCs) for
Single Photon Avalanche Diodes (SPADs) featuring Tdead in
the order of 10 ns23–26 have been proposed, paving the way to
dead time optimization, even when a relatively high excitation
rate of 80 MHz is considered. For instance, in 2016, we pro-
posed a very versatile AQC, able to drive the external SPADs
of different technologies and able to provide a tunable dead
time down to 10 ns with a 50-µm custom-technology SPAD
detector.18,19

In any case, regardless of the practical implementation
of the proposed solution, some non-idealities of the setup can
impair the results shown in Fig. 6. For instance, considering an
active quenching of the detector, the duration of the quench-
ing phase is unavoidably affected by a jitter of the control
logic, so the duration of the dead time slightly varies during
the measurement.

Even worse, at the end of the dead time, the initial bias
condition of the detector is restored. It is evident that this
operation requires a finite reset time to be carried out, so the
recording probability does not feature a step-like transition
at the end of the dead time. In this scenario, the system is
able to detect photons also during the final part of the dead
time.

In order to evaluate the impact of practical implementa-
tion of the solution on both distortion and measurement speed,
the non-idealities of the system have been included in numer-
ical simulations, considering reasonable values for jitter and
reset duration. In particular, the AQC proposed in Ref. 18 has
been considered as an example to perform some numerical
simulations.

A. Dead time jitter

The effect of a random fluctuation of the dead time dur-
ing a TCSPC measurement was simulated, starting from a

Poisson distribution of photons with different values of decay
time constant. In this case, each time an event is detected, the
system remains blind for a dead time, whose duration is ran-
domly drawn from a Gaussian distribution with mean equal
to one excitation period. For recently proposed AQCs, a dead
time jitter in the order of 100 ps r.m.s. has to be considered.
For instance, we measured about 90 ps r.m.s. considering the
quenching circuit presented in Ref. 18, connected to the anode
of a 50-µm custom SPAD.

Considering an average dead time equal to 12.5 ns and a
reasonable value of the jitter, ranging from 0 to 200 ps r.m.s.,
we simulated the fractional estimation error E for different
values of τ between 1 and 4 ns and P ranging from 0 to 2
(that is 40 times higher than the pileup limit). In all these
cases, E resulted limited below 1%, even when the lowest
time constant (τ = 1 ns) and the highest impinging rate (P = 2)
were considered.

We also verified that the measurement speed still follows
the trend expressed in (9), even when considering a dead time
jitter around 100 ps.

B. Photons detected during the reset phase

Considering a practical implementation of the quenching
circuit, like the one reported in Ref. 18, a finite time T reset is
needed to recover the initial bias condition of the detector at
the end of the dead time. As a result, the probability to detect
a photon after an event has been recorded does not experience
a step-like transition, like in the simple model of Fig. 5, but
photons impinging during the last part of the dead time have
a non-zero probability to be detected. The situation is shown
in Fig. 7.

In this case, each time a photon is detected during the
reset time, an event is added to the histogram; so the system
moves away from the optimum condition since the equivalent
dead time associated with the recorded events is less than one
excitation period. The result is a distortion of the recorded
histogram.

In order to allow an estimation of the distortion, simula-
tions have been performed considering a realistic transition of
the detection probability at the end of the dead time, which
typically lasts for some nanoseconds.18,19,23–26 For instance,

FIG. 7. Effect of a finite transition of the detection probability at the end of
the dead time. During the reset phase, the instantaneous detection probability
Pdet,i increases gradually up to the maximum value, so the instantaneous
recording probability is not zero during the dead time. The result is a distortion
of the recorded histogram.
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FIG. 8. The detection probability features a gradual transition during the reset
time, so impinging photons have a probability Pdet,i to trigger an avalanche
in the detector during the last part of the dead time. Then the system enters
in a new dead time starting from the end of the previous one, thus resulting
in an equivalent dead time lasting for two periods. Nevertheless, events are
not registered during the reset phase. It follows that the ideal shape of the
recording probability is distributed among many periods, like in the optimum
condition depicted in Fig. 5; so no distortion is generated in the recorded
histogram.

we estimated a gradual transition of Pdet that completes in
about 4 ns, considering the AQC described in Ref. 18 coupled
to a custom SPAD. In particular, Pdet was calculated com-
bining the Photon Detection Efficiency (PDE) of the SPAD,
expressed as a function of the voltage applied to the device,
with the voltage transition at the SPAD anode during the reset
phase. The actual shape of the detection probability has been
included in numerical simulations and E has been extracted
for different values of Tdead , P, and τ. Simulations revealed
that dead time optimization is no more feasible in the sce-
nario depicted in Fig. 8. In fact, we could not find a value
of Tdead , which guarantees zero distortion, regardless of the
values of P and τ. As a result, the overall distortion still
increases with the signal power, thus demanding for low-rate
measurements.

To surpass this major issue, we further improved the pro-
posed technique: in the following, we show that the distortion
can be reduced to negligible levels even when Prec features
a finite transition at the end of the dead time, providing that

events detected during the reset phase are not included in the
histogram. In this scenario, each time a photon triggers an
avalanche during the dead time, no distortion is involved, but
the system remains blind for an additional time interval, so
Prec drops below the value reported in (9).

In Fig. 8, the effect of the proposed technique is shown.
When a photon is detected during the end of the dead time
(T reset), the system remains blind for an additional Tdead . The
result is an equivalent dead time that lasts for two laser periods.
It is clear that this approach leads to a variable dead time, which
depends on the presence of photons detected during the reset
time. Nevertheless, E is kept to zero since the dead time is
always an integer multiple of T laser .

A simulation of the distortion obtained with the proposed
approach is shown in Fig. 9, where a realistic transition of
the recording probability has been considered, which lasts for
a duration T reset equal to 4 ns. It is evident that the system
features no distortion if Tdead = T laser , regardless of the average
number of impinging photons in one period, P.

The average number of recorded events in one period,
which is proportional to the measurement speed, has been
extracted starting from the same simulation. The result is
shown in Fig. 10 (dotted curve) and compared with (9). A
theoretical curve for the simulated system is also reported,
which is described in detail later in Sec. IV C. As expected,
the curves approach the same values at low frequencies, where
the probability to detect a photon during a reset phase is negli-
gible. Then, increasing the impinging frequency, the simulated
curve starts decreasing down to 0. In fact, if the impinging fre-
quency is much higher than one photon per period (that is
P >> 1), the probability to trigger a new dead time during a
reset phase becomes relevant and the overall dead time can
increase up to the whole measurement duration.

As can be inferred from Fig. 10, the maximum of the
measurement speed is reached when P approaches one photon
per period, corresponding to a recording frequency of almost
40% of the laser rate, which is much higher than a typical
pileup-limited detection rate, equal to 5% of the excitation
period. So a system working like in Fig. 8 leads to a remarkable
gain of a factor 8 in the measurement speed.

FIG. 9. Fractional error in the estima-
tion of the time constant, E, as a function
of the detector dead time Tdead in the
scenario of Fig. 5, considering fluores-
cence pulses with τ equal to 1 ns and
80 MHz repetition rate. During the reset
time, which lasts for 4 ns, the detection
probability increases gradually up to 1,
but photons detected during this phase
are discarded. It is evident that E is 0 if
Tdead is equal to one excitation period,
regardless of the value of P, that is, the
average number of impinging photons
in one period.
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FIG. 10. Comparison between the average number of
recorded events in one period in the optimum case of zero
reset time, as expressed in (9), and using the approach
proposed in Fig. 8, where T reset is equal to 4 ns. In the
latter, the curve reaches a maximum at an impinging rate
P equal to one photon per period. In this case, the max-
imum Prec is equal to 37% of the excitation rate, which
is well above the pileup limit. The theoretical formula of
Prec for the simulated system is also reported, which is
described by Eq. (16). A time constant τ equal to 1 ns has
been considered for all the curves.

It is worth highlighting that a faster voltage transi-
tion during the reset phase can lead to even better results
since the recording probability tends to approach the curve
expressed in (9). For instance, a maximum recording prob-
ability equal to 45% at P around 1.4 has been obtained for
T reset = 1 ns.

C. Analytical derivation of the measurement
speed

Considering the situation illustrated in Fig. 8, a closed-
form expression can be derived for the counting efficiency, η.
Given a long measurement time, Tmeasure, the system is blind
for an integer number N of intervals of duration Tdead ,
which is equal to one excitation period (Tdead = T laser). In
this scenario, the efficiency can be expressed as the frac-
tion of time when the system is able to record photons,
that is,

η = 1 −
N · Tlaser

Tmeasure
= 1 −

Tdead,TOT

Tmeasure
, (10)

where N represents the number of times an avalanche is
triggered during the measurement, while Tdead ,TOT is the sum
of the intervals where the system is blind.

Referring to Fig. 8, each time a photon is detected at
time t within the excitation period, a reset time starts at time
t + T laser � T reset and ends at time t + T laser . The average
number of photons which are able to trigger an avalanche dur-
ing this interval, Pdet,reset , can be computed as the integral of
the probability that an avalanche is triggered at time t ′, with
t ′ ranging from t + T laser � T reset to t + T laser . The probabil-
ity to observe an avalanche at time t ′ is given by the product
between the detection probability Pdet(t ′) (which features a
finite transition during the reset phase) and the average number
of impinging photons in an infinitesimal-sized interval dt ′ cen-
tered at t ′. Considering the periodic behavior of the impinging
probability,

Pdet,reset(t)=

t+Tlaser∫
t+Tlaser−Treset

Pdet(t
′) ·

∞∑
i=−∞

Pimp(t ′ + i · Tlaser) · dt ′.

(11)

As can be inferred from Fig. 8, Eq. (11) can be rearranged as follows:

Pdet,reset(t)=




Tlaser∫
t+Tlaser−Treset

Pdet(t ′) · P0 · e−t′/τ · dt ′ +

t∫
0

Pdet(t ′) · P0 · e−t′/τdt ′, t ≤ Treset

t∫
t−Treset

Pdet(t ′) · P0 · e−t′/τ · dt ′, t > Treset

, (12)

where the first integral can be neglected if the time constant
τ is far lower than T laser � T reset .

Given a Poisson distribution of the impinging photons,
the probability that no photon triggers an avalanche during the

reset phase is equal to exp(�Pdet,reset), while the probability
that an avalanche is triggered during the reset time is equal to
the probability that at least one photon is detected during the
reset phase, which is equal to 1 � exp(�Pdet,reset).
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As stated before, a photon recorded at time t leads to an
effective dead time which depends on the presence of pho-
tons recorded during the reset time. For instance, the effective
dead time has a duration T laser if no photon is detected within
the reset phase. Conversely, if an avalanche is triggered dur-
ing the reset phase, a new dead time of duration T laser starts
in sync with the end of the first dead time (see Fig. 10),
involving a new reset phase. If no photon is detected dur-
ing this phase, the effective dead time has a duration 2·T laser .
In general, the probability that the dead time associated with
a photon recorded at time t is equal to n·T laser is equal to
[1 − exp(−Pdet,reset)]n−1 · exp(−Pdet,reset), that is, the probabil-
ity to observe an avalanche in n�1 subsequent reset phases and
no avalanche in the n-th dead period. It follows that the average
duration of the dead time associated with a photon detected at
time t can be expressed as the probability-weighted mean of all
possible dead time durations, that is, n·T laser , with n ranging
from 1 to infinite,

Tdead,av(t)=
∞∑

n=1

n · Tlaser · e
−Pdet,reset (t) · (1 − e−Pdet,reset (t))

n−1

=Tlaser · e
Pdet,reset (t). (13)

The probability that a photon is recorded at a time instant
t within a laser period can be expressed as the product between
the probability density function Prec(t) and the infinitesimal-
sized interval dt. Then, the total dead time in a measure,
Tdead ,TOT , can be computed as the integral over the measure
of the probability to record a photon at time t, multiplied by
the average dead time Tdead ,av(t). Given the periodic behavior
of the experiment, the same result can be obtained integrating
over a period and multiplying by the number of periods, that
is, Tmeasure/T laser ,

Tdead,TOT =
Tmeasure

Tlaser
·

Tlaser∫
0

Prec(t) · dt · Tlaser · e
Pdet,reset (t)

≈Tmeasure ·

∞∫
0

η ·
P
τ
· e−t/τ · dt · ePdet,reset (t), (14)

where Prec(t), equal to η·Pimp(t), has been expressed using
(1). It is worth noting that P0 is equal to P/τ only if
the width of the luminous pulse is shorter than the dura-
tion of a repetition period (i.e., τ << T laser). Under the
same conditions, the integral has been extended from 0 to
infinite.

It is evident from (11) that Pdet,reset(t) depends on the
shape of the detection probability during the reset phase, which
is strongly dependent on the implementation of the quenching
circuit. In order to extract a useful expression of the counting
efficiency, independent from the practical implementation of
the experiment, it is possible to impose Pdet(t ′) equal to 1
during the whole reset phase. The result is an overestimation
of the probability that a photon triggers an avalanche during
the reset phase, thus leading to a conservative estimation of
the efficiency. Considering τ much lower than T laser � T reset

and Pdet(t ′) equal to 1, the combination of (12) and (14) leads

to the following result:

Tdead,TOT =Tmeasure ·η ·



Treset∫
0

P
τ
· e−t/τ · exp[P · (1 − e−t/τ)] · dt

+

∞∫
Treset

P
τ
· e−t/τ · exp[P · (eTreset/τ − 1) · (e−t/τ)]· dt


.

(15)

Rearranging (10) and (15), the expression of the counting
efficiency η is found. As a result,

Prec = η ·P=
1

exp[P · (1 − e−Treset/τ)] + exp[P ·(1−e−Treset /τ )]−1
eTreset /τ−1

· P.

(16)

Expression (16) is reported along with the simulated
results in Fig. 10. In the simulation, the time constant τ is
1 ns, while the reset time T reset is 4 ns, which is much higher
than τ, so the counting efficiency expressed in (16) can be
approximated with exp(�P). It follows that the average num-
ber of recorded photons, Prec, is equal to P·exp(�P), so the
maximum Prec is reached at P equal to 1 and is equal to 1/e,
that is, about 0.37. This result is in accordance with the simu-
lation of Fig. 10, which was performed considering a realistic
transition of the detection probability during the reset time.

D. Combined effect of jitter and finite reset transition

Considering the system described in Fig. 8, the presence
of a gradual transition of the detection probability during the
reset phase does not introduce any distortion but sets only a
limit to the maximum measurement speed. As a result, the
only source of distortion comes from the dead time jitter, as
discussed earlier.

The combined effect of both the dead time jitter and a
finite transition of the recording probability has been included
in simulations, considering a dead time jitter around 100 ps
r.m.s. and T reset equal to some nanoseconds. The result was an
estimation error, which is still limited well below 1%. It follows
that a system working as described in Fig. 8 is effectively able
to work at high frequency, without any significant distortion
of the recorded curve.

V. CONCLUSIONS

Nowadays the measurement speed of conventional
TCSPC conversion channels is limited to some percent of
the excitation frequency in order to avoid distortions of the
recorded histogram.

In this paper, we present a novel approach to speed up
TCSPC measurements, without impairing the performance of
the system in terms of linearity. In particular, we have the-
oretically proved how the exploitation of a fast conversion
electronics, along with a detector, with a dead time matched
to the excitation period enables a gain of almost an order of
magnitude in the speed of TCSPC measurements providing,
at the same time, almost-zero distortion.
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It is worth highlighting that our solution can be
easily extended to a multichannel approach to opti-
mize its performance in terms of counting capability and
linearity.
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