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Abstract When analyzing an untrusted binary, reverse engineers usually rely on
ad-hoc collections of interesting dynamic patterns—known as behaviors in the
malware-analysis community—and static patterns—known as signatures in the
antivirus community. Such patterns are often part of the skill set of the analyst,
sometimes implemented in manually-created post-processing scripts. It would be
desirable to be able to automatically find such behaviors, present them to analysts,
and create a systematic catalog of matching rules and relevant implementations.
We propose JACKDAW, a system that finds interesting dynamic patterns, and
ranks them to unveil potentially interesting behaviors. Then, it annotates them
with static information, capturing the distinct implementations of each across
different malware families. Finally, JACKDAW associates semantic information
to the behaviors, so as to create a descriptive summary that helps the analysts in
querying the catalog of behaviors by type. To do this, it leverages the dynamic
information and an indexed Web-based knowledge databases.
We implement and demonstrate JACKDAW on the Win32 API (even if the technique
can be generalized to any OS). On a dataset of 2,136 distinct binaries, including
both malicious and benign libraries and executables, we compared the behaviors
extracted automatically against a ground truth of 44 behaviors created manually by
expert analysts. JACKDAW found 77.3% of them and was able to exclude spurious
behaviors in 99.6% cases. We also discovered 466 novel behaviors, among which
manual exploration and review by expert reverse engineers revealed interesting
findings and confirmed the correctness of the semantic tagging.

1 Introduction

The increasing interest around reverse engineering complex legacy, untrusted or mali-
cious binaries demands for automated tools that aid the analysts. Recent works such
as Howard [36] or TIE [20] propose intelligent solutions to tackle some of the hard
aspects of “reversing”. We believe that research efforts in this direction are needed to
turn reverse engineering from an art into a more structured engineering discipline with
appropriate methodologies, tools and computer-supported processes.

Research Challenges. One of the main challenges of reverse engineering is achieving
automation, in order to overcome the shortage of skilled analysts. A variety of static-
and dynamic-analysis tools exist and are very useful to this end. Moreover, so-called
“hybrid analysis” approaches can be used to balance their symmetric strengths and
weaknesses [6,10,21,34]. We believe that hybrid approaches can be pushed forward and
leveraged to obtain better reverse engineering tools.

The core aim of hybrid analysis techniques is to help bridging the semantic gap
between static and dynamic analysis, using as a pivot the concept of behavior, expressed



in different ways and abstraction levels (e.g., groups of API or system calls, instruction
sequences). Thus, the automatic identification of such behaviors is an interesting and
challenging research problem with immediate and profund practical impact. Such an
output could, for example, be used by a plugin for reverse-engineering tools to automati-
cally highlight and annotate certain portions of the CFG to prioritize the analysis based
on the information extracted from a large, collaborative back-end database, freeing up
valuable analyst time to focus on novel, interesting behaviors. Such behaviors could then
be fed back into the behavior database

Goals and Approach. We propose a practical approach to automatically extract
behavior specifications. JACKDAW is based on the correlation of control- and data-flow
information extracted from binaries both statically (after unpacking) and dynamically.

Under the realistic assumption that data-flow-dependent APIs or system calls are signs
of strictly-related events, we can automatically recognize groups of relevant actions that
could constitute a behavior, without any previous knowledge of that behavior. More
precisely, if a sequence of API or system calls connected through data-flow dependency
(which we call sequence of dataflow-dependent API calls for brevity) is recurrent within
many binaries, it could constitute a meaningful and interesting behavior.

Obviously, frequency alone is not enough. We exploit the observation of previous
work (e.g., [21]) that code reuse in malware is common, also across families that evolve
independently. Thus, we leverage the availability of a large number of samples to find
different, recurring implementations of such behaviors, which confirm their consistency.
In a way, we are turning the abundance of malware variants against the adversaries.

System Overview JACKDAW first identifies candidate behaviors as groups of API
functions. The groups are formed by means of dynamically extracted data-flow de-
pendencies, and using a similarity criterion based on the Control Flow Graph (CFG).
Then, JACKDAW builds a model of each group, which essentially is the list of the most
frequent function calls contained. Finally, JACKDAW leverages a knowledge base (e.g.,
StackOverflow) to associate function names and semantic tags.

Impact. The difference between JACKDAW and previous works that employ clustering
in malware analysis is clear: JACKDAW does not cluster the binaries in any way. Instead,
it uses clustering techniques to assist the discovery of (relevant) behaviors automatically.
Clustering executable binaries based on shared, known behaviors has been already done
in the past [17, 33] and is not the focus of our work. In fact, our motivation is exactly the
opposite, we do not assume any knowledge about behaviors. Thus, the goal is to find
recurrent and correlated data-flow and CFG sub-graphs that could represent a behavior.

The output of our system (i.e., a list of high-level dynamic traces enriched with static
information) could be used as input to other hybrid analysis systems that need behavior
definitions to work, thus relieving the analyst from the burden of producing behavior
specifications manually. It could also be used to build binary clustering or classification
techniques. Finally, it could be used by a plugin for reverse-engineering tools in order to
automatically annotate portions of the CFG that implement behaviors.

Evaluation Summary. We compared the behaviors extracted automatically by JACK-
DAW against a ground truth of 44 known behaviors constructed manually (and tediously)
with the help of a malware analyst. Our results on real-world malicious and benign
binaries indicate that JACKDAW finds up to 77.3% of the ground truth behaviors, and



effectively “suggests” interesting new ones: We verified this by validating novel ex-
tracted behaviors with the help of a panel of malware analysts. In a similar fashion, we
were able to validate the automated semantic tagging of behaviors. Moreover, when
applied across binaries of distinct categories (e.g., malicious vs. benign), we show that
JACKDAW is useful to lookup in the benign binaries (only) those behaviors constructed
from malicious binaries, with high precision. Indeed, when used to query a behavior
catalog constructed from malicious binaries, only 0.4% of such behaviors are found in
benign binaries, showing that JACKDAW could be used to perform differential analysis
and similar tasks. Finally, we show that JACKDAW can recognize (new) behaviors in
binaries never seen before.

Contributions. In summary:
– We present an unsupervised approach to ease and systematize the task of reverse

engineering by automatically extracting high-level behavior descriptions from a large
dataset of binaries.

– We remove a time consuming manual step in hybrid static-dynamic analysis processes,
namely the definition of high level behaviors.

– We propose an automatic algorithm to associate semantic tags to behaviors, allowing
(inexperienced) analysts to understand their actions.

2 Binary Analysis and Reverse Engineering

Static and dynamic analysis techniques have symmetric pros and cons. The key advan-
tage of static analysis is the good code coverage, whereas the main disadvantage is
that it requires skills and time to understand the results. Moreover, these techniques
suffer from compiler optimization, packing, obfuscation, polymorphism, and other code-
transformation techniques applied both to goodware, for intellectual-property protection,
and to malware, for evading static signatures. Dynamic-analysis techniques are based
on tracking events at different abstraction levels (e.g., machine instructions, file sys-
tem writes, network activity, auto-update capabilities, registry actions) while a binary
executes. The relevant events are obtained in various ways (e.g., API hooking in user
or kernel mode, custom kernel). Symmetrically to static analysis, dynamic analysis
requires significantly less skills and effort to be understood and is resilient to code
transformations. The main limitation is that we can only analyze the pieces of code
that are actually executed during the analysis. Therefore, some features remain hidden,
either by chance or intentionally (e.g., evasion). Code coverage can be increased with
proper code-stimulation techniques, at the price of an increased complexity, and by
relying on hardware-level introspection. As shown by a recent quantitative analysis [40],
a combination of static and dynamic analysis, creating so-called hybrid approaches, is
the key to achieve the best recall and precision.

We observe that previous work revolve around the concept of behavior [16,26], which
is leveraged as the bridge between static an dynamic techniques. This concept has been
used for various purposes, ranging from classification to analysis [21] and detection. In
a general meaning, a behavior is a set of events—possibly along with arguments and
types (see [20, 36])—observed during dynamic analysis. The classic example is a trace
of system or API calls. Current approaches require that the analyst defines behaviors



manually To take reverse engineering and malware analysis one step further, our first
goal is to generate (candidate) behaviors in a fully automatic way. More precisely, we
want to find groups of API calls that could be the building blocks of a higher level action,
from the results of hybrid analysis. Our second goal is to reduce the gap between the API
functions used to describe a behavior and their semantic meaning (i.e., what the analyst
wants to understand). In other words, we want to assign a name to a behavior, and thus
complete the bottom-up recognition of the top-level behavioral description in [26]. Then,
we want to attach static information (e.g., basic blocks) to the extracted behaviors.

Our starting point are the data dependencies, identified through dynamic data-flow
analysis (DFA). In short, DFA allows to “track” data in memory by following copy or
other manipulation operations. For instance, this means that the result of an operation
receives the union of labels of the operation’s arguments. Although in principle any
DFA technique could be used, we base our implementation on value-based DFA, by
connecting the return values (and output arguments) of one API call with the input
arguments of subsequent calls, creating sets of connected calls. These sets are the initial
candidates to mine behavior specifications. The challenge, however, is that these sets
can contain API calls that are irrelevant to defining a behavior. We want to find smaller
groups of API calls that are the “core” of these sets and that frequently occur together, in
a way automating the process of identifying bottom-up the “lower level” of the hierarchy
explained in [26].

3 System Details

As summarized in Fig. 1, JACKDAW comprises four steps. Step 1 (Data Collection) col-
lects and pre-processes static and dynamic information, Step 2 (Clustering of Data-flow
Information) groups the sequences of dataflow-dependent API calls that have the same
CFG fingerprints, and in Step 3 (Behavior Extraction), the clusters are modeled by
means of the representative API calls found in the sequences of dataflow-dependent API
calls. Step 4 (Semantic Tagging) attaches meaningful tags to each extracted behavior.

3.1 Step 1: Data Collection

We let each binary run in a monitored environment, this preliminary execution step
also unpacks packed code, if any, by letting the executable run and then dumping the
process memory. Clearly, a solution to the generic and challenging problem of packing
is out of the scope of this work. During execution we collect the set of sequences of
dataflow-dependent API calls and map any data dependencies to the code where the API
function is called. Here, we represent the static code by means of sub-graphs of the CFG
(built from the memory dump), which we call fingerprints.

Introspection and DFA. In our implementation we use an introspection technique
proven to work well even in case of malicious binaries [7, 27, 31]. During tracing, we
attach labels to interesting data flows. The flow sources are the API calls (with their return
values). We propagate these labels whenever they are copied or otherwise manipulated.
This is essentially taint analysis, although we prefer to use the term data-flow analysis,
which is more generic. Indeed, if type information is available, our technique can be
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Figure 1. Step 1: Data Collection combines static information (CFG) and dynamic informa-
tion (execution traces). Step 2: Clustering of Data-flow Information groups the sequences of
dataflow-dependent API calls that have the same CFG fingerprints. In Step 3: Behavior Extrac-
tion, the clusters are modeled by means of the representative API calls found in the sequences
of dataflow-dependent API calls. Step 4: Semantic tagging, semantic tags are attached for each
model.
easily extended. In practice, for each API function called, we extract the parameters’
name and actual value at the moment of invocation. Then, we use data-flow information
to connect the return values (and out-arguments) of one API call with the in-arguments
of subsequent calls.

Static Information. We also map each sequence of dataflow-dependent API calls to
the code that implements it. To represent (and compare) code blocks in a way that is
resilient to recompilation in different contexts, we use the notion of fingerprints, which
are sub-graphs of size k (in our work, as in previous and recent work, we use k = 10)
of the colored CFG obtained from the unpacked binary code. The unpacking step is
obviously optional. The CFG is colored according to the types of instructions contained
in each basic block. Each sub-graph can be conveniently represented and efficiently
matched using a hash. This technique is proven to be resilient against polymorphism [19]
and was successfully used in recent samples by Comparetti et al. in [6]. Finally, we
normalize the API function names (e.g, removing ’A’,’W’,’Ex’ suffixes referring to
different versions of the same function).

Behavior (definition). At this point, we can define a behavior as a sequence of API
function names and parameters, and the respective static fingerprints used to identify its
implementation on the CFG.

3.2 Step 2: Clustering of Data-flow Information

The input of this phase is a set of sequences of dataflow-dependent API calls, enriched
with static information. The goal is to group sequences of dataflow-dependent API calls



1: Input: dataflow set, clusterset={c1...cl}
2: for all t ∈ data f low set do
3: for i ∈ {1...l} do
4: si← J(t,ci) {Jaccard similarity computation}
5: end for
6: si? ← argmax(si)
7: if si? > u then
8: ci? ← ci? ∪{t}
9: else
10: new cl+1
11: cl+1←{t}
12: clusterset← clusterset ∪ cl+1
13: l← l +1
14: end if
15: end for

Figure 2. Clustering algorithm based on ECM:
si? is the maximum Jaccard similarity between t
and all the sequences of dataflow-dependent API
calls in the i-th cluster ci.

by their similarity. The requirements are a simple, fast clustering algorithm to keep
the analysis time under control. The algorithm must be one-pass and distance-based,
where clusters can evolve in an on-line mode as new samples come in. To this end, we
customized the ECM algorithm [38] as explained in the reminder of this section.

Clustering Algorithm. As detailed in Fig. 2, we associate each item to the cluster with
the highest (Jaccard) similarity. Recall that the items to be clustered are the sequences of
dataflow-dependent API calls, each represented by their set of fingerprints. The original
ECM algorithm uses average linkage to compute the distance. However, the concept
of “average set of fingerprints” is meaningless in our domain. Thus, we use single
linkage. For this reason, if the distance to the closest cluster si? is higher than a threshold
(empirically set to u = 0.75, as justified in §4.2), the item is considered the first item of
a new cluster.

Distance Function. Conceptually, two sequences of dataflow-dependent API calls
are very similar if they share large parts of code fingerprints. Therefore, we use the
fingerprints—indexed with hashes—to calculate a similarity score between each pair of
sequences of dataflow-dependent API calls.

After having considered several distance metrics suitable for sets (proposed in [4]),
we ended up comparing the dice coefficient, the Jaccard similarity and the overlap
coefficient. Through a set of experiments, we concluded that Jaccard similarity works
best for purposes: J(A,B) = |A∩B|/|A∪B|, where A and B are two sets of fingerprints.

Since our distance metric is based on the Jaccard index, alternative approaches could be
used (e.g., locality-sensitive hashing). However, we consider exploring such alternatives
an orthogonal aspect of our contribution, beyond demonstrating our idea.

We run a pilot experiment on a distance function based on the API calls that two
sequences of dataflow-dependent API calls have in common. However, this approach
would yield very sparse clustering, too biased by dormant code. Indeed, we show that
different sets of APIs are found in similar portions of code (i.e., implementing the very
same behavior).

3.3 Step 3: Behavior Extraction

Each cluster is now a potential candidate behavior, of which we know that all elements
share similar code. The goal of this step is to create a succint cluster model that represents
the sequences of dataflow-dependent API calls that it contains. For this, we need to find a
small set of API calls that characterize each cluster. To this end, we propose an heuristic



based on the frequency of each API call, which searches for sequences of dataflow-
dependent API calls that have sub-sequences of API calls in common. Our hypothesis,
validated by our experiments, is that they will also share (parts of) the implementation
code. As a result, since each cluster carries the respective fingerprints, we have obtained
a dictionary of behaviors (i.e., set of APIs) with several implementations (i.e., CFG
fingerprints). In addition to the fingerprint information that is useful for fast indexing, we
store the static information associated to each behavior as a set of offsets that identify the
code into the binary. Therefore, this dictionary can be used to statically match behaviors,
both in new, unseen binaries, or in binaries where such behaviors are implemented but
“dormant” [6]. Notably, the ability to produce both a static and dynamic description of
behaviors is useful because in this way we are not bound to dynamic analysis to identify
behavior in samples.

Extraction Logic. To find the set of APIs that will build a cluster model we consider
an API as part of a behavior if it appears frequently within the same cluster. This
means that, given the same portions of code (i.e., CFG fingerprints of a cluster), the
most frequent APIs are those that are manifested during dynamic analysis. An API
is representative of a cluster, and thus part of its model, if it appears more frequently
than a threshold f in the cluster. We found f = 0.75 to be a good value empirically, as
justified by our experiments. A conservative choice would be f = 1.00, which would
mean that we use as a descriptor only APIs that appear in all the sequences of dataflow-
dependent API calls of the cluster. This, however, is brittle and decreases the amounts
of behaviors found (as will be evident in §4.2): Indeed, it does not take into account
dormant behaviors [6], or the possibility that a behavior contains multiple branches and
thus alternative portions of code.

At this point, as shown in Fig. 1 (right), we merge the behaviors that have the same API
function names, thus enriching the set of fingerprints (i.e., code fragments) associated
to each behavior. Two clusters are merged if their have the same model (i.e., same set
of representative APIs). Recall that although the cluster modeling is done at behavioral
level, the clustering is obtained based on a distance function calculated on the CFGs (i.e.,
static code level). Therefore, merging these models will produce clusters that contains
several sets of these fingerprints, each representing a specific implementation of the
behavior. Consequently, distinct clusters could yield the very same model.

As a result, we obtain a linked graph (excerpt in Fig. 10). This creates our catalog of
behaviors. In this graph we show the inclusion relationships, to show which behaviors
depend on which behaviors, pretty much like the behavior graphs produced by [26].

Type Information. If type information is available from Step 1, we take into account
also the arguments of the representative APIs. To this end, we ported to Win32 the well-
known, robust models implemented in [24,29] for the most common data types of Linux
system calls. We focused on the four most common types of parameters in our proof of
concept implementation: strings, tokens, IP addresses and transport protocols. The first
two are precisely the same present in [24], while the latter two are just specializations of
the token model.



3.4 Step 4: Semantic Tagging

The goal is now to tag candidate behaviors with human-readable semantic descriptions.
The rationale is that each API call has a role in building the overall behavior. The final
result is a set of candidate behaviors and dictionaries of their implementations, and
tagged with keywords that can help the analyst in determining their semantics.

Sources of Semantic Tags. We first explored the official MSDN documentation.
However, it considers the API functions when used alone, not in various combinations.
Therefore, we exploited the abundant, structured information available nowadays in
community-driven websites. As a proof of concept, we obtained data from StackOverflow,
a popular community-based Q&A website extensively used by programmers. Questions
about programming problem often include code snippets, and are always tagged as
enforced by the site. In principle, any of such knowledge databases could be used,
including custom ones built by the analyst over time, which makes JACKDAW fairly
flexible.

Tagging Algorithm. For each element of the power set of the set API function names
and parameters of each behavior, we search our dump of StackOverflow for questions
that contain that element and extract title, body and tags. For example, given a behavior
that contains Connect Port 25, for each StackOverflow result1 we extract the title (e.g.,
“Send mail through gmail SMTP server using Win API”), body and tags (e.g., “winapi”,
“smtp”, “gmail”). For each post, we compute Score(post) from two configurable lists:

– Interesting tags list: we add +1 for each word of this list contained in a post; this
(extensible) list currently contains ˆc$, c\+\+, c\#, win in order to lookup posts
strictly related to Windows APIs.

– Trifling tags list: we add −1 for each word of this list contained in a post; this
(extensible) list currently contains words such as php, python, and other language
names, which suggest that the post is related to a specific programming language or
context, not to the Win API.

These lists are an important customization aspect of a reverse-engineering product
based on our technique: Indeed, the analyst should be able to tailor her lists based on the
focus, which can obviously change.

Any post with a positive overall score is marked as relevant. We then weight the
resulting relevant tags and posts with

Score(tag, post) =
Score(post)

N
·Found(post, tag)

where Found(post, tag) ∈ 0,1 is 1 only if the post contains the given tag, N is the
number of relevant posts. With this, we can calculate a vote for each tag as

Vote(tag) = ∑
post∈All posts

Score(post)

which we use to build a ranked list of tags. The human analyst can choose how many
suggestions (s)he wishes to see for each behavior. Thanks to our experimental results

1 http://stackoverflow.com/questions/3281260/send-mail-through-gmail-smtp-server-using-win-api



(§4.4) we discuss the quality of the suggestions, and show that applicable clues to the
behavior semantic meaning show up very early in the list. Our experiment shows that
tags are already a useful means to create a succinct description of a behavior. Moreover,
indexing and querying tags is space and time efficient. Therefore, we leave more complex
techniques borrowed from natural language processing field as future improvements, as
discussed in §5.

4 Experimental Evaluation

Our main goal is to validate the behaviors produced by JACKDAW. We apply it to both
malicious and benign binaries. We first show that behaviors extracted from a large corpus
of real-world malware samples from different families are consistent with those that an
analyst would have found via manual analysis. In addition, we show that these behaviors
are found on new malware families, never seen before by our system. Secondly, we
show that the behavior catalog so produced does not include spurious behaviors. In fact,
we show that the behaviors extracted from malicious binaries are not found in benign
binaries. Clearly, some behaviors can be in common between different classes of binaries,
but their implementation usually differs. JACKDAW carries such (static) information
with each behavior, and thus makes this type of reasoning feasible. As a side result, our
findings suggest that the behaviors discovered by JACKDAW may be used to some extent
to classify binaries on a per-behavior basis, although this should be done cautiously
because behaviors could be shared. Last, we conduct a survey from which we obtained
71 responses from a pool of expert reverse engineers that provided positive feedback on
the usefulness of the behaviors produced by JACKDAW.

We hosted JACKDAW on an Intel Core i7 CPU Q 720 @ 1.60GHz, with 4GB of RAM,
running Linux. We obtained access to the Anubis [1] sandbox for Step 1.

4.1 Dataset and Ground Truth

We collected 1,272 (about 10GB of data flow traces) samples belonging to 17 malware
families (Banload, Cycbot, Dapato, Gamarue, Generic Downloader, Generic Trojan,
Graftor, Kelihos, Llac, OnlineGames, ZangoHotbar, and ZeuS). Additionally, for the
experiment described in §4.4 we used a dataset comprising 864 distinct benign binaries
(e.g., PE32 executables and DLL libraries) extracted randomly from the Windows/
sub-directory of a clean computer.

To validate our system we needed known behaviors. For this, we manually reverse
engineered one sample from each family and, in addition, we manually inspected the
sequences of dataflow-dependent API calls, extracted through Step 1, from randomly
picked samples. With the help of a malware analyst, we ended up creating 44 ground
truth behaviors, subsequently validated by other two distinct reverse engineers. We
included behaviors in the following categories: network activity, download & execute,
file harvesting, history harvesting, disabling task manager, browser hijacking, disabling
an AV, autorun, disabling Windows firewall, unpacking. In §4.3 we use these behaviors
as a reference to tune our parameters, in §4.4 we use these behaviors as an oracle to
determine if JACKDAW would be able to find them automatically.
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4.2 Parameter Estimation

In Step 2 and 3 (§3.2 and 3.1) we introduced two parameters. One of these parameters
is the threshold u used by the clustering algorithm to decide to split an incoming item
and form a new cluster around it. High values of u yield many clusters (i.e., candidate
behaviors), with representative sets that would have a large number of API calls, which
then the merging step would hardly be able to merge again.

A second parameter, f , determines how frequent an API needs to be in a cluster to
be considered a representative. A conservative choice would be f = 1.00, which would
mean that only APIs that appear in all of the sequences of dataflow-dependent API calls
of the cluster would be a descriptor. This would create very small descriptions, and
decrease the numbers of behaviors found: Some clusters may not have APIs that appear
in all sets at all; some others may been implemented using different APIs. On the other
hand a lax choice would generate “representative sets” that would contain spurious APIs,
and thus not match any real behavior.

Since their effects interfere, it is necessary to jointly estimate these parameters. To do
so, we exploit the availability of a ground truth of known, manually labeled behaviors.
In Fig. 3 we plot, on the x and y axes, the two parameters, respectively, and on z the
fraction of the ground truth behaviors extracted by JACKDAW with that combination
of parameters. This surface has a global maximum in f = 0.75 and u = 0.75. It should
be noted that the sensitivity with respect to this choice is not high (because of the
smoothness of the surface), so we can use these parameter values safely.

4.3 Clustering Validation (Step 2)

The first set of experiments is targeted to validating the sequence of steps we designed
and the assumptions we took for each step.

Similarity Metric Selection In order to select the best similarity metric for sequences
of dataflow-dependent API calls, we want our clustering to be able to group sequences
of dataflow-dependent API calls that belong to the same behavior together. We used our
44 ground-truth behaviors as a reference exploring metrics chosen in [4] .

In Table 1, sequences of dataflow-dependent API calls that are similar according to
each metric and that belong to the same reference behaviors are marked in white (correct),
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whereas the sequences of dataflow-dependent API calls that are similar only according
to the metric but that belong to different behaviors are marked in gray (incorrect).
To minimize such misclassification, we can use either the Dice or Jaccard distance
with similar performance, whereas the overlap coefficient consistently perform worse.
According to these results, we chose the Jaccard similarity for all of our next experiments,
which is also fast to compute.

Consistency The aim of this experiment is to verify whether the clusters obtained
using fingerprints are consistent with their representative API functions. In other words,
we want to verify our assumption that if we cluster samples using only static features
(i.e., CFG fingerprints), and then cluster the same samples using only dynamic feature
(i.e., API calls), we end up obtaining consistent clusters (i.e., basically the same clusters).
To verify this, we proceeded as follows. Operating on each cluster, we applied the same
clustering algorithm, first on (sets of) fingerprints then on (sets of) API function names.
In an optimal case, such algorithm should generate the same clustering. To visually
represent this, in the examples on Fig. 5 we plot each cluster in a separate bar (white), and
we superimpose the largest sub-cluster in that cluster according to the APIs (gray). On
the y-axis there is the number of sequences of dataflow-dependent API calls in the cluster.

Table 1. Results of similarity metric selection (Step 2).

Family Dice Coefficent Jaccard Similarity Overlap Similarity

API sequence→ # % # % # %

Banload 63 75 63 78 87 51
21 25 18 22 82 49

Dapato 97 86 97 86 6 03
16 14 16 14 191 97

Gamarue 16,411 53 15,142 53 13,634 34
14,416 47 13,583 47 25,940 66

Llac 412 90 412 91 209 86
43 10 41 09 34 14

Gen.Downloader 8,676 64 8,211 72 12,095 29
4,807 36 3,216 28 29,193 71



Ground-truth Behavior:
firewall_settings

ShellExecute (advfirewall 
firewall add rule name: 1)

Automatic Behavior

RegOpenKey (hku\s-1-5-21-842925246-
1425521274-308236825-

500\software\microsoft\internet 
explorer\main)

GetProcAddress

ShellExecute (advfirewall 
firewall add rule name: 1)

Figure 6. Comparison of handwritten rule for a Firewall settings behavior and of automati-
cally extracted specification (on the top left).

Fig. 5 shows the results for Banload and Graftor, respectively. The results are good,
because in almost all clusters the largest sub-cluster contains well above 50% of the
sequences of dataflow-dependent API calls, and in some cases up to 100%. This means
that our clusters are eligible for a further API functions extraction. The results on this
experiment on all the malicious binary families are very similar, as summarized in Fig. 4
by means of the empirical cumulative distribution function CDF(X), where X is the
percentage of containment (gray bars): Most of the values are high (notice the significant
density around 1.00), showing good consistency overall. Thus, we conclude that our
hypothesis is empirically correct. Therefore, we can safely use the static fingerprints
(i.e., implementation of a behavior) as features of a behavior.

4.4 Behavior Evaluation (Step 3)

We assess whether the behaviors extracted by our approach (1) are meaningful, (2) can
be recognized in unknown binaries, and (3) correctly tagged.

Evaluating the results of JACKDAW is challenging, because it produces novel knowl-
edge (i.e., new behaviors) using unsupervised methods. The reason is that we could not
possibly have (found) all these behaviors in our ground truth, and they would require
an analyst to manually verify if they are reasonable, and if tags are consistent with
API functions contained therein. Having considered these aspects, in addition to com-
pare our behaviors against the 44 behaviors defined by an expert we perform a one-off
cross-validation of our behaviors.

Comparison Against Ground Truth We compared the behaviors extracted automat-
ically by JACKDAW, against our ground truth of 44 behaviors built manually. This is of
course not a comprehensive test of effectiveness, but rather a test of quality and precision.
Overall, in about half hour JACKDAW processed our dataset was able to find, among the
extracted behaviors, 34 (77.3%) of the 44 ground-truth behaviors, which would have
required days of tedious reverse engineering.

From our dataset of 1,272 malicious binaries we automatically generated 607 distinct
behaviors with 2 to 3 average API functions each. Of these, 172 (28.3%) were known
to the analyst. Notably, the behaviors that we extracted are even more informative than
those extracted manually: They contain more contextual information, as depicted in
Fig. 6. In some cases JACKDAW reports more details that the analyst was able to specify
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Figure 7. Number and size (#APIs) of the new behaviors in the catalog (i.e., those not matching
the behaviors specified manually by our reverse engineers).

manually (e.g., the RegOpenKey and GetProc address in Fig. 6). This useful information
is part of the behavior.

Remarkably, by a manual analysis of the 435 remainder behaviors2,which size is
summarized in Fig. 7, we were able to find interesting, unknown behaviors. From
this experiment we can conclude that JACKDAW is able to find, in our database, the
ground-truth behaviors.

Matching Behaviors in Unknown Binaries Besides proving that JACKDAW extracts
behaviors that match those specified by expert reverse engineers, we show that the be-
haviors and their implementations that JACKDAW builds are useful to analyze previously
unseen binaries. To do so, we create a catalog of behaviors on the malware dataset,
excluding one family at a time. Then, we draw random binaries from the excluded family
and verify whether they contain the behaviors from our catalog. Note that the family
labels are needed only for validating the results, not for our system to work.

Fig. 8 shows the fraction (in [0,1]) of behaviors found in each family. The high values
demonstrate that JACKDAW is able to automatically construct behaviors that have high
recall in other binaries. Thus, a reverse engineer equipped with a dataset such as ours
to run JACKDAW on, would have high chances to find behaviors in future instances of
malicious binaries. As a side result, not only this is consistent with previous work [21],
which demonstrated code reuse within the same malware family, but it also shows that
malware developers tend to include similar behaviors across different families.

Behaviors Matching Across Classes of Binaries We show that the behaviors catalog
constructed on a dataset of a given class of binaries (i.e., malicious, in our case) does not
include spurious behaviors. Spurious behaviors are essentially “noise” for the reverse
engineer that want to focus on behaviors typically found in malicious programs. Notably,
the results of this experiment show that JACKDAW can be used to “subtract” such noise
(e.g., removing instances of behaviors extracted by benign binaries from the behaviors
extracted by malicious binaries). The reason is because these behaviors describe code
that is typically found in benign programs. To this end, we picked 864 Windows portable
executables and libraries chosen at random from a real system and we used the (static)
fingerprints extracted from such benign executables to query our behavior catalog. We
searched each of the 607 behavior against every 864 benign file, obtaining 524,448
comparisons. Of these comparisons, only 2169 (0.4%) were matching. Thus, only a

2 https://gist.github.com/anonymous/6129d822af1bf299ca8a

https://gist.github.com/anonymous/6129d822af1bf299ca8a
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Figure 8. Matching behaviors in unknown malware (§4.4). Each bar shows the fraction of behav-
iors found in each malware family, obviously we deliberately excluded the samples of that family
to build the behavior catalog used for matching.

ShellExecute(File: netsh, Parameters:
advfirewall firewall add rule
name)

RegOpenKey(hku\s
-1-5-21-842925246-1425521274...

\software\microsoft\internet explorer\
main)

GetProcAddress

Position Tag (hint) Score

1 netsh 71
2 registry 67
3 getprocaddress 49
4 dll 47
5 firewall 40
6 loadlibrary 19
7 installer 11
8 networking 10
9 wcf 8.1

10 mfc 8

Figure 9. Automatically extracted behavior (a change in firewall settings), and ranking of tags.

minimal fraction of behaviors from our malicious binaries were found in a benign dataset.
This proves that the behaviors that we have extracted from malicious binaries are very
useful for a reverse engineering to focus her analysis.

Interestingly, in those 2,169 matching comparisons we were able to find instances
of behaviors that JACKDAW extracted from malicious binaries. More precisely, the
downloading and execution of an EXE file was found in a malicious binary, and shared
88.46% of the code of a behavior found in the Adobe Updater. Indeed, the download-
and-execute behavior is typical of benign software too.

Quality of Behavior Tagging To evaluate the quality of behavior tagging, we took
300 extracted behaviors, tagged them with Step 4 (§3.4), and chose the first 40 tags from
our ranking and manually analyzed the results. Let us discuss emblematic examples.

Fig. 9 shows what, at first sight, is a behavior that adds a rule to a firewall—as evident
by looking at the parameter of ShellExecute. Interestingly, within the first 5 tags there
are netsh and firewall. The tag netsh is the command name of the NetShell utility,
which is used as a scripting interface for monitoring and configuring Microsoft Windows.
These tags are very close to what the behavior does.

Survey on Behaviors Quality We asked expert reverse engineers to assign a score to
randomly chosen behaviors. The scores were: “correct”, if they understand the behavior
and find it useful; “complex”, if the behavior contains many APIs and should probably
be split in sub-behaviors; “no-sense”, if they think that the model of the behavior is



wrong or useless. We obtained 71 answers: 67.71% (48) correct, 16.90% (12) complex,
and 15.49% (11) no-sense. These results are promising and show that the approach on
which JACKDAW is based can lead to better reverse-engineering programs that suggest
interesting behaviors for the analyst. The low fraction of negative feedback that we
obtained from the experts is an indication that not all the extracted behaviors are useful,
which is expected from a fully automated system that requires no prior knowledge.

5 Limitations and Future Work

Despite the good results that we obtained, JACKDAW has some limitations.
First, our system shares a common limitation with all VM-based dynamic analysis

tools: some binaries adopt anti-debugging or anti-virtualization techniques. This problem
was first addressed in [14], which raised the problem of malware capable of finger-
printing honeypots and similar environments. It has been further shown that creating
a VM or sandbox which cannot be distinguished from a real system is impractical or
impossible [13]. In 2009, according to [2] 0.3 to 12.5 percent of the samples submitted to
Anubis were able to detect the sandbox and refuse to run. In [22] it is shown that evasive
malware was being actively developed and distributed in 2011. While overcoming this
limitation is beyond the scope of our work, we can note that the problem of evasive mal-
ware is well mitigated by collecting data outside the malware execution scope. Current
research focuses on using virtual machine introspection [9, 12, 30] instead of kernel- or
user-space hooking, or work on the bare metal [8, 18, 39] so as to leave the ring 0 (and
above) unaltered, thus limiting the malware environment fingerprinting possibilities.

A second, evident issue is that we need to unpack malware for our static analysis
approach to work. We use a pragmatic approach to deal with packing: We let the
executable unpack, de-obfuscate and run for at least 15 minutes and work on the memory
snapshot. Defeating packing is not the focus of our work, and any of the more advanced
unpacking techniques in the literature [15, 25, 34] can be used to augment our prototype.

Another limitation is the simple technique that we use to find the set of APIs that
characterize a cluster. It works reasonably well, but we are considering a more complex
heuristic that uses propositional logic to find whether there are (sequences of) API calls
that perform similar actions but have different names and can be substituted for each
other. An excerpt of an interesting case is depicted in Table 2. The analyst can easily
spot that there is a rule hidden in this example: Z = OpenProcess∧EnumProcess∨
CreateTollhelp32Snapshot∧Process32First∧Process32Next. More formally,
we want to extract and-or rules in the form Behavior =

∨
i
∧

j APIi, j, where APIi, j ≡
APIi, j′ for all j 6= j′, for each i. The symbol ≡ indicates that two API calls can be
considered equivalent because, in all the sequences of all the clusters examined, they
appear always together. On the one hand, being able to extract such rules would increase
the generality of the extracted behaviors by composition of two existing behaviors. On
the other hand, some preliminary tests suggest that the added complexity does not pay off
in terms of effectiveness. This is due to the fact that to construct these propositional-logic
rules we need an exhaustive search in the power set of the API function calls that are
within each cluster, which does not scale in principle.
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CreateDirectory
(c:docume...emp)

RtlAnsiString...
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RtlInitAnsiString
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GetFileSize

CreateFileMapping
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GetTempPath

WriteFile

GetVersion
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Figure 10. Example of behavior. The GetTempPath API calls alone are rather useless: Instead,
behaviors connected to it highlight filesystem-related actions that are useful to the analyst.

Another future extension is to extract more generic behaviors by leveraging a concept
that we call “behavior graph”, a direct acyclic graph (DAG) where each node represents
a behavior, and an edge exist between nodes if all of the APIs of a node (source) are
included in the APIs of the other (destination). Nodes without incoming edges represent
the most “general” behaviors. In many cases, they are composed by a single API, so
they are so general that they do not really give useful information per se: we show this
in Fig. 10 which magnifies a small portion of the graph to make it readable. However,
by looking at behaviors “closely connected” to general behaviors (green nodes) we can
see a broad classification of the behaviors in clusters such as “networking”, registry, file
operations, etc. Each behavior can belong to one or more of such groups. An interesting
consequence that we are currently exploring is that it is possible to use this topological
property to actually generate “missing” generalized behaviors.

6 Related Work

Dynamic Binary Analysis. Dynamic analysis approaches are based on sandboxes or
otherwise instrumented environments. Some notable sandboxes are Anubis3, to which
we obtained access for our work, TEMU [37], CWSandbox4, and Cuckoo5. Once the
interesting events are collected, various post-processing techniques can be applied, for
example to discover if the program is performing malicious actions. A recent, relevant
work based on Anubis is [1], which extracts dynamic features and uses them to cluster
similar malware samples together. We recall that this is the key difference with our work:
3 http://anubis.iseclab.org 4 http://www.cwsandbox.org
5 http://cuckoosandbox.org

Table 2. Each row shows the API calls found in a sequence of dataflow-dependent API calls. The
names of the functions are split for space reasons.

Trace API calls (excerpt)

Open-Process Enum-Processes CreateTool-help32-Snapshot Process32-First Process32-Next

1 2� 2� 2 2 2
5 2� 2� 2 2 2
6 2 2 2� 2� 2�
8 2 2 2� 2� 2�

http://anubis.iseclab.org
http://www.cwsandbox.org
http://cuckoosandbox.org


They focus on finding groups of similar binaries, whereas we find relevant behaviors
through clustering based on both dynamic and static features. Their aim is classification
of malware, whereas ours is to use behaviors to aid reverse engineering.

Static Binary Analysis. Classic static analysis approaches on binary executables are
based on disassembling the binary to obtain a higher-level representation based on the
CFG, which has been shown to be abstract enough and resistant to obfuscation [3,19]. We
use the CFG fingerprints defined in [19] as a mean to find recurring code across malware
variants. In this specific part, our approach is similar to [5], which however focuses on
detecting variants, whereas we provide a way to extract behaviors automatically, map
them onto code, and find that code across variants.

More recent works such as [35] strive to push the abstraction further by leveraging
the knowledge of the execution machine to obtain a de-compiled source code, which in
principle carries more semantic than plain assembly code.

We focus specifically on explaining the reasons why an executable is malicious, by
extracting the malicious behaviors and tag them semantically. Despite the good amount
of research in this area, static analysis require manual work to interpret the results.

Obfuscation, Packing and Polymorphism. As shown in [28], and as motivated by
the subsequent research in the field, the main drawback of static analysis arise when the
malware authors transform their code [41], which is a longstanding effective practice to
fool static signatures employed by current detectors deployed on the market.

Several approaches have been proposed to counteract obfuscation [23] and poly-
morphism. An example relevant to our work is [19], which shows that the connected
sub-graph of a given size of the CFG are robust against polymorphism. We use a variant
of this technique in our own work.

Binary Analysis A significant example of hybrid analysis is Reanimator [6], which
finds implementations of a dynamically observed behavior in samples that did not exhibit
it, to unveil the so-called “dormant” functionalities. Relevant behaviors are detected by
means of manually-written specifications. Reanimator creates a model of the identified
code regions using the same CFG fingerprints we use [19]. With these hybrid models
Reanimator statically checks whether another (unpacked) binary contains similar code.
The key difference of our system is that we extract (relevant) high-level behavior graphs
automatically, without needing manually-written specifications.

Another relevant work is Beagle [21], where the authors observe that malware authors
regularly update their software in order to beat defenses, improve their capabilities or
change their business model. The goal of Beagle is to observe the evolution of a malware
family over time. For this, it regularly downloads new versions of the same malware,
then compares them with the older ones through a series of static and dynamic diffing
techniques. Then, Beagle maps found differences back to the implementation code for
further analysis. Beagle also assumes that a set of high-level behaviors are available,
which the authors must define manually.

We cited earlier [22]. Central to this work is once again the concept of behavior:
The authors collect multiple execution traces on different environments and deem a
malware as evasive if such traces differ. From this work, we can conclude that inferring
differences between unknown behaviors automatically is feasible, whereas detecting
behaviors automatically is still unexplored.



Analysis and Detection. An interesting approach that exploits dynamic analysis for
malware detection is Panorama [42]. It executes unknown programs in a out-of-the-box
installation of Microsoft Windows, using scripts to introduce sensitive information in the
system. Then, it tracks propagation of this information, thanks to dynamic analysis, sum-
marizing it in so called taint graphs. Panorama discerns malicious from benign behavior
by manually defined detection policies. This and similar works are complementary to
JACKDAW, since our goal is defining interesting behaviors automatically.

Behavior Extraction. The work described in [11] has a similar goal to ours. However,
they concentrate on the dynamic aspect of behaviors: our behavior specifications are
richer and more contextualized, as they include static information obtained by correlating
many variant implementations of the same behavior. Moreover, the static information
allows static matching, which is faster and, more importantly, accounts for dormant code.
Another difference is that they focus on malicious binaries, whereas we do not make
any apriori assumption on the intent of a program. From a technical viewpoint, their
approach is to build a dependency graph from dynamic analysis of malicious and benign
binaries. Then, they exploit structural leap mining to discern between malicious and
benign behaviors using dependency graph built running benign code. Finally, concept
analysis is used to synthesize the rule that will represents behaviors that are in malicious
software e not in benign ones.

A recent related work [32] proposes to extract behaviors as significant sub-graphs
of the system call dependency graph. The key intuition is that graphs of goodware and
malware will exhibit substantially different features, which can be used train a classifier
able to extract both known and unseen behaviors from new binaries. Although this
approach is related to ours, we leverage the arguments and the return values of the API
calls to find interesting sub-graphs and provide a semantic meaning of the behavior
extracted.

7 Conclusions

JACKDAW is able to automatically find groups of API calls that represent high-level
actions, which we call behaviors, exploiting hybrid analysis on a large dataset of binaries.
It maps such behaviors on the code, using fingerprints suitable for subsequent static
analysis and resilient to basic code transformations. We leverage web knowledge bases
to annotate behaviors with a series of hints about their nature, by means of semantic tags
that support analysts in understanding what they are seeing.

We showed auto-consistency between static and dynamic components of such behav-
iors. Also, we showed that automatically-generated behaviors could be matched against a
ground truth defined with the helps of expert analysts, resulting in 34 out of 44 manually
defined behaviors being matched and automatically discovered by JACKDAW. Then, we
verified by manual inspection and by means of a panel of experts that extracted behaviors
are meaningful, and that their semantic tags are consistent.

As a future research direction, the outputs of our system can be used as an input
to other hybrid analysis systems, or to augment reverse-engineering tools in order to
automatically annotate the portions of the CFG that implement behaviors.
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