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Abstract 13 
Traditional aerosol mechanisms underestimate the observed organic aerosol concentration, especially due to 14 
the lack of information on secondary organic aerosol (SOA) formation and processing. In this study we 15 
evaluate the chemical and transport model CAMx during a one-month in winter (February 2013) over a 5 km 16 
resolution domain, covering the whole Po valley (Northern Italy). This works aims at investigating the 17 
effects of chemical and physical atmospheric processing on modeling results and, in particular, to evaluate 18 
the CAMx sensitivity to organic aerosol (OA) modeling schemes: we will compare the recent 1.5D-VBS 19 
algorithm (CAMx-VBS) with the traditional Odum 2-product model (CAMx-SOAP). Additionally, the 20 
thorough diagnostic analysis of the reproduction of meteorology, precursors and aerosol components was 21 
intended to point put strength and weaknesses of the modeling system and address its improvement. 22 
Firstly, we evaluate model performance for criteria PM concentration. PM10 concentration was 23 
underestimated both by CAMx-SOAP and even more by CAMx-VBS, with the latter showing a bias ranging 24 
between -4.7 and -7.1 μg m-3. PM2.5 model performance was to some extent better than PM10, showing a 25 
mean bias ranging between -0.5 μg m-3 at rural sites and -5.5 μg m-3 at urban and suburban sites. CAMx 26 
performance for OA was clearly worse than for the other PM compounds (negative bias ranging between -27 
40% and -75%). The comparisons of model results with OA sources (identified by PMF analysis) shows that 28 
the VBS scheme underestimates freshly emitted organic aerosol while SOAP overestimates. The VBS 29 
scheme correctly reproduces biomass burning (BBOA) contributions to primary OA concentrations (POA). 30 
In contrast VBS slightly underestimates the contribution from fossil-fuel combustion (HOA), indicating that 31 
POA emissions related to road transport are either underestimated or associated to higher volatility classes. 32 
The VBS scheme under-predictes the SOA too, but to a lesser extent than CAMx-SOAP. SOA 33 
underestimation can be related to corresponding underestimation of either aging processes or precursor 34 
emissions. This indicates that improvements in the emission inventories for semi- and intermediate-volatility 35 
organic compounds are needed for further progress in this area. Finally, the comparison between modeled 36 
and observed SOA sources points out the urgency to include processing of OA in particle water phase into 37 
SOA formation mechanisms, to reconcile model results and observations. 38 

Highlights 39 
• CAMx performance for OA are worse than for other PM components 40 
• SOAP scheme shows a better performance than VBS, due to an error compensation 41 
• VBS allows a better repartition of primary and secondary OA than SOAP scheme 42 
• POA volatility distribution and SVOC and IVOC emissions need improvement 43 
• Aqueous phase mechanism is necessary to reconcile OA observations and modeling 44 
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1 Introduction 49 
Outdoor air pollution is one of the biggest environmental risks for human health, leading to about 3 millions 50 
premature deaths every year worldwide (WHO, 2016). In Europe atmospheric pollution is responsible for 51 
more than 400.000 premature deaths a year (EEA, 2016), with the largest share due to fine particulate matter 52 
(PM2.5) exposure. Organic aerosol (OA) accounts for up to 50% of fine particles over Europe (Zhang et al., 53 
2007; Putaud et al., 2010), and its budget, sources, and atmospheric processing are still characterized by 54 
large uncertainty (Hallquist et al., 2009; Heald et al., 2010). A better knowledge of OA, and thus of fine 55 
particulate matter, is mandatory to support effective air quality control and remediation measures. 56 
OA is composed by thousands of different chemical species, characterized by different degree and type of 57 
functionalization, and thus different chemical and physical properties. The main sources of primary OA are 58 
wood burning, vehicular emissions, industrial activities, energy production, cooking, residential heating in 59 
winter and transport from the sea (Mohr et al., 2012; Crippa et al. 2013; Crippa et al., 2014; Fuzzi et al., 60 
2015). Recent studies showed that more than half of OA is composed by oxidized organic aerosol (OOA), 61 
i.e. a proxy of secondary organic aerosol (SOA) (Zhang et al., 2007; Ng et al., 2010; Crippa et al., 2014).  62 
Up to recent years, most Chemistry Transport Models (CTMs) adopted simplified OA modules based on 63 
surrogate molecules, mostly derived from the “2-product model” of Odum et al. (1996) further developing 64 
the work of Pankow (1994). An example for the Odum approach is the Secondary Organic Aerosol Processor 65 
(SOAP, Strader et al., 1999) implemented as the default SOA chemistry module in the chemistry and 66 
transport model CAMx (Environ, 2015). SOAP assumes that each VOC precursor forms several surrogate 67 
compounds that can coexist in the gas and in the aerosol phase, according to their saturation concentration 68 
(Donahue et al., 2009). The two main limitations of such basic approaches are the assumptions of non-69 
volatility and non-reactivity of primary organic aerosol (POA). Experimental findings prove that some 70 
components of POA are semi-volatile and the vapor-phase portion can undergo photochemical oxidation 71 
(Robinson et al., 2007; Donahue et al., 2009). Additionally, volatility change associated with SOA chemical 72 
aging is not accounted for by traditional models (Jimenez et al., 2009; Koo et al., 2014). As a consequence, 73 
CTMs implementing standard SOA chemistry often over-predict fresh POA and underpredict SOA, 74 
especially in summer (Bergstrom et al., 2012). 75 
The volatility basis set (VBS) approach Donahue et al. (2006, 2011) allows to take into account POA 76 
volatility and multiple generation SOA production. VBS can be used in two configurations. The 1-dimension 77 
approach (1D-VBS) describes OA evolution based on OA volatility (Donahue et al., 2006). The 2-dimension 78 
approach (2D-VBS) describes OA evolution in the 2-D space defined by effective saturation concentration 79 
C* (μg m-3) and the oxidation degree (Donahue et al., 2012). We use a hybrid VBS approach 1.5D-VBS 80 
(Koo et al., 2014), where OA evolution follows specific path in such space, reducing computational cost. The 81 
implementation of VBS approach in CTMs introduced a valuable improvement both in model performance 82 
as well as in the knowledge of the key processes influencing the modeled results. For example Zhang et al. 83 
(2013) showed that in a simulation with non-volatile POA and a simplified SOA formation mechanism POA 84 
are largely overestimated, while SOA are underestimated. The application of the VBS scheme indicated that 85 
also the volatility distribution of the aerosols is extremely important (Lane et al., 2008; Fountoukis et al., 86 
2011). Namely, the distribution of OA emissions into the low volatility bins appears to be important for the 87 
predicted POA because it has great impact on the initial partitioning between the aerosol and the gas phase 88 
(Tsimpidi et al., 2010). Bergstrom et al. (2012) showed that VBS-based OA models can give reasonably 89 
good results, mainly for summer than for winter conditions, but more observational studies are needed to 90 
constrain the VBS parameterizations and to improve emission inventories for both anthropogenic and 91 
biogenic sources. Ciarelli et al. (2015) applied the SOAP and 1.5D-VBS with two different volatility sets in 92 
CAMx simulations over Europe. Two sensitivity tests with volatility distributions based on previous 93 
chamber and ambient measurements data were performed too. The total OA concentrations obtained with the 94 
volatility data from chamber measurements were on the average about 42% lower than the concentration 95 
estimated by SOAP. In contrast, using volatility data from ambient measurement increased OA 96 
concentrations by about 42% and brought model results and observations into a slightly better agreement. 97 
In our study, the CAMx model is applied with both the SOAP and the 1.5D-VBS scheme focusing on the Po 98 
Valley, a well-known European hot-spot for many air pollutants. In the Po Valley OA accounts for more than 99 



40% of fine particulate mass (PM1 and PM2.5) in winter, and SOA accounts for up to 50% of OA (Gilardoni 100 
et al., 2011; Larsen et al., 2012; Gilardoni et al., 2014; Gilardoni et al., 2016). Surrounded by the Alps to the 101 
North and North-West and by the Apennines to the South, the Po Valley experiences poor circulation of air 102 
masses. In addition, the occurrence of frequent and prolonged wind calm periods and atmospheric stability 103 
conditions during the night-time favor the accumulation of locally-emitted pollutants, especially during the 104 
coldest months. These distinctive features of the Po Valley make it an interesting challenge to model SOA. 105 
The Po Valley has been subject to several modeling studies pointing out the influence of both meteorological 106 
and chemical processes on model performance. Lonati et al. (2010) report that underestimation of PM2.5 107 
mass by CAMx model essentially derives from a 60% underestimation of organic matter, whereas a rather 108 
good agreement is observed for the other chemical species and especially for the ammonium-nitrate system. 109 
In addition, Pernigotti et al (2013) concluded that CTM models continue to experience problems in 110 
reproducing the PM10 concentration levels observed in the Po Valley, particularly underestimating the winter 111 
concentration. One key factor partially explaining this PM10 underestimation is meteorology, particularly 112 
concerning wind speed overestimation. But other factors, such as the systematic cold bias in the ambient 113 
temperature and uncertainties in biomass burning emissions estimates, may also affect the results. Similar 114 
findings were reported by Pirovano et al. (2015). 115 
Actually, literature works by Fountoukis et al. (2014) and Ciarelli et al. (2016) discuss VBS results in CTMs 116 
at European scale, the former presenting MPE for OA only, the latter also considering precursors and 117 
secondary aerosols, but both neglecting the influence of meteorology. Fountoukis et al. (2016) discuss 118 
PMCAMx  for Paris area, but with a different version of VBS and still focusing on OA only; van der Gon et 119 
al. (2015) present VBS diagnostic evaluation, but focusing on the influence of emission estimates, whereas 120 
the VBS sensitivity analysis presented by Murphy et al (2012) is, once again, limited to the OA fraction. 121 
On the basis of these previous results and taking advantage of a rather unique experimental data set available 122 
for Po Valley, we performed a thorough comparison of meteorology, precursors and all aerosol components 123 
in order to assess CAMx strengths and weaknesses and to acquire knowledge to address its improvement. in 124 
reproducing OA concentrations. Both the complementary techniques of model “diagnostic evaluation” 125 
(Dennis et al., 2010) have been applied: i) model performance evaluation (MPE) considered each physical 126 
and chemical process simulated, also investigating the influence that the accuracy in their reproduction can 127 
have on the other modeling steps (Godowitch et al, 2011; Zhang et al., 2006a) ; ii) sensitivity analysis 128 
(Shorshani  et al., 2017; Zhang et al., 2006b) has been performed in order to evaluate the influence of the 129 
adopted chemical scheme (SOAP and 1.5D-VBS) on OA reconstruction, also relying on local OA mass 130 
spectra from positive matrix factorization of aerosol mass spectrometer data. 131 
In particular, two specific aspects of our diagnostic evaluation provide new insights for CTMs improvement: 132 
i) this is one of the first works presenting a complete evaluation of all the main meteorological and chemical 133 
processes driving OA formation, also including a state-of-the-art chemical module like 1.5D-VBS; ii) this is 134 
the first time that model diagnostic evaluation is performed at regional scale over the Po Valley, a very 135 
challenging situation for its meteorological conditions and density of emission sources. 136 

2 Modelling setup 137 
2.1 CAMx configuration and modelled domain 138 
We use CAMx 6.20 model (ENVIRON, 2015) to simulate dispersion phenomena and chemical processes. 139 
Homogenous gas phase reactions are reproduced through CB05 mechanism (Yarwood et al., 2005). The 140 
aerosol scheme is based on two static modes (coarse and fine). Secondary inorganic compounds evolution is 141 
described by thermodynamic algorithm ISORROPIA (Nenes et al., 1998). According to the main goal of the 142 
study, OA is separately simulated adopting both the algorithms available in CAMx: SOAP (Strader et al., 143 
1999) and 1.5D-VBS (Koo et al., 2014). 144 
The SOAP approach considers VOC gas-phase oxidation chemistry, forming condensable gases (CG), and 145 
equilibrium partitioning between condensable gas and secondary organic aerosol (SOA) for a number of 146 
CG/SOA pairs. Properties of CG/SOA pairs used in CAMx are described in ENVIRON (2015).  147 
The 1.5D-VBS approach relies on four basis sets to describe the different degree of oxidation in ambient 148 
OA: two sets for freshly emitted OA from anthropogenic sources (PAP) and biomass burning (PFP) and two 149 



sets for chemically aged oxygenated OA of anthropogenic (PAS) and biogenic (PBS) origin. Each basis set 150 
has five volatility bins ranging from 0 to 103 μg m-3 in saturation concentration (C*), where the first bin 151 
represents non-volatile OA, while the others roughly cover the volatility range of semi-volatile organic 152 
compounds (SVOCs). Total OA is the sum of all OA in the five volatility bins from primary formation (POA 153 
= PAP + PFP) and from secondary formation (SOA = PAS + PBS) sets. 154 
This study is focused on a 580 x 400 km2 area covering Northern Italy and including the Po Valley (the black 155 
rectangle in Figure 1). Model simulations are performed on a series of nested domains, thus adopting a 156 
proper spatial resolution in the inner domain, but preserving the overall simulation time. For the 157 
meteorological model WRF (Skamarock et al., 2008) three nested grids with different spatial resolution are 158 
used (Figure S.1). The largest grid (45 km resolution) covers Europe and Northern Africa, while the 159 
innermost domain corresponds to Italy and Po Valley with 15 and 5 km resolution, respectively. For CAMx 160 
simulations only the two innermost WRF nested grids were used.,.  161 
Simulations are performed for February 2013 in the framework of Regional “Supersito” project (Ricciardelli 162 
et al., 2017).  163 
 164 
2.2 Input data 165 
WE use the WRF model to reconstruct the hourly meteorological fields for CAMx. WRF runs cover two 166 
periods of 15 days each, with three additional days as spin-up. Initial and boundary conditions are derived 167 
from ECMWF analysis, available at ground level and at 13 different pressure levels (from 3 to 100 kPa), 4 168 
times a day. The nudging technique is applied over the three model domains. CORINE land cover database 169 
(CORINE Land Cover 2006) produced by the European Environmental Agency is used instead of the default 170 
WRF land cover database developed by U.S. Geological Survey (USGS), The CORINE database is 171 
characterized by higher resolution and by more updated categories for land cover classification (Fedele et al., 172 
2015). The WRFCAMx preprocessor is used to create CAMx ready input files collapsing the 29 vertical 173 
layers used by WRF into the 14 layers used by CAMx, but keeping identical the layers up to 1 km above 174 
ground level. In particular, the first layer height is around 25 m. Input data also included ozone columnar 175 
content derived by OMI satellite data (http://toms.gsfc.nasa.gov). The initial and boundary concentrations for 176 
the first CAMx domain are obtained from the global model MOZART version 4. 177 
Emissions of biogenic VOCs are estimated using the Model of Emissions of Gases and Aerosols from Nature 178 
(MEGAN version 2.03, Guenther et al., 2006), whereas the SEASALT model (version 3.1) based on Gong 179 
(2003) was used for estimating emissions of sea salt. 180 
Anthropogenic emissions of gases and particles are derived from inventory data at three different levels: 181 
European Monitoring and Evaluation Programme data (EMEP, http://www.ceip.at/emission-data-182 
webdab/emissions-used-in-emep-models/) available over a regular grid of 50x50 km2; ISPRA Italian national 183 
inventory data (http://www.sinanet.isprambiente.it/it/sia-ispra/inventaria/disaggregazione-dellinventario-184 
nazionale-2010) which provides a disaggregation for province; regional inventories data based on INEMAR 185 
methodology (INEMAR - ARPA Lombardia, 2015) for Lombardia, Piemonte and Veneto regions in the Po 186 
Valley, which provide detailed emissions data at municipality level. Hourly time patterns of the emissions 187 
were obtained by processing each emission inventory with the Sparse Matrix Operator for Kernel Emissions 188 
model (SMOKE v3.5) (UNC, 2013). Temporal disaggregation is based on monthly, daily and hourly profiles 189 
deduced by CHIMERE model (INERIS, 2006) and EMEP model from Institute of Energy Economics and 190 
the Rational Use of Energy (IER) project named GENEMIS (Pernigotti et al., 2013). 191 
Input VOC species for the SOAP and 1.5D-VBS simulations are summarized in Supplementary Material 192 
Table S.1. For the two simulations VOCs emissions of volatile organic compounds are grouped in surrogate 193 
species and IVOCs (Intermediate Volatility Organic Compounds) and POA emissions are required by the 194 
1.5D-VBS scheme.  195 
As IVOC emissions are not included in emission inventories, a model-default factor 1.5xPOA is used as 196 
suggested by Robinson et al. (2007). POA emissions are split into the four species shown in Table S.1 (POA 197 
from gasoline, diesel, other anthropogenic sources, biomass burning) because in the ISPRA and INEMAR 198 
emission inventories the fuel used for SNAP categories number 2 (non industrial combustion) and 7 (road 199 



transport) is specified. Doubtful cases have been allocated in the category "other  anthropogenic sources " as 200 
suggested in CAMx User Guide (ENVIRON, 2015). 201 
 202 

3 Environmental dataset 203 
We evaluated WRF simulations using meteorological data from the National Weather Service (SMAM) and 204 
from the Regional Agency for Environmental Protection (ARPA) networks. Pressure, dew point, 205 
temperature, wind direction, wind speed and precipitation data from 110 SMAM ground level stations were 206 
collected. Data were measured every three hours according to the standards of the World Meteorological 207 
Organization (WMO). The dataset of ARPA data includes more than 300 stations in the whole domain (Fig. 208 
1) but not all stations have measurements for all the parameters; moreover, only stations placed at less than 209 
500 m a.s.l. were considered for domain-wide analysis. The number of selected stations available for each 210 
region and for each parameter is reported in Table 1. 211 
Concentrations availability of atmospheric pollutants monitored by the regional environmental agencies are 212 
reported in Table 2. Only background stations are selected, in order to be comparable with modeled results at 213 
5 km spatial resolution. The selected stations are categorized as Urban and Suburban (SBUB) and Rural 214 
(RB) sites. 215 
During the study period OA characterization was performed at three sites (Ispra, Milano, and Bologna, see 216 
Fig. 1). Milano and Ispra are located in the Northern part of the study area while Bologna in the South-217 
Eastern part. Ispra station (45°28’43”N, 9°13’56”E), located at a rural background site affected by 218 
anthropogenic emissions (Gilardoni et al. 2011), is part of the European Monitoring and Evaluation 219 
Programme (EMEP). Milano station (Milano Pascal, 45°28’43”N, 9°13’56”E), representative of an urban 220 
background site (Milano population is about 1.2 millions), is part of the Italian Special Station program 221 
(Decree N. 299, 29.11.2012) set by the Italian transposition of EU Directive 2008/50/EC. Ispra and Milano 222 
sites provided daily observation of Elemental Carbon (EC), Organic Carbon (OC), nitrate, sulfate and 223 
ammonium referred to PM2.5 fraction. OC observations were converted to OA assuming an OM/OC ratio = 224 
1.7 (Aiken et al., 2008)  also in agreement with a previous study performed over the Po Valley (Pirovano et 225 
al., 2015). In Milano OC and EC concentrations were measured with thermo-optical analysis of PM2.5 226 
aerosol samples according to the NIOSH-Like protocol (more than 150 samples over the year 2013). 227 
Bologna station (BO CNR, 44°31’29” N, 11°20’27” E) is representatitive of an urban background site 228 
(Bologna population is about 0.4 millions). In Bologna, EC concentration was measured with thermo-optical 229 
analysis of PM2.5 aerosol samples (EUSAAR II method) (Poluzzi et al., 2015, Costa et al., 2016). PM1 230 
concentration of nitrate, sulfate, ammonium, and OA were measured by Aerodyne high resolution time of 231 
flight aerosol mass spectrometer (HR-ToF-AMS) (DeCarlo et al., 2006), using composition dependent 232 
collection efficiency (Middlebrook et al., 2011). Concentrations were calculated from the analysis of high 233 
resolution of mass spectra acquired in V-mode (software SQUIRREL v1.51 and PIKA v1.10) with a time 234 
resolution of 5 minutes. Particles were dried with a Nafion drier at relative humidity below 30% prior to 235 
sampling. Data validation was performed by comparing sulfate, nitrate, and ammonium concentration from 236 
AMS analysis with the concentration measured by off-line ion chromatography on aerosol samples collected 237 
by Berner impactors. Analysis of OA mass spectra by means of Positive Matrix Factorization (PMF) allowed 238 
the separation of ambient urban OA mass into 5 factors: hydrocarbon-like OA (HOA), biomass burning OA 239 
(BBOA) and three types of oxygenated OA (OOA) (Gilardoni et al., 2016). HOA and BBOA are related to 240 
primary sources, whilst the three OOAs to secondary processes and thus regarded as a proxy of total SOA. 241 
HOA is linked with emissions from traffic and fossil fuel combustion, BBOA with biomass burning for 242 
residential heating. Among the three OOA factors, OOA1 was associated to the aqueous processing of 243 
biomass burning emissions (and so called also aqSOA) while OOA2 and OOA3 were linked to local fresher 244 
emissions (comprising again biomass burning products) and to very oxidized aerosols (typical of regional 245 
background), respectively. Both these latter factors are probably generated both by gas phase oxidation 246 
reactions not involving aqueous processing; therefore, hereinafter they are referred to as Dry SOA (DrSOA). 247 
 248 



4 Results 249 
Both the meteorological and chemical results were validated using the Atmospheric Model Evaluation Tool 250 
(AMET, Appel et al., 2011) that compares measured with modelled data through the bilinear interpolation of 251 
the modelled values at monitoring site coordinates. Several model performance parameters have been 252 
considered, namely: Mean Bias (MB), Mean Absolute Error (MAE), Index Of Agreement (IOA), and the 253 
Root Mean Square Error (RMSE), whose definition is reported in SM. MB and MAE provide a measure of 254 
the mean error between observed and modelled data; the former compensates between overestimations and 255 
underestimations, while the latter consider the absolute value of the error. Similar information can be 256 
inferred from RMSE, a widely used metric for model performance. Finally, IOA is a normalized measure of 257 
the agreement with respect to the temporal variability, like correlation, but taking into account also the 258 
influence of the error (Rao et al., 1985). Meteorological parameters were evaluated at both WMO and ARPA 259 
sites, but the presented results refer just to ARPA sites because performance was similar for the two datasets, 260 
but the latter included more stations and was based on hourly data. 261 
CAMx provided the same results in both simulations for all species except for OA, and consequently for 262 
PM2.5 and PM10, because the change in the chemical scheme affected only OA. Therefore, in the following 263 
only one CAMx result is reported, except for OA, PM2.5 and PM10. 264 
Gas phase precursors were evaluated against hourly concentrations, PM10 and PM2.5 against daily 265 
concentrations. PM1 AMS data, averaged at 1-hour time resolution, were compared to modelled PM2.5 266 
concentrations, because the adopted chemical scheme considers only a fine (0-2.5 µm) and a coarse (2.5-10 267 
µm) bin. The decision to use PM1 observations for the comparison is due to the size range measured by the 268 
on-line instrumentation (the Aerodyne Aerosol Mass Spectrometer) that is below 1 µm. The comparison of 269 
modelled and observed aerosol concentrations referring to different size ranges could introduce an additional 270 
discrepancy to be taken into account, Particularly, in winter, when condensation processes are more relevant 271 
and the accumulation mode is shifted towards larger diameter, we expect that non-refractory species in PM1 272 
fraction underestimate PM2.5 concentration by about 20%. 273 
The meteorological characterization of the simulation period and the model performance evaluation for gas 274 
phase precursors are described in the supplementary material (SM). 275 
 276 
4.1 Meteorological parameters 277 
Figure 2 shows the comparisons between the time patterns of the modelled and measured data at ARPA sites, 278 
averaged over the Po valley domain. Overall, looking at the whole month of February 2013, WRF is able to 279 
reproduce reasonably well most of the parameters, namely water vapour mixing ratio and temperature, while 280 
having some trouble with the snowfall events of February 11-12 and 21-22. The water vapour mixing ratio is 281 
slightly overestimated (MB = 0.2 g kg-1, MAE = 0.25 g kg-1) with the largest departures from observation 282 
between February 7-10 (about 0.4 g kg-1) and February 14-21 (about 1 g kg-1). The temperature is overall 283 
slightly underestimated (MB = -0.45 deg, MAE = 0.95 deg). The wind speed values observed and predicted 284 
are extremely low, never exceeding 6 m s-1; there isn’t a prevalence of underestimation or overestimation 285 
(MB = 0.08 m s-1, MAE = 0.4 m s-1) and the correlation is quite good (IOA = 0.7). Global radiation is well 286 
predicted, especially in case of cloud cover during rainy events. However, it is generally overestimated (MB 287 
= 78 W m-2, MAE = 92 W m-2). Rain is both overestimated and underestimated (MB = -0.036 mm h-1, MAE 288 
= 0.06 mm h-1), so that this parameter had the lowest correlation between predictions and measurements 289 
(IOA = 0.6). 290 
 291 
4.2 Particulate matter (PM10 and PM2.5), elemental carbon  and inorganic aerosol compounds 292 
The model reconstructs the two fractions of PM with similar performances, as shown by the indices reported 293 
in Table 3. The best performance is obtained for PM2.5 at RB sites with SOAP scheme (MB = -1.7%, IOA = 294 
0.60, RMSE = 19.1 μg m-3), while the worst results are produced by VBS scheme for PM10 at SBUB sites 295 
(MB = -18.0%, IOA = 0.51, RMSE = 23.3 μg m-3). CAMx slightly underestimates the monthly mean 296 
concentration at all sites, with the exception of SOAP scheme for PM10 at RB sites, where the model shows a 297 
positive bias around 5%. At all sites the VBS scheme underestimates PM mass more than SOAP; however, 298 
IOA seems not influenced by the chemical scheme used. These findings are confirmed also by the inspection 299 



of the concentration time pattern (Figure 3), showing that SOAP scheme results are slightly higher than 300 
VBS, even though the models share the same temporal evolution. Figure 3 also shows that the model is not 301 
able to capture the PM mass peaks around February 11-23 (similar results are observed also for the main 302 
inorganic PM precursors, as shown in Figure S.5). 303 
A deeper insight on PM reconstruction with specific reference to PM2.5 and its main components has been 304 
performed for Ispra, Milano and Bologna sites. Since the number of sites is very limited, statistical indices 305 
and graphics are related to the three sites individually. Figure 4 to 7 show the comparison between observed 306 
and modelled concentrations of EC and of the three main inorganic components (sulfate, nitrate, 307 
ammonium); related statistical indices are reported in SM, from Table S.4 to Table S.7. The model slightly 308 
overestimates the EC concentration at Milano Pascal (mean modelled concentrations of 4.0 μg m-3, mean 309 
observed concentrations of 2.8 μg m-3); conversely, EC concentrations at Ispra and Bologna site are in better 310 
agreement with observations (MB = 0.02 and MB = 0.24 μg m-3, respectively). Measurements and model 311 
predictions for SO4

= concentrations at Milano Pascal and Ispra matched very well (MB = 0.7 μg m-3 and MB 312 
= 0.2 μg m-3, respectively) with the only exception of the underestimation in the third week of the month. On 313 
the contrary, model predictions at Bologna are overestimated during all the month (mean modelled 314 
concentration of 4.5 μg m-3, mean observed concentration of 1.6 μg m-3). Also the temporal modulation is not 315 
well captured in Bologna: actually, the IOA index is 0.35 in Bologna and higher than 0.6 in Milano and 316 
Ispra. SO4

= overestimation in Bologna is due to a few, very sudden peaks, with unrealistically high 317 
concentrations (> 15 μg m-3), whose origin will be investigated furtherly. CAMx shows a similar 318 
performance for nitrate and for ammonium. The comparison between measured and modelled concentrations 319 
shows reasonable results both at Milano Pascal and Ispra, except for February 13-20, when the model 320 
underestimates, particularly at Milano site. Conversely, both species are systematically overestimated in 321 
Bologna. Mean observed concentrations for nitrate are 16 μg m-3 at Milano Pascal, 9 μg m-3 at Ispra and 7 μg 322 
m-3 at Bologna. Overall, the model underestimates nitrate concentrations both at Milano Pascal (MB = -6 μg 323 
m-3 and MAE = 9 μg m-3) and Ispra (MB = -3 μg m-3 and MAE = 7 μg m-3); however, such underestimation 324 
is mostly determined by the two peaks in mid-February missed by the model. Conversely, the model very 325 
frequently overestimates nitrate concentrations at Bologna (MB of 7 μg m-3 and MAE of 8 μg m-3). 326 
Coherently with nitrate and sulfate reconstruction, a small underestimation is shown also for ammonium at 327 
Milano Pascal (MB = -0.5 μg m-3 and MAE =2 μg m-3) and at Ispra (MB = -1.2 μg m-3 and MAE = 2.3 μg m-328 
3 at Ispra), while overestimation is shown at Bologna (MB and MAE = 3 μg m-3).  329 
 330 
4.3 Organic Aerosol 331 
Figure 8 reports the monthly mean contributions of POA (primary organic aerosol) and SOA (secondary 332 
organic aerosol) to the PM2.5 organic mass produced by CAMx in both runs (CAMx SOAP and CAMx 333 
VBS). POA concentration is about twice higher with SOAP scheme than with VBS: this is in agreement with 334 
the fact that SOAP considers POA as non-reactive. With the VBS scheme (Figure 8, bottom), fresh POA 335 
concentrations are relatively high (up to 7 μg m-3) in urban areas. SOA concentrations are lower and more 336 
homogeneous than POA, due to transport and dilution of gaseous precursors. VBS SOA concentration is 337 
higher than SOAP (up to 1 μg m-3 in the most urbanized areas), though the spatial pattern are similar. Figure 338 
9 provides additional information about the origin of the OA simulated through VBS. The most relevant 339 
contribution to POA is produced by biomass burning, giving rise to BBOA concentrations ranging between 3 340 
and 8 μg m-3 in the urban areas. The BBOA spatial distribution is clearly related to the corresponding 341 
fingerprint of the biomass burning emissions from residential heating. Differently, the HOA concentration is 342 
generally lower than 1 μg m-3, with maximum values in the largest cities (Torino, Milano), and along the 343 
main highways. Anthropogenic SOA (excluding biomass burning SOA) show higher concentrations than 344 
biogenic SOA, particularly in Southern Lombardia were SOAA mean concentration can reach 1 μg m-3.  345 
OA ambient concentrations (Figure 10) are widely underestimated by the SOAP simulation and even more 346 
by the VBS simulation for the whole month. OA mean bias at the three sites ranges between -38% and -60% 347 
for SOAP and between -64% and -75% for VBS scheme. Concentrations are underestimated along all month, 348 
particularly during the two high concentration episodes of February 3-6 and February 13-20, when observed 349 
OA concentrations at Ispra are higher than 30 μg m-3, while modelled values do not exceed 10 μg m-3. IOA is 350 



generally slightly above 0.5 for SOAP scheme, whereas IOA for VBS scheme can be lower than 0.5, 351 
indicating that the model does not reproduce the temporal variation of observed OA. CAMx SOAP 352 
concentrations are always higher than the corresponding values produced by VBS, suggesting that the 353 
differences between the two performances are linked to the different schemes, and do not depend on different 354 
meteorological conditions or on emission strengths. 355 
Figure 11 compares POA and SOA predicted by SOAP and the four components (HOA, BBOA, 356 
anthropogenic SOA, and biogenic SOA) predicted by VBS with the PMF factors observed in Bologna. It is 357 
important to point out that AMS factors refer to PM1 size range, while CAMx refers to PM2.5. The mean 358 
observed concentration for POA is 3.6 μg m-3, partially underestimated by the VBS scheme (MB = -1.2 μg 359 
m-3 and MAE = 1.9 μg m-3) and overestimated by the same amount by the SOAP scheme (MB = 1.1 μg m-3 360 
and MAE = 2.6 μg m-3). Fig 11 panel b and c show that CAMx VBS predicts BBOA, the main fraction of 361 
POA, better than HOA: BBOA underestimation is less than 20% (IOA = 0.53), whereas the low bias for 362 
HOA is around 66% (IOA = 0.4). In addition CAMx simulates well the temporal variation of BBOA, with 363 
the exception of a few peaks on February 8-11 and February 20-21. In Figure 11d the modelled SOA 364 
concentrations are compared with the sum of OOA factors from PMF, as a proxy of observed SOA. The 365 
VBS scheme predicts SOA concentrations 2 to 5 times higher than the SOAP scheme. However, both 366 
schemes still underestimate SOA concentrations (monthly mean = 4.5 μg m-3) with a bias of -3.8 μg m-3 (-367 
83%) and -4.3 μg m-3 (-93%), respectively. Observed SOA can be decomposed in one factor (OOA1) formed 368 
through aqueous phase processing of organic aerosol in wet particles, and two factors (OOA2 and OOA3) 369 
corresponding to SOA formed from gas-phase oxidation and processing. Since both SOAP and VBS 370 
schemes neglect SOA formation in aqueous phase, a more accurate comparison is reported in Figure 11e, 371 
where CAMx SOA are displayed against DrSOA (obtained by the sum of OOA2 and OOA3). The removal 372 
of the aqSOA from SOA budget improves model performance with decreasing bias (from -83% to -74%) and 373 
increasing IOA (from 0.48 to 0.52). Although CAMx results still widely underestimate DrSOA (Table 5), 374 
this result suggest that including wet aerosol chemistry might help to reduce the discrepancy between 375 
modeled and observed SOA. 376 

5 Discussion 377 
One of the common features of the CAMx results is the systematic underestimation of both gas and aerosol 378 
concentrations taking place in the middle of February. As the underprediction of these peak events affects 379 
both gaseous precursors and PM, regardless for the modelling scheme adopted (i.e. SOAP or VBS), it might 380 
be linked to limitation in the meteorological simulation and not to the SOA formation and ageing. As 381 
discussed in S.M., such period was characterized by a snowfall episode (February 11-12) followed by the 382 
development of more stagnant conditions (Figure S.9). The discrepancy between modelled and observed 383 
concentrations is clearly described in Figure S.10 and S.11, showing the comparison between modelled and 384 
observed NOX and NO2 concentrations. Model underestimation occurs over the whole domain, but 385 
particularly in the Alpine foothill areas (Figure S.12). This is confirmed also by the comparison between 386 
hilly and plain sites shown in Figure S.16. The model underestimation is probably related to a wrong 387 
reconstruction of the Planetary Boundary Layer (PBL) height during that period. Indeed, as shown in Figure 388 
S.18, WRF simulates a higher PBL height at foothills than in the plain area, while the spatial distribution of a 389 
primary pollutant such as NOX (Figure S.12) seems suggesting the opposite. The incorrect reconstruction of 390 
PBL height is probably related to a corresponding overestimation of wind speed and related mechanical 391 
turbulence. As shown in Figure S.14, WRF reproduces correctly the development of the temperature field, 392 
while it overestimates wind speed at hilly areas. Such discrepancy is the likely cause of the PBL 393 
overestimation, as it can be inferred from Figure S.15 showing that in the hilly region PBL height is mainly 394 
driven by wind speed, particularly during night-time and early-morning hours. 395 
The analysis of the modelled PBL height over the whole month at hilly and plain sites shows two additional 396 
and interesting features: the first one is that the meteorological model is able to follow the development of 397 
different dispersion conditions along the whole month, correctly simulating low PBL heights during stable 398 
conditions (middle of February) and more diffusive conditions during unstable periods (e.g. February 7-10), 399 
but it is not able to completely capture the features of the strongest accumulation conditions. The second 400 



feature is that WRF tends to simulate a higher PBL height over hilly areas than plain areas, particularly 401 
during night-time, pointing out a systematic behavior in WRF, not depending on specific meteorological 402 
conditions. A more general consequence that can be ascribed to the influence of meteorological model 403 
performance is that WRF favors the accumulation of pollutants in the plain areas while concentrations could 404 
be more strongly underestimated close to foothill areas. This feature seems particularly clear during strong 405 
stagnation conditions. This can have an influence on both primary aerosol components, such as EC (see 406 
February 13-18 in Figure 4), but also on secondary PM. Indeed, as shown in Figure 6 and 7, nitrate and 407 
ammonium concentrations are overestimated at Bologna site, while they are correctly reproduced at Ispra 408 
and Milano, except for middle February, when CAMx clearly underestimates. This result is confirmed also 409 
by the analysis of NH3 concentration (Figure S.7) that are frequently overestimated in Bertonico (placed in 410 
South of Lombardia) whereas in Milano NH3 is more frequently underestimated, particularly during the 411 
February 13-18 episode. This result indicates that the strong underestimation of OA in Ispra and Milano 412 
cannot be ascribed exclusively to lack in emissions or chemical processes, but is partially driven by 413 
meteorology. A further effect of the influence of the meteorological input can be observed between February 414 
22-27 when PM was overestimated by the model (Figure 3). This discrepancy may be linked to the 415 
underestimation of rain by WRF during those periods as shown in Figure 2. 416 
Besides of meteorology also uncertainty in emission reconstruction can affect modelled results. As shown in 417 
Figure 5, sulfate concentration is correctly reproduced in Ispra and Milano, while it is overestimated in 418 
Bologna. Overestimation takes place particularly during night-time hours and could be related to an 419 
overestimation of ground level SO2 emissions in Emilia Romagna region. As depicted in Figure S.2 ground-420 
level diffuse emissions of SO2 in Emilia Romagna are generally higher than in the surrounding regions and 421 
this is a  feature specific to SO2 which is not reflected by the other pollutants. During proper meteorological 422 
conditions, such as stagnation with high relative humidity levels, SO2 can easily transform into sulphate 423 
giving rise to the overestimation observed in Bologna. This finding confirms the critical role of emission 424 
inventory estimates. A second source of uncertainty related to emissions stems from chemical speciation 425 
profiles. A first example of  such influence is elemental carbon. EC is a product of incomplete combustion 426 
that can be emitted by traffic, fossil fuels, biomass burning and industry. As shown in Figure 4 and Table 427 
S.3, EC is frequently overestimated at all sites, with the exception of middle February, likely due to an error 428 
compensation with meteorology. The overestimation is stronger at the urban site of Milano than at the rural 429 
site of Ispra, suggesting that the traffic EC used as input in CAMx should be lowered. 430 
The analysis of AMS data showed that POA represents about 45% of the OA total mass. The result is similar 431 
to what observed at European level for winter season by Ciarelli et al. (2017) where POA accounted for 38% 432 
of OA. The slightly higher contribution observed in the Po valley can be due to the stronger stagnation 433 
conditions favoring the accumulation of the primary PM fraction, particularly in the urban context. The 434 
relative apportionment between POA and SOA is not correctly reproduced by CAMx that shows a primary 435 
fraction of 96% and 77% for SOAP and VBS, respectively, due to a strong underestimation of secondary 436 
OA. The underestimation of the SOA fraction during wintertime has been pointed out also by Fountoukis et 437 
al (2016) for the city of Paris, confirming that there is a general lack in the reconstruction of processes 438 
forming secondary OA in a polluted environment with high NOx concentrations and low photochemical 439 
activity. The effect of possible uncertainties in emission inventories and chemical speciation profiles, already 440 
discussed for gas phase species, can be relevant also for OA. Focusing on POA, as shown in Figure 11b-g 441 
and Figure 11c-h, CAMx is able to capture the contribution of BBOA, while it underestimates HOA. The 442 
contribution of biomass burning to primary OA is correctly reproduced during daytime, when the model 443 
shows just a slight overestimation on the early morning hours, likely due to a not accurate emission temporal 444 
profile. In contrast, BBOA is underestimated during night hours, but this could depend on a partial 445 
overestimation of PBL height. HOA concentrations are underestimated all day long and, particularly, the 446 
model is missing the rush hour increase. These results suggest that POA emissions related to road transport 447 
are either underestimated or associated to higher volatility classes, as already discussed by Fountoukis et al., 448 
(2014). This result seem confirmed also comparing the differences in model performance between SOAP and 449 
VBS. Indeed, CAMx results show that the reduction in POA concentration moving from SOAP to VBS 450 



(from 4.7 to 2.4 μg m-3) is not compensated by a corresponding increase in SOA concentration, rising from 451 
0.17 to 0.73 μg m-3.  452 
The clear degradation in model performance, observed when moving from POA to SOA, proves that the 453 
strong discrepancy between modelled and observed OA concentration is mainly due to limitations in the 454 
chemical algorithms and source characterization for OA atmospheric evolution. VBS can lead in some cases 455 
to a partial reduction of the model bias, due to several reasons: POA evaporation feeding SOA formation, 456 
introduction of additional emissions (IVOC), and improved description of SOA volatility in terms of 457 
volatility bins each having an explicit aging pathway. However, the large underestimation of SOA shown in 458 
Figure 10d-i confirms that there are still relevant gaps to be filled in OA modelling that could be linked to 459 
each of the previous items. A first limitation of the actual OA modelling schemes is related to the absence of 460 
chemical pathways producing SOA through VOC oxidation in aqueous phase. The analysis of OOA factors 461 
showed that on average about 30% of the total observed SOA derives from oxidation processes in 462 
heterogeneous phase (Table 5), but this fraction can be even higher (e.g. February 13-16, see Figure 11d and 463 
11e). The relevance of aqueous-phase SOA was remarked by previous studies. Gilardoni et al (2016) 464 
provided a first observational estimate of SOA produced by aqueous-phase processing of wood smoke 465 
particles in Europe: 0.1 to 0.5 Tg of organic carbon per year, corresponding to 4-20% of total primary 466 
organic aerosol emissions in the region. The still lacking representation of aqSOA is therefore one of the 467 
imputed reasons of the model-observation discrepancy. For example, Carlton et al. (2008) observed that 468 
including aqueous phase reactions can significantly reduce OC underestimation. They estimated that in 469 
presence of clouds layer, the modelled OC from aqueous reactions can be doubled. Moreover including 470 
aqueous SOA can increase the monthly averaged regional OC concentration up to 20%. 471 
However, even neglecting the SOA fraction related to aqueous processes, the lack between modelled and 472 
observed concentrations is still relevant, as shown in Figure 11e. The analysis of the secondary organic 473 
fractions reveals that CAMx underestimates the contribution of both fossil fuels and biomass burning 474 
sources. Comparing the hourly time series of SOA, OOA2 and OOA3, as well as the mean day of the same 475 
species (Figure 11i, j) it is worth noting that their atmospheric fate seems driven by different processes. 476 
Indeed, SOA and OOA3 show quite flat hourly profiles, while their day-to-day variation reflects the 477 
development of the different stagnation and dispersion conditions. This suggests that the total burden of 478 
modelled SOA is more influenced by aging processes, taking place over time scales of several days, than the 479 
temporal variation of emission sources.. The underestimation of semi-volatile emissions as well as of the 480 
strength of the aging process can be reasons of CAMx underestimation. In contrast, the sub-fraction of SOA 481 
directly linked to biomass burning (OOA2) presents a very clear daily cycle and seems less influenced by the 482 
evolution of the meteorological conditions. This points out that the formation of SOA from wood burning 483 
emissions could be driven by faster processes, more closely related to the availability of OA precursors. 484 
Missing precursors in CAMx could be a reason of model underestimation of this fraction. 485 

6 Conclusions 486 
The aerosol concentration in the Po Valley was modelled with the regional air quality model CAMx 487 
implementing two different schemes (SOAP and 1.5D-VBS) for organic aerosol reconstruction. Model 488 
simulations considered February 2013 as a case study. Although the model well simulates inorganic aerosol, 489 
regardless of the partitioning/aging approach (SOAP or VBS) used for OA, PM mass concentrations are 490 
systematically under predicted both by CAMx-SOAP and by CAMx-VBS, due to underestimation of OA. In 491 
order to investigate OA model performance, the VBS simulation predictions were compared with factor-492 
analysis of the Aerosol Mass Spectrometer (AMS) data for one monitoring site. 493 
Even though limited to a rather short winter period, the main conclusions stemming from these simulations 494 
and comparisons with observations are as follows: 495 

• Meteorological fields were reasonably reproduced by the meteorological model WRF. However, the 496 
model showed some limitations in the reproduction of some specific features (e.g. the PBL evolution 497 
in foothill areas) that can lead to relevant discrepancies between the predicted and the observed PM 498 
mass, as shown by the strong PM underestimation during a few episodes in the period of this study. 499 



• Limitations in meteorological fields can explain a large part of CAMx discrepancies in reproducing 500 
gas phase precursors and inorganic aerosol, but they can elucidate only to a lesser extent CAMx 501 
performance for organic aerosol. 502 

• CAMx performance for OA is clearly better for the primary than secondary fraction 503 
• For total OA (i.e.: POA + SOA) SOAP scheme provides better results than VBS, because POA 504 

fraction is overestimated, thus partially compensating the SOA underestimation. In the SOAP 505 
simulation the predicted POA fraction is higher than the one derived from CAMx-VBS because the 506 
SOAP approach does not take into account the volatility of POA 507 

• Overall the VBS scheme seems to give more realistic estimates for the different fractions of OA. 508 
These results support the idea that many processes neglected in the SOAP scheme are important 509 
(e.g.: oxidation of intermediate to low volatility organic compounds, partitioning of POA, and the 510 
oxidation and fragmentation pathways). 511 

• POA fraction related to biomass burning is better reproduced than HOA, pointing out either a 512 
underestimation of organic emissions from road transport or an overestimation of the volatility. 513 

• The underestimation of SOA can be related to several shortcomings in both emissions and process 514 
description. A first finding that stems from PMF analysis is that in the Po valley a relevant fraction 515 
of OA is produced by heterogeneous phase processes, probably driven by fog, that so far are totally 516 
missing in the chemical scheme. Secondly, the model seems unable to correctly capture the faster 517 
intra-day processes that characterize the daily evolution of SOAB as well as the slower aging 518 
processes that rule the OA accumulation over longer periods. The underestimation of the former 519 
processes could be related to an underestimation of SVOC emissions from domestic heating that can 520 
contribute to SOAB formation processes over a rather short time-scale, as underlined by Ciarelli et 521 
al. (2015). On the other hand, the underestimation of aging processes could be ascribed both the 522 
chemical mechanism and particularly to the strength of the oxidation processes that could take place 523 
at high NOx concentrations and low photochemical activity (Fountoukis et al., 2016) as well as to an 524 
underestimation of the gas phase precursors, such as IVOCs that are highly uncertain and the can 525 
affect the amount of the available oxidants (Tsimpidi et al., 2010). 526 

In more general terms we can affirm that the results obtained in this work confirmed several findings of 527 
previous studies, but with a specific focus on the Po valley, an area where local and regional meteorology 528 
influence air quality processes no less than local and regional emissions sources (Ricciardelli et al., 2017). 529 
This allowed to investigate the influence of such peculiar features on OA modelling, with respect to previous 530 
studies mainly dealing with the European scale. Particularly, the presence of frequent stagnation conditions 531 
can: i) amplify the effect of errors in the emission inventories, as in case of the HOA fraction; ii) increase the 532 
influence of IVOC/SVOC emission underestimation on OA formation through aging processes; iii) enhance 533 
the role of heterogeneous phase processes, mainly driven by fog. 534 
Moreover, the sensitivity analysis of the OA modules indicates that CAMx 1.5D-VBS is a very promising 535 
approach in describing OA concentration and composition, although there are still relevant limitations and 536 
uncertainties to be further investigated. First, this VBS scheme requires a number of assumptions concerning 537 
the volatility, reaction rates and oxygen gain at each oxidation step, that are partially depending on each case 538 
study, but that are very difficult to identify. Consequently, parameters available in literature are often used. 539 
Additional sensitivity studies of the VBS setup are therefore required, in order to assess the actual sensitivity 540 
of the modelled results to the input setup. A second recommendation for future research concern emissions. 541 
Particularly, improved estimations of the amounts and speciation of primary SVOCs and IVOCs as well as 542 
more specific measurements of the sources of SOA are needed to further constrain and evaluate the model 543 
results. Additional research should also be carried out in order to improve the reproduction of aqueous-phase 544 
processes, above all in presence of fog. Last but not least, performing the comparison of the modeled 545 
concentrations with filter-based PM speciated data and with AMS data from a larger number of monitoring 546 
sites, both collected in the different seasons of the year, would give a great impact to evaluate the model 547 
performance. 548 
Finally, the application of the 1.5D-VBS should be extended also to a summer case. Because the oxidation 549 
processes in winter and in summer are different and SOA formation with high temperatures is very 550 



important, due to the faster chemical aging, a summer simulation may give further enhancement in the 551 
evaluation of VBS scheme, also allowing a better evaluation of the role played by biogenic VOC emissions, 552 
whose influence is very limited during the cold season. 553 
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 792 

Table 1. Availability of stations with hourly measurements for Meteorological ARPA dataset. Only sites with data 793 
availability > 75% and height < 500 (m a.s.l.) have been selected for Model Performance Evaluation. 794 

 Mixing 
Ratio 

Temperature Wind 
speed 

Global 
radiation 

Rain 

Piemonte 13 19 15 14 19 
Lombardia 68 105 28 49 113 
Veneto 27 27 26 27 26 
Emilia Romagna 33 37 32 24 33 

 795 
Table 2. Availability of hourly measurements for Air Quality ARPA Dataset (daily for PM10 and PM2.5). Only sites with 796 
data availability > 75% and height < 700 (m a.s.l.) have been selected for Model Performance Evaluation. 797 

  NOX NO2 SO2 PM10 PM2.5 
Whole Po Valley RB 31 36 6 16 6 
 SBUB 130 136 34 74 28 
Piemonte RB 8 12 4 4 3 
 SBUB 30 31 10 17 9 
Lombardia RB 7 8 1 3 3 
 SBUB 63 68 18 25 15 
Veneto RB 5 5 1 3 - 
 SBUB 15 15 5 10 4 
Emilia Romagna RB 11 11 - 6 - 
 SBUB 22 22 1 22 - 

 798 
Table 3 Statistical indices for model predicted concentrations of PM10, PM2.5. 799 

PM10 [μg m-3] PM2.5 [μg m-3]  

RB SBUB RB SBUB 

 SOAP VBS SOAP VBS SOAP VBS SOAP VBS 

Number of 
observations 

439 439 2062 2062 161 161 793 793 

Mean observed 31.95 31.95 39.26 39.26 30.43 30.43 34.98 34.98 

Mean modelled 33.52 31.67 34.55 32.2 29.92 28.19 32.28 29.45 

Bias 1.57 -0.28 -4.71 -7.06 -0.51 -2.24 -2.71 -5.53 

MAE 15.35 15.11 16.60 16.91 14.20 14.2 15.06 15.02 

IOA 0.58 0.57 0.52 0.51 0.60 0.59 0.59 0.58 

RMSE 20.07 20.22 22.63 23.3 19.14 19.37 19.80 20.06 

 800 
 801 
 802 
 803 
 804 
 805 



Table 4. Statistical indices for model predicted concentrations of OA at Milano Pascal, Ispra and Bologna stations. 806 

OA [μg m-3] 

MILANO Pascal* ISPRA* BOLOGNA** 

 

SOAP VBS SOAP VBS SOAP VBS 

Number of 
observations 

28 28 28 28 491 491 

Mean observed 15.8 15.8 16.9 16.9 8.6 8.6 

Mean modelled 8.4 5.4 6.8 4.2 3.1 4.9 

Bias -7.4 -10.4 -10.1 -12.6 -3.3 -5.5 

MAE 7.6 10.4 11.0 13.0 4.7 5.6 

IOA 0.53 0.48 0.54 0.49 0.54 0.52 

* Daily data; ** Hourly data 807 
 808 

Table 5. Statistical indices for model predicted concentrations of OA at Bologna site. Observed data are derived 809 
from PMF factors, where: SOA = PMF factors OOA1+OOA2+OOA3 and CAMx species PASx+PBSx; DrySOA (i.e.: SOA 810 
from gas phase reactions) = PMF factors OOA2+OOA3 and CAMx species PASx+PBSx; SOAB (i.e.: SOA only from 811 
biomass burning due to gas phase reactions) = PMF factor OOA2and CAMX species PBSx. 812 

BOLOGNA   

POA HOA BBOA SOA DrSOA SOAB 

  
μg m-3 

SOAP VBS VBS VBS SOAP VBS VBS VBS 

Number of 
observations 491 491 491 491 491 491 491 491 

Mean observed 3.6 3.6 1.1 2.5 4.5 4.5 3.0 1.1 
Mean modelled 4.7 2.4 0.4 2.0 0.2 0.7 0.7 0.2 
Bias 1.1 -1.2 -0.8 -0.4 -4.3 -3.8 -2.2 -0.8 
MAE 2.6 1.9 0.9 1.2 4.3 3.8 2.2 0.9 
IOA 0.53 0.49 0.40 0.53 0.44 0.48 0.52 0.45 

 813 

 814 

   815 
Figure 1. Meteorological and air quality datasets available over the Po Valley domain for the simulation period. In 816 
the left panel SMAM sites are in black, ARPA Piemonte sites in blue, ARPA Lombardia sites in red, ARPA Veneto 817 
sites in violet and ARPA Emilia Romagna sites in yellow. In the right panel AQ regional sites are in orange, while 818 
Ispra, Milano‐Pascal and Bologna‐CNR sites are in blue. Panels show also the main highways (dark blue). 819 



 820 

a) 821 

b) 822 

c) 823 

d) 824 

e) 825 
Figure 2. Hourly time series of modelled (red) and measured (black) meteorological parameters averaged at all 826 
selected ARPA meteorological sites: a) water vapor mixing ratio; b) temperature; c) wind speed; d) global radiation; 827 
e) rain. 828 

 829 
 830 



 831 

 832 
Figure 3. Time series of the box and whisker plots for the daily distribution of the observed (black/grey) and 833 
computed  (“SOAP” red/orange; “VBS” light/dark green) values of  PM10 and PM2.5 concentration (μg/m

3) at 834 
background monitoring sites of the AQ regional networks for February 1‐28. Bars show the interquartile range, lines 835 
the median values. Values for the 25th, 50th, 75th, and 95th quantiles of the whole monthly time series are 836 
reported too. 837 

 838 
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 840 
Figure 4. Comparison of daily model predictions (red) with daily measurements (black) of Elemental Carbon. At 841 
Milano Pascal, Ispra and Bologna stations. 842 
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   844 
Figure 5. Comparison of model predictions (red) with daily measurements (black) of sulfate at Milano Pascal (daily), 845 
Ispra (daily) and Bologna (daily and hourly) stations.  846 
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 850 
 851 
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   853 
Figure 6. Comparison of model predictions (red) with daily measurements (black) of nitrate at Milano Pascal (daily), 854 
Ispra (daily) and Bologna (daily and hourly) stations.  855 

 856 



   857 

   858 
Figure 7. Comparison of model predictions (red) with daily measurements (black) of ammonium at Milano Pascal 859 
(daily), Ispra (daily) and Bologna (daily and hourly) stations.  860 

 861 
 862 

   863 

   864 
Figure 8. Modeled ground‐level concentrations of POA (left) and SOA (right) computed by CAMx – SOAP (top) and 865 
CAMx – VBS (bottom), averaged over the entire simulation period (1‐28 February 2013). 866 
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   868 
Figure 9. Modeled ground‐level concentrations of POA (top) and SOA (bottom) computed by CAMx – VBS, averaged 869 
over the entire simulation period (1‐28 February 2013). Left panels refer to OA produced by biomass burning and 870 
biogenic processes (BBOA and SOAB), right panels to OA produced from fossil fuel combustion (HOA and SOAA). 871 
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Figure 10. Comparison of model predictions (red for CAMx SOAP, green for CAMx VBS) with daily measurements 875 
(black) of Total Organic Aerosol at Milano Pascal (daily), Ispra (daily) and Bologna (daily and hourly) site.  876 



 877 
Figure 11. Panels a – e report the comparison of PMF factors (black) with hourly model predictions (CAMx VBS 878 
in green and CAMx SOAP in red): a) total POA, b) POA from biomass burning (BBOA), c) POA from 879 
hydrocarbon like OA (HOA), d) total SOA (PMF factors OOA1+OOA2+OOA3 and CAMx species PASx+PBSx), 880 
e) SOA from gas phase reactions (PMF factors OOA2+OOA3 and CAMx species PASx+PBSx). Panels f-j 881 
compare the modelled mean day with PMF factor diurnal profiles.  882 
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