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ABSTRACT 

Big data from very large fleets of assets challenge the asset management, as the number of maintenance 

strategies to optimize and administrate may become very large. To address this issue, we exploit a clustering 

approach that identifies a small number of sets of assets with similar reliability behaviors. This enables 

addressing the maintenance strategy optimization issue once for all the assets belonging to the same cluster 

and, thus, introduces a strong simplification in the asset management. However, the clustering approach may 

lead to additional maintenance costs, due to the loss of refinement in the cluster reliability model. For this, we 

propose a cost model to support asset managers in trading-off the simplification brought by the cluster-based 

approach against the related extra-costs. The proposed approach is applied to a real case study concerning a 

set of more than 30000 switch point machines.  

KEY WORDS: Big Data; Spectral Clustering; Preventive Maintenance. 

1.   INTRODUCTION 

Managing large assets with numerous (e.g., millions) assemblies is nowadays supported by 

sophisticated Enterprise Resource Planning (ERP) systems, which allow collecting and storing many 

and diverse data about the asset lives such as their failures and maintenance times, operating and 

ambient conditions, etc. On the one hand, the increasing capabilities of the ERP systems offer 

opportunities for new developments in reliability and maintenance engineering, as they provide a 

sound basis that enables the application of stronger statistical methods supporting more informed 

predictions and, thus, operations of the asset behaviors [1], [2]. On the other hand, the tracking of 

millions of assets challenges the asset management, because the full exploitation of the available (big) 

data requires the maintenance departments to perform expensive analyses and because of the need to 

handle large (petabytes) databases of possibly unstructured heterogeneous data [3]. In this work, we 

focus on the first issue, only, while not addressing the computer science perspective, for which the 
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interested reader can refer to [4]. For big data analysis, innovative approaches for data management 

and mining are required to the benefit of process optimization and decision making [3] in different 

areas of application, which include computing, telecommunications, mobile services, manufacturing, 

process industries and railway [3], [5]. For example, the latter railway sector today handles a huge 

quantity of information from different types of data sources (e.g., unstructured text, signaling or train 

data streams) that could be used to improve the understanding of risk factors involved in operation 

[6], [7], and to optimize the assets maintenance [3].  

For example, the approach to maintain the assets of the Italian railway system is based on the 

definition of segmented populations of components and systems in relation to some technical 

information (such as rail type, switch point machine model, etc.) and/or geographic localization, and 

on the optimization of the maintenance for every population. Typically, the number of populations 

turns out to be quite large, with consequent difficulties in managing all different strategies and the 

related administrative activities. This becomes even more complicated if we consider, that in 

principle, the maintenance strategies have to be periodically updated to give due account to newly 

collected data, which may reveal changes in the components hazard rate values. 

It is, then, that a sound methodological framework is needed to allow the exploitation of the available 

data with manageable efforts for the maintenance engineering department. In [3], an exhaustive 

review of integrated maintenance processes in the railway sector is provided, with emphasis on the 

importance of these processes and the need of computer-based maintenance systems for the 

management of big data from multiple sources. In [8] a Support Vector Machine (SVM) framework 

is proposed for tackling fault detection of the braking system in a high speed train from highly 

unbalanced data. In [9], a method to discover from data temporal association rules leading to rare 

events requiring immediate maintenance actions is proposed. In [10], an optimized OnLine Support 

Vector Regression (OL-SVR) for condition-based maintenance is proposed for streaming analysis of 

big data in the context of rail transportation systems. In [11], a clustering algorithm for grouping 

segmented asset populations based on their reliability distributions is proposed, with the goal that 

clusters of assets with similar failure behavior will be subject to the same (optimal) maintenance 

strategy. Although the approach proposed in [11] strongly reduces the number of strategies to be 

handled, it does not give full account to the drawback of the simplification introduced by forcing the 

different reliability distributions in a cluster to be approximated by one representative of the entire 

cluster. 

In this respect, the present work proposes a method for evaluating whether the simplification brought 

by the clustering may lead to maintenance extra-costs. This is fundamental for the asset decision 



maker, who has to trade-off the possible economic loss against the expected savings coming from the 

management simplification. 

The remainder of the paper is organized as follows: Section 2 briefly recalls the methodology to 

cluster assets based on their reliability distributions. In Section 3, we detail the cost model. Section 4 

presents the case study concerning assets of the Italian railways. Finally, in Section 5 some 

conclusions are drawn. Notice that although the case study discussed in this work is derived from a 

real industrial application, the data shown have been opportunely re-scaled and modified to respect 

the non-disclosure agreement with the industrial partner. 

2. CLUSTERING 

In this Section, we briefly recall the clustering approach developed in [11], whose objective is to 

group a large number 𝐴 of assets into 𝐶∗clusters, 𝐶∗ ≪ 𝐴, based on their reliability behaviors. This 

way, the asset manager can reduce the number of strategies to implement and trace from 𝐴 to 𝐶∗.  

We assume that the asset manager can decide among two maintenance strategies: Periodic 

Maintenance (PM, i.e., assets are preventively maintained at some predetermined periodic times or 

repaired at failure, whichever comes first) or Corrective Maintenance (CM, i.e., assets are operated 

until failure) [12]. 

A perfect maintenance action is performed upon asset failure or preventive task. Then, the asset can 

be considered “As Good As New” (AGAN) after any maintenance intervention [13].  

We suppose that for every asset 𝑎 ∈ {1, … , 𝐴} the following pieces of information are available: 

1. the values of 𝐾 control variables (𝑋1, … , 𝑋𝐾) containing technical information about the asset (e.g., 

its location, the type of railway line, etc.). These are arranged into vectors 𝒙𝑎 = (𝑥𝑎
1, … , 𝑥𝑎

𝐾), 𝑎 =

1, … , 𝐴. 

2. A collection of an  independent field observations registered into the vector 𝑫𝑎 = (𝒚𝑎, 𝜹𝑎), where 

𝒚𝑎 = (𝑦𝑎
1, … , 𝑦𝑎

𝑛𝑎), is a time variable, 𝑦𝑎
𝑏 ∈ ℝ0

+, 𝑏 = 1, … , 𝑛𝑎, whereas 𝜹𝑎 = (𝛿𝑎
1, … , 𝛿𝑎

𝑛𝑎), 𝛿𝑎
𝑏 ∈

{0,1}, 𝑏 = 1, … , 𝑛𝑎 is a censoring indicator variable: 𝑦𝑎
𝑏 is a current failure time if 𝛿𝑎

𝑏 is equal to 

1, or a right-censored observation if 𝛿𝑎
𝑏 is equal to 0, 𝑏 ∈ {1, … , 𝑛𝑎}. 

 

2.1.   CLUSTERING METHODOLOGY SNAPSHOT 

The methodology proposed in [11] is based on the following steps: 



1. Based on the knowledge of experts and on considerations pertaining to the organization of the 

maintenance engineering department of the industrial partner, identify the subset (�̃�1, … , �̃��̃�) of 

decision variables (𝑋1, … , 𝑋𝐾), �̃� < 𝐾, which allows partitioning the assets in 𝑁 < 𝐴 segmented 

populations 𝑆𝑖, corresponding to different combinations of decision variables (�̃�1, … , �̃��̃�). Thus, 

each population 𝑆𝑖 is associated to the failure dataset 𝑶𝑖 = (𝑫𝑖1
, … , 𝑫𝑖𝑛𝑖

), where {𝑖1, … , 𝑖𝑛𝑖
} ⊆

{1, … , 𝐴} are the indexes identifying the assets belonging to population 𝑆𝑖, 𝑖 = 1 … , 𝑁. Notice that 

the identification of these populations differs from clustering analysis, which, indeed, aims at 

grouping these populations based on their reliability distributions.  

In particular, the reliability distribution of population 𝑆𝑖 is assumed to be a Weibull distribution of 

scale parameter 𝛼𝑖 and shape parameter 𝛽𝑖, 𝑖 = 1, . . , 𝑁. The probability density function is given 

by  

 𝑓𝑖(𝑦|𝛼𝑖 , 𝛽𝑖) =
𝛽𝑖

𝛼𝑖
(

𝑦

𝛼𝑖
)

𝛽𝑖−1

   𝑦 > 0, 𝛼𝑖 > 0, 𝛽𝑖 > 0 (1) 

 

     whereas the corresponding reliability function and hazard rates are, respectively: 

 
𝑅𝑖(𝑦|𝛼𝑖 , 𝛽𝑖) = 𝑒

−(
𝑦
𝛼𝑖

)
𝛽𝑖

   𝑦 > 0, 𝛼𝑖 > 0, 𝛽𝑖 > 0 
(2) 

 

     and 

 ℎ𝑖(𝑦|𝛼𝑖 , 𝛽𝑖) =
𝛽𝑖

𝛼𝑖
(

𝑦

𝛼𝑖
)

𝛽𝑖

   𝑦 > 0, 𝛼𝑖 > 0, 𝛽𝑖 > 0 (3) 

 

It is worth mentioning that the results of clustering depend on the subset of decision variables chosen 

by the experts at this first step, because different partitioning solutions of the assets lead to different 

reliability behaviors, and, therefore, different similarity values to be fed to the clustering algorithm. 

Then, a solid and rational selection of the decision variables by the experts is fundamental for setting 

the maintenance strategies. 

2. Apply the Maximum Likelihood Estimation (MLE) technique to each population i to estimate the 

parameters (𝛼𝑖, 𝛽𝑖) of Eqs. (1), (2) and (3). For this, in this work we assume that there exists at 

least one observed failure time into the failure dataset 𝑶𝑖 (i.e., not subject to any kind of censoring) 

so that MLE exists for every 𝑖 = 1 … , 𝑁. In many real applications, the existence of the MLE may 

not be guaranteed: in these cases, one can use either Bayesian statistical inference techniques [14], 



or work on the �̃� covariates to reduce the number of possible populations, each one consisting of 

a larger number of assets. 

3. Quantify the similarity between all pairs of statistical populations from the reliability perspective. 

This task is achieved quantifying how similar the reliability distributions are (either Eq. (1) or Eq. 

(2)) of each pair of statistical populations 𝑖 and  𝑗, where 𝑖, 𝑗 = 1, … , 𝑁. The Symmetric Kullback-

Leibler Dissimilarity (SKLD) is here adopted to compute the similarity 𝑤𝑖𝑗 between densities 𝑓𝑖  

and 𝑓𝑗 representative of the reliability distributions of statistical populations 𝑖  and 𝑗, respectively. 

This point of the methodology is detailed in Appendix A. 

4. The similarity matrix 𝑊, whose entries are given by similarities 𝑤𝑖𝑗,  is given in input to the 

Spectral Clustering Algorithm (SCA). This point of the methodology is detailed in Appendix B. 

5. Infer the best number of clusters 𝐶∗ quantifying a compromise between the silhouette [15] and 

Davies-Bauldin coefficients [16]. 

6. Create the failure time datasets 𝑶𝑝 = (𝑶𝑝1
, … , 𝑶𝑝𝑛𝑝

), where {𝑝1, … , 𝑝𝑛𝑝
}  are the indexes 

referring to the statistical population assigned to cluster 𝑝 ∈ {1, … , 𝐶∗}. Again, each cluster is 

assumed to be Weibull distributed with scale parameter 𝛼𝑝 and shape parameter 𝛽𝑝. 

7. Apply the MLE technique to estimate parameters (𝛼𝑝, 𝛽𝑝) for each cluster. 

3. ASSET MANAGEMENT 

The occurrence of failures of assets belonging to the population 𝑆𝑖 can be modeled by a Renewal 

Process (RP) with Renewal Function (RF) [13], 𝑖 = 1, … 𝑁: 

 𝐻𝑖(𝑦|𝛼𝑖 , 𝛽𝑖) = 1 − 𝑅𝑖(𝑦|𝛼𝑖, 𝛽𝑖) + ∫ 𝐻𝑖(𝑦 − 𝑧|𝛼𝑖, 𝛽𝑖)𝑓𝑖(𝑦|𝛼𝑖, 𝛽𝑖)
𝑦

0

𝑑𝑧 (4) 

 

where 𝐻𝑖(𝑦|𝛼𝑖 , 𝛽𝑖) indicates the expected number of replacements up to time 𝑦 for an asset belonging 

to 𝑆𝑖.  

In case of Weibull distribution, the RF in Eq. (4) cannot be analytically solved; thus, we use the 

following approximation [17]: 

 

 𝐻𝑖(𝑦|𝛼𝑖, 𝛽𝑖) ≈
𝑦

𝔼{𝑌|𝛼𝑖 , 𝛽𝑖}
+

𝔼{𝑌2|𝛼𝑖, 𝛽𝑖}

2𝔼{𝑌|𝛼𝑖 , 𝛽𝑖}
2

− 1 (5) 

 



where, 𝔼{𝑌|𝛼𝑖, 𝛽𝑖} and 𝔼{𝑌2|𝛼𝑖, 𝛽𝑖} are the first moments of a Weibull distribution with scale and 

shape parameters 𝛼𝑖 and 𝛽𝑖, respectively. 

We assume that only assets having an Increasing Failure Rate (IFR) (i.e., 𝛽𝑖 > 1) undergo a PM 

strategy [13], otherwise they are repaired or replaced upon failure.  

In case of PM, assets are periodically inspected with period 𝜏𝑖  and re-set into an AGAN state. This 

entails that probability distribution function 𝑓𝑖(𝑦|𝛼𝑖, 𝛽𝑖) is a 𝜏𝑖 −periodic function.  

If we assume that the asset repair time is negligible with respect to its mean time between failures, 

then the number 𝐾𝑖 of PM actions carried out over the mission time 𝑇𝑚𝑖𝑠𝑠 is the largest integer smaller 

then 𝑇𝑚𝑖𝑠𝑠/𝜏𝑖, whereas the expected number of replacements up to the time of the last PM 

maintenance action is 

 

𝐻𝑖(𝜏𝑖𝐾𝑖|𝛼𝑖 , 𝛽𝑖) = 1 − 𝑅𝑖(𝐾𝑖𝜏𝑖|𝛼𝑖 , 𝛽𝑖) + ∫ 𝐻𝑖(𝐾𝑖𝜏𝑖 − 𝑧|𝛼𝑖 , 𝛽𝑖)𝑓𝑖(𝑦|𝛼𝑖 , 𝛽𝑖)
𝐾𝑖𝜏𝑖

0

𝑑𝑧 =

= 𝐾𝑖 (1 − 𝑅𝑖(𝜏𝑖|𝛼𝑖 , 𝛽𝑖) + ∫ 𝐻𝑖(𝜏𝑖 − 𝑧|𝛼𝑖 , 𝛽𝑖)𝑓𝑖(𝑦|𝛼𝑖 , 𝛽𝑖)𝑑𝑧
𝜏𝑖

0

) = 𝐾𝑖𝐻𝑖(𝜏𝑖|𝛼𝑖 , 𝛽𝑖) 

(6) 

 

where, the second equality in Eq. (6) follows from the fact that 𝑓𝑖(𝑦|𝛼𝑖, 𝛽𝑖) is a 𝜏𝑖 −periodic function 

under a PM strategy. 

3.1   MODELING COSTS AND OPTIMAL PM STRATEGY 

Let 𝐶𝐶𝑀 and 𝐶𝑃𝑀 be the costs of performing single CM and PM actions, respectively, which we 

assume being not dependent on the 𝑖𝑡ℎ population. We also assume that 𝐶𝑃𝑀 ≤ 𝐶𝐶𝑀, to take into 

account that although the PM and CM actions yield the same effect (i.e., restoring the asset to the 

AGAN state), nonetheless the CM actions are not pre-organized and usually entail extra-costs related 

to the larger downtimes. With no loss of generality, we set 𝐶𝑃𝑀 = 𝜒𝐶𝐶𝑀, 𝜒 ∈ (0,1). 

Under these assumptions, the expected maintenance cost for an asset belonging to the 𝑖𝑡ℎ population 

over the mission time 𝑇𝑚𝑖𝑠𝑠 in case of CM and PM policies are, respectively: 

 

 𝐶𝑖
𝐶𝑀 = 𝐶𝑖

𝐶𝑀(𝛼𝑖, 𝛽𝑖) = 𝐶𝐶𝑀𝐻𝑖(𝑇𝑚𝑖𝑠𝑠|𝛼𝑖, 𝛽𝑖)  (7) 

 

 𝐶𝑖
𝑃𝑀 = 𝐶𝑖

𝑃𝑀(𝛼𝑖,𝛽𝑖 , 𝜒, 𝑇𝑚𝑖𝑠𝑠 , 𝜏𝑖) = 𝐾𝑖𝐻𝑖(𝜏𝑖|𝛼𝑖 , 𝛽𝑖)𝐶𝐶𝑀 + 𝐻𝑖(𝑇𝑚𝑖𝑠𝑠 − 𝜏𝑖𝐾𝑖|𝛼𝑖 , 𝛽𝑖)𝐶𝐶𝑀 + 𝐾𝑖𝐶𝑃𝑀 (8) 

 



where 𝐻𝑖(𝑇𝑚𝑖𝑠𝑠 − 𝜏𝑖𝐾𝑖|𝛼𝑖 , 𝛽𝑖) represents the expected number of replacements between the last PM 

action undertaken at time 𝜏𝑖𝐾𝑖 and the mission time 𝑇𝑚𝑖𝑠𝑠.  

The optimal period 𝜏𝑖
∗ of the PM strategy can be found by minimizing the expected cost per asset (Eq. 

(8)): 

 𝜏𝑖
∗ = 𝜏𝑖

∗(𝛼𝑖, 𝛽𝑖, 𝜒, 𝑇𝑚𝑖𝑠𝑠) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜏𝑖∈(0,𝑇𝑚𝑖𝑠𝑠]𝐶𝑖
𝑃𝑀(𝛼𝑖, 𝛽𝑖, 𝜒, 𝑇𝑚𝑖𝑠𝑠, 𝜏𝑖)   (9) 

 

The number of PM actions and the minimum expected cost in Eq. (8) under the optimal strategy are 

referred to as 𝐾𝑖
∗ and 𝐶𝑖

𝑃𝑀∗
, respectively. When 𝜏𝑖

∗ = 𝑇𝑚𝑖𝑠𝑠, then 𝐶𝑖
𝑃𝑀∗

= 𝐶𝑖
𝐶𝑀 (i.e., only CM actions 

need to be performed). 

3.2    TOTAL EXPECTED COST 

In this Subsection, we present the general assumptions to estimate the expected maintenance costs 

for the population-driven and cluster-driven approaches: 

A. Population-driven approach: the PM strategy is managed at population level, based on its 

reliability distribution 𝑅𝑖(𝑦|𝛼𝑖, 𝛽𝑖), 𝑖 = 1, . . , 𝑁. In this setting, if �̃� is the number of 

segmented populations with 𝛽𝑖 > 1 (�̃� ≤ 𝑁), then �̃� different PM policies need to be 

optimized and managed. The total expected cost is: 

 

 
𝐶𝑇𝑂𝑇

𝑃𝑂𝑃 = ∑ 𝑛𝑖𝐶𝑖
𝑃𝑀∗

+  ∑ 𝑛𝑖𝐶𝑖
𝐶𝑀 

𝑖:𝛽𝑖≤1𝑖:𝛽𝑖>1

 (10) 

 

where the first term sums over all populations with 𝛽𝑖 > 1 (i.e., those for which, an optimal 

PM maintenance can be scheduled finding the optimal period 𝜏𝑖
∗ with Eq. (9)), whereas the 

second term sums over those populations with 𝛽𝑖 < 1 (i.e., those for which only CM actions 

can be undertaken), 𝑖 ∈ {1, … , 𝑁}. 

 

B. Cluster-driven approach: the PM strategy is managed at cluster level, based on the cluster 

reliability distribution 𝑅𝑝(𝑦|𝛼𝑝, 𝛽𝑝), 𝑝 = 1, . . , 𝐶∗. In this case, only the assets belonging to 

the �̃� ≤ 𝐶∗ clusters with 𝛽𝑝 > 1 will undergo a PM policy. Then, �̃� different PM policies 

have to be optimized and scheduled, being in general �̃� ≪ �̃�. This yields a strong 

simplification for the maintenance management process. To estimate the maintenance costs, 



we observe that the entire asset population can be partitioned in the following four mutually 

exclusive and exhaustive subsets: 

I. Assets belonging to a population with 𝛽𝑖 > 1 and assigned to cluster 𝑝 with 𝛽𝑝 > 1, whose 

expected cost is assumed to be 

 

 𝐶𝑖,𝑝
𝐼 = 𝐶𝑖,𝑝

𝐼 (𝛼𝑖 , 𝛽𝑖 , 𝜒, 𝑇𝑚𝑖𝑠𝑠 , 𝛼𝑝, 𝛽𝑝 , 𝜏𝑝
∗ ) = [𝐾𝑝

∗𝐻𝑖(𝜏𝑝
∗ |𝛼𝑖 , 𝛽𝑖) + 𝐻𝑖(𝑇𝑚𝑖𝑠𝑠 − 𝜏𝑝

∗ 𝐾𝑝
∗|𝛼𝑖, 𝛽𝑖)]𝐶𝐶𝑀 + 𝐾𝑝

∗𝐶𝑃𝑀 (11) 

 

where 𝜏𝑝
∗  is the optimal time interval between successive PMs which minimizes the 

expected cost 𝐶𝑝
𝑃𝑀(𝛼𝑝, 𝛽𝑝, 𝜒, 𝑇𝑚𝑖𝑠𝑠, 𝜏𝑝) in Eq. (7). Notice that Eq. (11) derives from Eq. 

(8), in which the optimal period of maintenance actions is defined by the reliability 

function of cluster 𝑝. Obviously, in general 𝜏𝑝
∗ ≠ 𝜏𝑖

∗; then, assets belonging to population 

𝑖 are required to follow a periodic PM strategy which is not optimal for themselves. This 

entails that 𝐶𝑖,𝑝
𝐼 ≥ 𝐶𝑖

𝑃𝑀∗
, where the equality holds if and only if 𝜏𝑝

∗ = 𝜏𝑖
∗, i.e., 𝛼𝑖 = 𝛼𝑝 and 

𝛽𝑖 = 𝛽𝑝. 

II. Assets belonging to a population with 𝛽𝑖 ≤ 1 and assigned to cluster 𝑝, 𝛽𝑝 > 1, whose 

expected cost is assumed to be  

 𝐶𝑖,𝑝
𝐼𝐼 = 𝐶𝑖,𝑝

𝐼𝐼 (𝛼𝑖 , 𝛽𝑖 , 𝜒, 𝑇𝑚𝑖𝑠𝑠 , 𝛼𝑝, 𝛽𝑝, 𝜏𝑝
∗ ) = 𝐾𝑝

∗𝐻𝑖(𝜏𝑝
∗ |𝛼𝑖 , 𝛽𝑖) + 𝐻𝑖(𝑇𝑚𝑖𝑠𝑠 − 𝜏𝑝

∗ 𝐾𝑝
∗|𝛼𝑖 , 𝛽𝑖) + 𝐾𝑝

∗𝐶𝑃𝑀 (12) 

 

In fact, in this case no PM action would be required for the asset, which is forced to follow 

the optimal PM strategy of cluster 𝑝. Notice that 𝐶𝑖,𝑝
𝐼𝐼 > 𝐶𝑖

𝐶𝑀, as PM actions imply a cost 

which is not counterbalanced by any benefit in preventing failures. 

III. Assets belonging to population with 𝛽𝑖 > 1, which are assigned to cluster 𝑝, 𝛽𝑝 ≤ 1,  

whose expected cost is assumed to be  

 

                                   𝐶𝑖,𝑝
𝐼𝐼𝐼 = 𝐶𝐶𝑀𝐻(𝑇𝑚𝑖𝑠𝑠|𝛼𝑖, 𝛽𝑖) ≥ 𝐶𝑖

𝑃𝑀∗
 (13) 

 

In this case, although an optimal PM could be scheduled for the individual assets, 

however, they are not preventively maintained since 𝛽𝑝 ≤ 1. Notice also that the equality 

holds if and only if 𝜏𝑖
∗ = 𝑇𝑚𝑖𝑠𝑠 (i.e., only CM actions are performed), whereby 𝐶𝑖

𝑃𝑀∗
=

𝐶𝑖
𝐶𝑀. 



IV. Assets belonging to a population with 𝛽𝑖 ≤ 1, and assigned to cluster 𝑝, 𝛽𝑝 ≤ 1. The 

expected cost per asset is obviously 𝐶𝑖,𝑝
𝐼𝑉 = 𝐶𝑖

𝐶𝑀, like for the asset managed under the 

population-driven approach. 

Based on the considerations above, the total expected cost can be computed as: 

 

 𝐶𝑇𝑂𝑇
𝐶𝐿𝑈 = ∑ 𝑛𝑖𝐶𝑖,𝑝

𝐼 + ∑ 𝑛𝑖𝐶𝑖,𝑝
𝐼𝐼 +

𝑖∈𝑆𝑢𝑏𝑠𝑒𝑡 𝐼𝐼

∑ 𝑛𝑖𝐶𝑖,𝑝
𝐼𝐼𝐼 +

𝑖∈𝑆𝑢𝑏𝑠𝑒𝑡 𝐼𝐼𝐼

∑ 𝑛𝑖𝐶𝑖,𝑝
𝐼𝑉

𝑖∈𝑆𝑢𝑏𝑠𝑒𝑡 𝐼𝑉𝑖∈𝑆𝑢𝑏𝑠𝑒𝑡 𝐼

 (14) 

 

Finally, we consider the following three cost items: 

• 𝐶𝐸𝐶  is the difference between the expected cost in Eq. (14) and that in Eq. (10), i.e., the 

maintenance extra-cost due to the application of the cluster-driven approach: 

 

 

𝐶𝐸𝐶 = 𝐶𝑇𝑂𝑇
𝐶𝐿𝑈 − 𝐶𝑇𝑂𝑇

𝑃𝑂𝑃 = 

= ∑ 𝑛𝑖(𝐶𝑖,𝑝
𝐼 − 𝐶𝑖

𝑃𝑀∗
) +

𝑖∈𝑆𝑢𝑏𝑠𝑒𝑡 𝐼

∑ 𝑛𝑖(𝐶𝑖,𝑝
𝐼𝐼 − 𝐶𝑖

𝐶𝑀) +

𝑖∈𝑆𝑢𝑏𝑠𝑒𝑡 𝐼𝐼

∑ 𝑛𝑖(𝐶𝑖,𝑝
𝐼𝐼𝐼 − 𝐶𝑖

𝑃𝑀∗
) +

𝑖∈𝑆𝑢𝑏𝑠𝑒𝑡 𝐼𝐼𝐼

∑ 𝑛𝑖(𝐶𝑖,𝑝
𝐼𝑉 − 𝐶𝑖

𝐶𝑀)

𝑖∈𝑆𝑢𝑏𝑠𝑒𝑡 𝐼𝑉

= 

= ∑ 𝑛𝑖(𝐶𝑖,𝑝
𝐼 − 𝐶𝑖

𝑃𝑀∗
) +

𝑖∈𝑆𝑢𝑏𝑠𝑒𝑡 𝐼

∑ 𝑛𝑖(𝐶𝑖,𝑝
𝐼𝐼 − 𝐶𝑖

𝐶𝑀) +

𝑖∈𝑆𝑢𝑏𝑠𝑒𝑡 𝐼𝐼

∑ 𝑛𝑖(𝐶𝑖,𝑝
𝐼𝐼𝐼 − 𝐶𝑖

𝑃𝑀∗
)

𝑖∈𝑆𝑢𝑏𝑠𝑒𝑡 𝐼𝐼𝐼

 

(15) 

 

Notice that the quantity 𝐶𝐸𝐶  is always non-negative since, 𝐶𝑖,𝑝
𝐼 ≥ 𝐶𝑖

𝑃𝑀∗
,  𝐶𝑖,𝑝

𝐼𝐼 > 𝐶𝑖
𝐶𝑀, 𝐶𝑖,𝑝

𝐼𝐼𝐼 ≥ 𝐶𝑖
𝑃𝑀∗

 and 

𝐶𝑖,𝑝
𝐼𝑉 = 𝐶𝑖

𝐶𝑀. 

• 𝐶𝑂𝑅𝐺
𝑃𝑂𝑃 = 𝐶𝑂𝑅𝐺(�̃�) and 𝐶𝑂𝑅𝐺

𝐶𝐿𝑈 = 𝐶𝑂𝑅𝐺(�̃�) are the planning expected costs resulting from 

scheduling  �̃� different PM policies under the population-driven approach and �̃� different PM 

policies under the simplification brought by the cluster-driven maintenance approach, 

respectively. 

The asset manager will opt for the cluster-driven maintenance approach if the following inequality 

holds 

 𝐶𝐸𝐶 < 𝐶𝑂𝑅𝐺
𝑃𝑂𝑃 − 𝐶𝑂𝑅𝐺

𝐶𝐿𝑈 (16) 

 

i.e., if the extra-cost due to clustering is balanced by the cost reduction in scheduling �̃� different PM 

strategies instead of �̃�, being in general 𝐶𝑂𝑅𝐺(�̃�) > 𝐶𝑂𝑅𝐺(�̃�).” 



4   CASE STUDY 

The available dataset consists of millions of different assets for which the values of many control 

variables are provided in the form of heterogeneous unstructured data. With the objective of 

developing a methodological approach for extracting information from all available data for 

optimizing asset management, in this work, we consider a subset of the original dataset without loss 

of generality. The subset of considered data consists of 𝐴 = 32385 different assets for which the 

values of 𝐾 = 12 decision variables (𝑋1, … , 𝑋𝐾) are provided (for confidentiality, details are not 

given here). Among these decision variables a subset of �̃� = 5 decision variables (�̃�1, … , �̃��̃� ) has 

been selected by experts (Step 1, Subsection 2.1). Based on their values, 𝑁 = 374 populations of 

assets have been identified, with corresponding failure time datasets 𝑶𝑖 , 𝑖 ∈ {1, … ,374}. Then, the 

estimates of the Weibull parameters (𝛼𝑖, 𝛽𝑖) for all 374 populations have been obtained by resorting 

to MLE method (Step 2, Subsection 2.1). In Figure 1(a), the estimated values of the scale parameters 

(abscissas, in logarithmic scale) and shape parameters (ordinates) are shown. Notice that a different 

choice of the decision variables provided by the experts leads to a different partitioning of the assets, 

with different reliability behaviors. For example, if we select a subset of  �̃� = 4 decision variables 

among the 5 selected from the experts, the cardinality of populations of assets reduces to 𝑁 = 91, 

with different reliability behaviors, as shown in Figure 1(b). 

Figure 1: Estimated Weibull parameters for each statistical population when  �̃� = 𝟓 (left) and  �̃� = 𝟒 

(right).” 

 

The similarity matrix 𝑊 has been obtained by computing the similarity measure 𝑤𝑖𝑗 of Eq (A.3) 

between all possible 374 pairs of statistical populations (Step3, Subsection 2.1). To assess the most 

appropriate number of clusters, we have resorted to the silhouette and Davies-Bauldin coefficients 

(Step 4, Subsection 2.1). Figures 2 and 3, respectively, show the values of these coefficients in 

correspondence to the number of clusters varying from 2 to 10. 



 

 

Figure 2: Silhouette coefficient increasing the number of clusters from 2 to 10. 

 

Figure 3: Davies-Bauldin coefficient increasing the number of clusters from 2 to 10. 

Let us analyze the best solutions, 𝐶∗ = 2 and 𝐶∗ = 5, as seen in both Figures 3 and 4. Figures 4(a) 

and 4(b) show, for each statistical population, in abscissa the log scale parameter (log(𝛼)) and in 

ordinate the corresponding value of the shape parameter (𝛽) when 𝐶∗ = 2 and 𝐶∗ = 5, respectively. 

From these Figures, it emerges that the cluster 2 and 5 (represented by different markers) divide the 

semi-plane (log(𝛼) , 𝛽) in 2 and 5 pairwise disjoint regions, respectively, and, therefore, we can 

conclude that these 2 and 5 clusters really identify different reliability behaviours, respectively. 



 

Figure 4: Values of the (log) scale parameters (abscissa axis) and shape parameters (ordinate axis) when 𝑪∗ = 𝟐 

(left) and   𝑪∗ = 𝟓 (right), respectively. 

Once these clusters are identified, we can estimate the representative reliability distribution of all 

assets belonging to the same clusters. Again assume that the reliability behaviour of each cluster is 

described by a Weibull probability distribution, by reason of the flexibility of this distribution [11]. 

In Tables 1 and 2, the MLE values of the scale parameters and shape parameters are reported for each 

cluster (Steps 6 and 7, Subsection 2.1) when 𝐶∗ = 2 and 𝐶∗ = 5, respectively. From these, one can 

conclude that: 

• Case 1: 𝐶∗ = 2 

1. There are two clusters (indicated by hexograms and diamonds in the Figure) for which the 

estimated values of the shape parameters are not significantly different to each other, 

whereas the estimated values of the scale parameters are very different. For these clusters, 

the hazard rate turns out to be a decreasing function of time and, thus, only CM actions 

would be considered. 

• Case 2: 𝐶∗ = 5 

1. There are three clusters (indicated by circles, crosses and squares in the Figure) for which 

the estimated values of the shape parameters are similar to each other (𝛽 < 1), whereas the 

estimated values of the scale parameters are very different. For these clusters, the hazard rate 

is a decreasing function of  time and, thus, only CM actions would be considered. 

2. There are two clusters (stars and triangles in the Figure) with shape parameters assuming 

values larger than one, and with very different values of the estimated scale parameters. For 

these clusters, the failure rate is an increasing function of time and, thus, an optimal PM 

maintenance strategy can be scheduled. 



Scale Parameter 

𝛼𝑝 

Shape Parameter 

𝛽𝑝 

 

Cluster marker 

0.2523+05 0.6358 hexogram 

0.0313e+05 0.6278 diamond 

 

Table1: MLEs of scale and shape parameters of each cluster ( 𝑪∗ = 𝟐) 

Scale Parameter 

𝛼𝑝 

Shape Parameter 

𝛽𝑝 

 

Cluster marker 

0.0058 e+05 0.5814 circle 

0.5063e+05 1.1342 star 

0.0377e+05 0.6610 cross 

0.1025e+05 1.9495 triangle 

2.7485e+05 0.7025 square 

 

Table2: MLEs of scale and shape parameters of each cluster ( 𝑪∗ = 𝟓). 

In Figure 5, the reliability functions relative to the 𝐶∗ = 5 identified clusters are shown. This 

information enables the scheduling of only 5 maintenance strategies, which are applied to 

all the assets belonging to the corresponding clusters.

 

Figure 5: Reliability function 𝑹(𝒕) relative to the 5 clusters (different markers correspond to the different 

clusters) 

4.1. COST ANALYSIS: results 

In this Subsection, we limit our analysis to case 𝐶∗ = 5. This choice is due to the fact that the case 

𝐶∗ = 2 corresponds to a particular case when only CM actions are taken.   

     We compare the total expected cost under the population-driven approach with that of the cluster-

driven approach. For simplicity, the cost of a CM action, 𝐶𝐶𝑀, is set equal to 1 (in arbitrary unit), 

whereas factor 𝜒 is assumes 20 evenly spaced values between 0.05 and 1. The mission time 𝑇𝑚𝑖𝑠𝑠 = 

40 years. 



If we approach maintenance under the population-driven approach, there are �̃� =83 populations with 

shape parameter 𝛽𝑖>1. Accordingly, we need to find 83 optimal policies by using Eq. (9).  

For example, Figure 6 shows the outcomes of the optimization of the maintenance period of the 

segmented population 𝑆339, whose reliability distribution has scale parameter 𝛼339 = 4.5817𝑒 + 03 

(days) and shape parameter 𝛽339 =2.1735. From this Figure, we can see that the larger the value of 

𝜒, the larger is the optimal maintenance interval 𝜏339
∗ . When 𝜒 is larger than 0.35, it is no longer 

convenient scheduling a periodic PM strategy, as 𝜏339
∗ ≥ 40.  

 

Figure 6: Optimal period 𝝉𝟑𝟗𝟗
∗ , corresponding to different values of the discount factor 𝝌 for the 𝟑𝟑𝟗𝒕𝒉 

The sudden transition from 𝜏399
∗ = 5 to 𝜏399

∗ = 40 at 0.35 < 𝜒 < 0.40 can be justified by looking at 

Figure 7, which shows the cost function 𝐶339
𝑃𝑀 = 𝐶339

𝑃𝑀(𝛼339,𝛽339,𝜒, 40, 𝜏339) in Eq. (8) in logarithmic scale 

for all considered values of factor 𝜒: the period 𝜏339 = 40 is always a local minimum point regardless 

of the value 𝜒 except when 𝜒 = 0.05, and it becomes a global minimum point for 𝜒 ≥ 0.40. This is 

due to the fact that when 𝜒 > 0.05 scheduling a PM action at time 𝜏399 = 39 is less convenient that 

not to undertake any PM action. 



 

Figure 7: Cost function 𝑪𝟑𝟑𝟗
𝑷𝑴 = 𝑪𝟑𝟑𝟗

𝑷𝑴 (𝜶𝟑𝟑𝟗,𝜷𝟑𝟑𝟗,𝝌, 𝟒𝟎, 𝝉𝟑𝟑𝟗) in Eq. (16) in logarithmic scale for all considered 

values of factor 𝝌 (square and point markers correspond to 𝝌 < 𝟎. 𝟑𝟓 and 𝝌 ≥ 𝟎. 𝟑𝟓, respectively, the dash line 

correspond to the expected cost when no PM action are undertaken , i.e., 𝝉𝟑𝟗𝟗 ≥ 𝟒𝟎, which does not depend on 

factor 𝝌. 

Figure 8 shows the expected cost for every asset belonging to population 𝑆339 as a function of the 

discount factor 𝜒, provided that the PM actions are performed at the corresponding optimal periods 

𝜏399
∗ (𝜒) shown in Figure 6. According to the results of Figures 6 and 7 the PM strategy is no longer 

convenient once 𝜒 reaches 0.4 and the maintenance cost equal that of the CM strategy. 

 

Figure 8: Expected cost per asset under optimal strategy as function of the discount factor 𝝌 for the 𝟑𝟑𝟗𝒕𝒉 

population 

With respect to the cluster-driven approach, Figure 9 shows for cluster 2, the optimal period 𝜏2
∗ vs 𝜒. 

From this, it clearly emerges that PM strategy is never convenient, whichever the value of 𝜒. 



 

Figure 9: Optimal periods 𝝉𝟐
∗  for different values of the discount factor 𝝌 for clusters 2 

Figure 10 shows the same results related to cluster 4. In this case, an optimal PM strategy can be 

found until 𝜒 is smaller than 0.40. From this value on, the difference between CM and PM does not 

allow to justify the scheduling of a PM strategy. 

 

Figure 10: Optimal periods 𝝉𝟒
∗  for different values of the discount factor 𝝌 for clusters 4 

4.2. COST ANALYSIS: discussion 

To fairly compare the population and cluster-driven, Tables 3 and Table 4, respectively, report the 

total numbers �̃� and �̃� of PM policies that these approaches require to optimize and trace: whenever 

an optimal PM strategy exists, the number of optimal periodic PM strategy under cluster-driven 

approach is always smaller than that under the population-driven approach. This difference is even 

more pronounced for small values of 𝜒; for example, when 𝜒=0.05 one has to schedule only one 

maintenance action versus the 66 required when the maintenance approach is managed under the 

population-driven approach. 

𝜒 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

𝑁 66 58 49 43 34 26 21 8 3 0 0 0 0 0 0 0 0 0 0 0 

 

Table 3: Total number of optimal periodic PM strategy �̃� to be scheduled under the population-driven 

approach. 



 

𝜒 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

𝐶 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Table 4: Total number of optimal periodic PM strategy �̃� to be scheduled under the cluster-driven approach 

The total expected cost versus 𝜒 for the two maintenance management approaches are shown in 

Figure 11. Notice that according to the arguments discussed in Subsection 3.2, the total expected cost 

in case of cluster-driven maintenance management approach is larger than that obtained with the 

population-driven approach. 

 

Figure 11: Total expected cost in case of cluster-driven maintenance management approach and segmented 

population-driven approach (square and diamond, respectively). 

Figure 12 shows the percentage value of the total expected cost difference between the cluster and 

population-driven approaches. 

 

Figure 12: Percentage total expected cost difference between the cluster-driven maintenance management 

approach and segmented population-driven approach. 

Suppose that 𝜒 = 0.05. From Table 3 and 4 one has that the total number of optimal periodic PM 

strategy �̃� and �̃� to be scheduled under the population and cluster-driven approaches are 66 and 1, 

respectively; the corresponding scheduling costs are 𝐶𝑂𝑅𝐺
𝑃𝑂𝑃 = 𝐶𝑂𝑅𝐺(66) and 𝐶𝑂𝑅𝐺

𝐶𝐿𝑈 = 𝐶𝑂𝑅𝐺(1), 



respectively. The total expected cost difference 𝐶𝐸𝐶  in Eq. (15) is 1815 (in arbitrary unit) which to 

corresponds a percentage total cost expected difference of 2.05%.  If the simplification brought by 

the cluster-driven maintenance approach is such that condition in Eq. (16) is satisfied: that is, if the 

difference between planning costs 𝐶𝑂𝑅𝐺(66) and 𝐶𝑂𝑅𝐺(1) is larger than 1815, i.e., is larger than 

0.0205 times the total expected cost under the segmented population-driven approach, then, the asset 

manager should opt for the cluster-driven maintenance approach otherwise for the segmented 

population-driven approach. 

 

5    CONCLUSIONS 

In this work, we have proposed a cost model to support the asset decision maker in quantifying the 

possible maintenance extra-costs due to scheduling PM strategies under the cluster-driven 

maintenance approach proposed in [11] for managing the maintenance of a very large fleet of assets. 

Our cost model has been applied to a real case study concerning assets of the railway system, with 

more than 30000 assets which have been grouped in 5 clusters. We found that the optimal PM 

strategies under the population and cluster-driven approaches are 66 and 1, respectively. Cost analysis 

shows that the simplification brought by the cluster-driven approach is justified when the expected 

planning costs resulting from scheduling 1 PM strategy instead of 66 outweigh the extra-costs due to 

the assets following a maintenance strategies that are optimal at cluster level but not at population 

level. 
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APPENDIX 

A: SIMILARITY BETWEEN PROBABILITY DISTRIBUTIONS 

Let Ω denote the sample space, ℱ a 𝜎 −algebra on Ω, and P  the set of probability measures on the 

measurable space (Ω, ℱ). Let 𝜇𝑖 and 𝜇 be two elements of P , and 𝑓𝑖 and 𝑓𝑗  their corresponding 

probability density functions with respect to a dominating measure 𝜌. Then, the Kullback-Leibler 

Divergence (KLD) of 𝜇𝑖 from 𝜇𝑗 denoted with 𝑑𝐾𝐿(𝜇𝑖||𝜇𝑗), is defined as [18]: 

 𝑑𝐾𝐿(𝜇𝑖||𝜇𝑗) = 𝑑𝐾𝐿(𝑓𝑖||𝑓𝑗) = ∫ 𝑓𝑖 log
𝑓𝑖

𝑓𝑗
𝑑𝜌 

Ω

 (A1) 

 

Note that, in general, 𝑑𝐾𝐿(𝜇𝑖||𝜇𝑗) ≠ 𝑑𝐾𝐿(𝜇𝑗||𝜇𝑖). 

Otherwise, if we define the SKLD between 𝜇𝑖 and 𝜇𝑗 as: 

 𝑑𝐾𝐿
𝑠𝑦𝑚

(𝜇𝑖 , 𝜇𝑗) =
1

2
(𝑑𝐾𝐿(𝜇𝑖||𝜇𝑗) + 𝑑𝐾𝐿(𝜇𝑗||𝜇𝑖)) (A2) 

  

then 𝑑𝐾𝐿
𝑠𝑦𝑚

 is a dissimilarity measure (being symmetric). We can, therefore, define the similarity 

corresponding to the SKLD [19], [20] as in Eq. (A3): 

 𝑤𝑖𝑗 =
1

1 + 𝑑𝐾𝐿
𝑠𝑦𝑚 (A3) 

 

This measure is used to compute the similarity between the reliability distributions 𝑓𝑖 and 𝑓𝑗  of two 

different populations of assets. In this respect, notice that the densities 𝑓𝑖 and 𝑓𝑗 in Eqs. (A1) and (A2) 

are assumed Weibull distributions in our case study. This makes the computation of ijw  not 

straightforward. Nonetheless, we can exploit the results provided in [21] to efficiently compute the 

KLD divergence in Eq. (1) between two Weibull densities 𝑓𝑖(𝑦|𝛼𝑖, 𝛽𝑖) and  𝑓𝑗(𝑦|𝛼𝑗 , 𝛽𝑗) as in Eq. 

(A4):  



 𝑑𝐾𝐿(𝑓𝑖||𝑓𝑗) = log (
𝛽𝑖

𝛼𝑖
𝛽𝑖

) − log (
𝛽𝑗

𝛼
𝑗

𝛽𝑗
) − (𝛽𝑖 − 𝛽𝑗) (log(𝛼𝑖) −

𝛾

𝛽𝑖
) + (

𝛼𝑖

𝛼𝑗
)

𝛽𝑗

Γ (
𝛽𝑗

𝛽𝑖
)

𝛽𝑗

− 1 (A4) 

 

 

where 0.5772   is the Euler-Mascheroni constant, whereas Γ  is the gamma function defined as 

follows: 

 Γ(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡
+∞

0

   𝑧 ≥ 0 (A5) 

 

B: SPECTRAL CLUSTERING 

Consider the similarity matrix 𝑊of size (𝑁, 𝑁), whose generic element 𝑤𝑖𝑗 represents the similarity 

between the statistical populations 𝑆𝑖 and 𝑆𝑗. 𝑊 is symmetric and its the diagonal elements 𝑤𝑖𝑖  are 

set to 1.  

From matrix 𝑊, a similarity graph 𝐺 = (𝑉, 𝐸) is constructed, where each vertex 𝜈𝑖 represents the 𝑖𝑡ℎ 

population and the weight associated to the edge 𝑒𝑖𝑗 connecting the two vertices 𝑖 and 𝑗 is the 

similarity value 𝑤𝑖𝑗 [22]. The spectral clustering algorithm proceeds as follows [23]: 

Step1: normalized Graph Laplacian Matrix 

Compute: 

• The degree matrix D  which is a diagonal matrix with diagonal entries 1d ,…, Nd  defined by: 

 𝑑𝑖 = ∑ 𝑤𝑖𝑗    𝑖 = 1, … , 𝑁

𝑁

𝑗=1

 (B1) 

 

• The normalized graph Laplacian matrix 

 𝐿𝑠𝑦𝑚 = 𝐷−
1
2𝐿𝐷−

1
2 = 𝐼 − 𝐷−

1
2𝑊𝐷−

1
2 (B2) 

 

where L D W= − , and I  is the identity matrix of size (𝑁, 𝑁). 

Step2: feature extraction 

The relevant information on the structure of the matrix 𝑊  is obtained by considering the eigenvectors 

𝑢1, … , 𝑢𝐶  associated to the 𝐶 smallest eigenvalues 𝜆1, … , 𝜆𝐶  of its laplacian matrix 𝐿𝑠𝑦𝑚, where 𝐶 is 



the desired number of clusters. The square matrix 𝑊 is transformed into a reduced matrix 𝑈 of size 

(𝑁, 𝐶), in which the 𝐶 columns of 𝑈 are the eigenvectors 𝑢1, … , 𝑢𝐶 . Thus, the 𝑖𝑡ℎ object is captured 

in the 𝐶-dimensional vector 𝑢𝑖  corresponding to the 𝑖𝑡ℎ row of the matrix 𝑈 A matrix 𝑇 is formed 

from 𝑈 by normalizing its row [22]:  

 𝑡𝑖𝑐 =
𝑢𝑖𝑐

(∑ 𝑢𝑖𝑘
2𝐶

𝑐=1 )
1
2

   𝑖 = 1, … , 𝑁, 𝑐 = 1, … , 𝐶 (B3) 

 

It has been shown that this change of representation enhances the cluster properties in the data, so 

that clusters can be more easily identified [21]. 

Step3: Unsupervised clustering 

We use the K-means [24] algorithm to get C  clusters. Details on this clustering method can be found 

in [11]. 

 

 


