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ARTICLE

The Ritz – Sublaminate Generalized Unified Formulation
approach for piezoelectric composite plates
Michele D’Ottavioa, Lorenzo Dozio b, Riccardo Vescovinib and Olivier Polita

aLEME, UPL, Univ Paris Nanterre, Ville d’Avray, France; bDepartment of Aerospace Science and Technology,
Politecnico di Milano, Milano, Italy

ABSTRACT
This paper extends to composite plates including piezoelectric
plies the variable kinematics plate modeling approach called
Sublaminate Generalized Unified Formulation (SGUF). Two-dimen-
sional plate equations are obtained upon defining a priori the
through-thickness distribution of the displacement field and elec-
tric potential. According to SGUF, independent approximations
can be adopted for the four components of these generalized
displacements: an Equivalent Single Layer (ESL) or Layer-Wise
(LW) description over an arbitrary group of plies constituting the
composite plate (the sublaminate) and the polynomial order
employed in each sublaminate. The solution of the two-dimen-
sional equations is sought in weak form by means of a Ritz
method. In this work, boundary functions are used in conjunction
with the domain approximation expressed by an orthogonal basis
spanned by Legendre polynomials. The proposed computational
tool is capable to represent electroded surfaces with equipotenti-
ality conditions. Free-vibration problems as well as static problems
involving actuator and sensor configurations are addressed. Two
case studies are presented, which demonstrate the high accuracy
of the proposed Ritz-SGUF approach. A model assessment is pro-
posed for showcasing to which extent the SGUF approach allows a
reduction of the number of unknowns with a controlled impact on
the accuracy of the result.
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1. Introduction

Composite structures with embedded or bonded piezoelectric sensors and/or actuators
are among the most indicated solutions for implementing an adaptive strategy for, e.g.,
vibration suppression applications [1]. The design and implementation of such struc-
tures faces two contrasting requirements. On the one hand, it is very important for a
reliable design to have the possibility of accurately predicting the global and local
electromechanical response of the structure [2]. On the other hand, a computationally
efficient procedure is necessary, for instance in the framework of optimization proce-
dures [3] or in the control algorithm for allowing a real-time adaptation [4]. The three-
dimensional (solid) elements with piezoelectric coupling currently available in commer-
cial finite element software provide an excessively cumbersome computational
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framework, therefore much effort has been dedicated to the formulation of accurate
reduced-order models, as witnessed by the early review papers [5,6] and by the more
recent developments [7–12].

Unified formulations, pioneered by Reddy [13] and systematically developed by
Carrera [14], allow constructing within a single computer program a variable-kinematics
modeling approach with variable accuracy and computational cost, see also [15]. The
importance of such an approach, in particular for coupled multi-field problems such as
composite structures with piezoelectric elements, was early recognized [16–19]. Carrera
Unified Formulation (CUF) was subsequently generalized by Demasi [20] (Generalized
Unified Formulation, GUF). D’Ottavio [21] further extended the flexibility of GUF to
include a sublaminate approach (SGUF): in SGUF, the composite stack is subdivided
into an arbitrary number of laminates grouping adjacent physical plies, and a GUF
variable-kinematics model can be employed for each sublaminate independently.
Recently, the authors employed the displacement-based SGUF approach in conjunction
with a Ritz method previously developed by Dozio and Carrera [22]: mechanical pro-
blems involving bending, buckling and free-vibration, including visco-elastic layers, have
been addressed [23–25]. The proposed Ritz method is particularly useful as it provides
sufficient flexibility for a rapid analysis of configurations involving arbitrary boundary
and loading conditions as well as anisotropic coupling.

This paper presents the extension of the Ritz-SGUF approach to composite plates
with piezoelectric plies working in extension mode (31-mode). The resulting computa-
tional tool is based on Hamilton’s principle involving the displacements and the electric
potential as primary field variables. It accounts for the presence of electroded interfaces
and verifies exactly the related equipotentiality conditions, which are known to play a
major role for a realistic determination of the electro-mechanical coupling associated to
the piezoelectric response [26].

The paper is organized as follows. The modeling approach is outlined in Section 2,
where the compact index notation typical of Unified Formulations and the adopted Ritz
solution are presented up to the derivation of the discrete algebraic system to be solved.
Section 3 reports results obtained for representative case studies: the electro-mechanical
coupling coefficients is investigated for various boundary conditions in Section 3.1, a
static analysis with actuator and sensor configurations is carried out in Section 3.2, and
the modeling flexibility of the SGUF approach is illustrated by referring to a double
sandwich plate with piezoelectric plies in Section 3.3. Finally, Section 4 summarizes the
main conclusions and suggests the direction for further work.

2. Modeling approach

2.1. Description of the geometry

A plate is considered that occupies the volume V ¼ Ω� � h
2 � x3 � h

2

� �
, where h is the

constant thickness and Ω ¼ ½0; L1� � ½0; L2� is the reference surface lying on the
ðx1; x2Þ � plane. The composite plate is composed of p ¼ 1; 2; . . .Np homogeneous
plies stacked along the thickness direction x3;z, each of thickness hp, see Figure 1.
According to the SGUF approach, the laminate is subdivided into k ¼ 1; 2; . . .Nk sub-

laminates, each of constant thickness hk and consisting of a stack of Nk
p adjacent plies.
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Throughout the paper, indexes p and k are related to the physical plies and the
sublaminate, respectively, and quantities related to the ply p of the sublaminate k will

be indicated by ðÞp;k. Local coordinates zp 2 � hp
2 ;

hp
2

h i
and zk 2 � hk

2 ;
hk
2

� �
are introduced

along with the corresponding non-dimensional coordinates

ζp ¼ 2zp
hp

; ζk ¼ 2zk
hk

(1a)

These coordinates are linked through the relation

ζp ¼ hk
hp

ζk þ 2
hp

z0k � z0p
� �

(1b)

where z0p and z0k are the midplane z � coordinates of the ply and sublaminate,
respectively.

2.2. The variational approach based on generalized displacements

The two-dimensional (2D) model of the composite piezoelectric plate is obtained upon
introducing a priori assumptions for the through-the-thickness behavior of the displace-
ments ui and the electrostatic potential Φ in a variationally consistent manner. Unless
otherwise stated, Latin indexes range in 1; 2; 3f g while Greek indexes take values in
1; 2f g. Adopting tensor notation and the repeated index summation convention, the

weak form of the mechanical and electrical equilibrium equations is expressed by the
following integral statement

�
V
δ�ij σij � δEi Di þ δui ρ €ui dV ¼ �

St
δui�ti dS� �

Sq
δΦ �qdS (2)

where �ij, σij, Ei and Di represent the strain and stress tensors and the electric field and
electric displacement vectors, respectively, ρ is the mass density, δ indicates an

ply 1

ply Np

z0p

+hp

2

−hp

2

zp

0

+1

−1

ζp

physical plies z

+h
2

−h
2

ply p − 1

ply p
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k
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z0k

+hk

2

−hk

2

zk

0
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zt
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zb
p

zt
k
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k
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Figure 1. SGUF: geometry description and employed coordinates across the thickness.
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admissible virtual variation, �ti is the vector of external traction imposed at the boundary
St and �q is the imposed electric charge density imposed at the boundary Sq. In this paper
it shall be assumed without loss of generality that mechanical load and electric charge
densities are imposed at the top and/or bottom surfaces of the plate, viz.

St; Sq
� � ¼ Ω�� h

2 , while essential boundary conditions specifying displacements and

electric potential are defined at Su; SΦf g ¼ @Ω� � h
2 � z � h

2

� �
. Eq.(2) can be hence re-

expressed upon separating in-plane and through-the-thickness integrals and introdu-
cing the definition of sublaminates:

XNk

k¼1

XNk
p

p¼1

�
Ω
�
hp
δ�p;kij σp;kij � δEp;ki Dp;k

i þ δup;ki ρp;k€up;k
i

dz dxα ¼ �
Ω
δui�ti � δΦ �qð Þjz¼�h

2
dxα (3)

The variations in Eq.(2) and Eq.(3) are to be taken under the following subsidiary
conditions:

• the linearized gradient relations for small perturbations:

�p;kij ¼ 1
2

up;ki;j þ up;kj;i

� 	
; Ep;ki ¼ �Φ;p;ki (4)

where the notation ðÞ;i stays for partial derivative with respect to xi.
• the piezoelectric constitutive equations in each ply:

σp;kij ¼ ~C
p;k
ijlm �p;klm � ep;kijl Ep;kl

Dp;k
i ¼ ep;kilm �p;klm þ εp;kil Ep;kl

(5)

where ~Cijlm is the stiffness coefficient at constant electric field, εil the dielectric coefficient
at constant strain and eijl the piezoelectric stress coefficient. Elastic plies are represented

by Eq.(5) with nil piezoelectric coupling, i.e., ep;kijl ¼ 0. Voigt compact notation is intro-

duced based on the symmetry of the strain and stress tensors according to �i; σif g ¼
�ii; σiif g and �9�i�j; σ9�i�j

� � ¼ 2�ij; σij
� �

for i�j [27]. Eq.(5) is thus expressed in terms of
vectors and matrices as:

σP ¼ CPQ �Q � ePl El
Di ¼ eiQ �Q þ εil El

(6)

where uppercase Latin indexes P;Q ¼ 1; 2 . . . 6. Note that Eq.(5) and Eq.(6) are consid-
ered to hold in the global Cartesian reference frame employed for describing the plate

geometry, i.e., the relations include the angle θp;k describing the orientation of the
principal material axis X1 with respect to the structural axis x1, see also [27].

Note that the electric field is considered to be quasi-static compared to the mechan-
ical wave propagation velocity.

2.3. Variable kinematics modeling in SGUF

Following the SGUF approach, each sublaminate is associated to a specific kinematic
approximation, which is here extended for including the approximation for the electric
potential Φ. According to the compact index notation used in Unified Formulations, the
generalized displacements are regrouped in one vector
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Up;k ¼ up;k1 ; up;k2 ; up;k3 ;Φp;k
n o

(7)

In SGUF, the variation along the thickness direction z of each unknown function Up;k
r is

defined by a polynomial expansion of order Nk
U r

and by specifying whether the Nk
p plies

of the sublaminate are described in an Equivalent Single Layer (ESL) or Layer-Wise (LW)
manner. Therefore, the plate model is expressed in SGUF notation as

Up;k
r ðx1; x2; zpÞ ¼

XNk
Ur

αUr¼0

FαUr ðzpÞÛp;k
αUr

ðx1; x2Þ (8)

where r ¼ 1; 2; 3 for a displacement component and r ¼ 4 for the electric potential, see
Eq.(7). The thickness functions FαUr are expressed in terms of the ply-coordinates zp if the
plies of the sublaminate are described in a LW description; the approximation for the
whole sublaminate is then obtained through the assembly of all plies upon enforcing
the continuity of the function U r at the interface between adjacent plies. However, if an
ESL description is adopted for the sublaminate k, the thickness functions vary along zk
and the ply index p can be omitted in Eq.(8). If a constant approximation is used for a

variable Up;k
r within a sublaminate, one has Nk

U r
¼ 0 and F0Ur ¼ 1. If a linear approxima-

tion is used, Nk
U r

¼ 1 and the thickness functions correspond to the linear Lagrange

polynomials that interpolate the values at the top and bottom of the ply (LW) or
sublaminate (ESL). Higher-order approximations with Nk

U r
> 1 are implemented through

a hierarchic enrichment of the polynomial basis and employ Legendre polynomials.
More details can be found elsewhere [21,23].

In a sublaminate whose Nk
p plies are described in an ESL manner, a slope discontinuity

can be introduced in the kinematics at the interface between adjacent plies by super-
posing a Zig-Zag function to the C1ðzkÞ polynomial expansion given by Eq.(8). The Zig-
Zag function employed in SGUF is a modification of the classical Murakami’s ZigZag
Function (MZZF) [28] such that it vanishes at the top and bottom planes of the
sublaminate:

FZZðzpÞ ¼
� 1

2 1þ ζp
� �

if p ¼ 1
ð�1Þpζp if p ¼ 2; 3 . . .Nk

p � 1

ð�1ÞðNk
pþ1Þ 1

2 1� ζp
� �

if p ¼ Nk
p

8>>><
>>>:

(9)

This way, the continuity conditions to be imposed between adjacent sublaminates for
building the matrices for the whole composite stack involve only the unknown displace-
ments corresponding to the top and bottom of each sublaminate.

2.4. Ritz approximate solution

The weak form solution of the two-dimensional problem is sought within the space
spanned by the global approximation (Ritz) functions, which can be expressed as

38 M. D’OTTAVIO ET AL.



Ûp;k
rαUr

ðx1; x2Þ ¼
XM
i¼1

NU r iðx1; x2ÞUp;k
rαUr i

(10)

A map between the physical ðx1; x2Þ � plane and the computational ð�1; �2Þ � domain is
introduced, where �α 2 ½�1; 1�. Furthermore, separation of the in-plane variables is
invoked thus expressing the ith two-dimensional Ritz function as the product of two
one-dimensional (‘beam’) functions:

NU r ið�1; �2Þ ¼ ϕU rmð�1ÞψU rnð�2Þ (11)

where m ¼ 1 . . . R, n ¼ 1 . . . S (note that R and S may be, in general, different) and the
relation between the ith function and the beam functions m and n has been chosen as
i ¼ Sðm� 1Þ þ n. Various sets of Ritz functions can be used; adopting orthogonal
polynomials along with boundary functions allows to efficiently handle various bound-
ary conditions, such as clamped, free or simply-supported edges, as well as to provide
stable solutions for high values of R; S [22]. This work employs Legendre polynomials for
spanning the field solution in conjunction with boundary functions for imposing the
essential boundary conditions at the edges:

ϕU rmð�1Þ ¼ pU rmð�1Þbrð�1Þ; ψU rnð�2Þ ¼ pU rnð�2Þbrð�2Þ (12a)

where for l ¼ m; n the employed functions are

pU r0ð�αÞ ¼ 1; pU r1ð�αÞ ¼ �α; pU r lð�αÞ ¼
ð2l þ 1Þ�αpU r l � l pU rðl�1Þ

l þ 1
ðl ¼ m; nÞ (12b)

brð�αÞ ¼ ð1þ �αÞe1rð1� �αÞe2r where
e1r; e2r ¼ 1 if U rð�α ¼ �1Þ ¼ 0
e1r; e2r ¼ 0 if U rð�α ¼ �1Þ free



(12c)

The boundary conditions on the displacements ðr ¼ 1; 2; 3Þ can thus represent
clamped, free or simply-supported edges, while those on the electric potential ðr ¼
4Þ can describe a grounded edge (Φ ¼ 0) or an edge at which the potential is let free.

As far as the electric boundary conditions are concerned, the present implementation
is also capable to cope with a prescribed distribution Φðxα;�zÞ ¼ �ΦφðxαÞ, which is
imposed at an arbitrary interface �z. For this, the through-thickness model must be
chosen so that a through-thickness DOF will be associated to the considered surface,
which is straightforward within the sublaminate approach and a LW description: indeed,
with reference to Eq.(8), one has to satisfy FΦð�zÞ ¼ 1 in order to have

Φp;kðxα;�zÞ ¼ �ΦφðxαÞ. For this variable, the Ritz approximation in Eq.(10) is then simply
replaced by a one-term expression for the prescribed distribution φðxαÞ. Electroded
surfaces with a constant electric potential or a particular distribution of an applied
electric potential are thus exactly represented as essential boundary conditions. It is
worth noticing that only the essential boundary conditions are exactly satisfied by
prescribing the values for the generalized displacements ui;Φ, while the conditions on
the electro-mechanical fluxes (stresses and electric displacements) are let free to be
satisfied in weak sense.
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2.5. The discrete system

The weak form of the equilibrium equation is formally expressed in terms of the
generalized displacements by substituting Eq.(4) into Eq.(6), and both into Eq.(3). The
through-the-thickness approximation and the Ritz solution are then introduced for the
virtual and actual field variables according to following notation:

δUp;k
r ðx1; x2; zpÞ ¼ FαUr ðzpÞδÛp;k

αUr
ðxαÞ ¼ FαUr ðzpÞNU r iðx1; x2ÞδUp;k

rαUr i

Up;k
s ðx1; x2; zpÞ ¼ FβUs ðzpÞÛ

p;k
βUs

ðxαÞ ¼ FβUs ðzpÞNUsjðx1; x2ÞUp;k
sαUs j

(13)

where r; s 2 ½1; 4� according to Eq.(7), αU r 2 ½0;Nk
U r
� and βUs

2 ½0;Nk
Us
� according to Eq.(8),

and i; j 2 ½1;M� according to Eq.(10). All integrals along z are explicitly carried out and
are identified by the following notation:

Z
pαUr βUs
U rUs

; Z
pαUr βUs
@U rUs

; Z
pαUrβUs
U r@Us

; Z
pαUr βUs
@U r@Us

n o
¼

ð
hp

FαUr FβUs ; FαUr ;z FβUs ; FαUr FβUs ;z ; FαUr ;z FβUs ;z
n o

dz (14)

In a similar manner, the in-plane integrals of the Ritz functions are evaluated according
to the following notation:

Idegh
U rUsij ¼

ð
Ω

@dþeNU r i

@xd1 @x
e
2

@gþhNUsj

@xg1 @x
h
2

dx1 dx2 ðd; e; g; h ¼ 0; 1Þ (15)

The discrete expression of Eq.(3) can be finally written as

XNk

k¼1

XNk
p

p¼1

δUp;k
rαUr i

Mp;k
�� Z

pαUr βUs
ð@ÞUrð@ÞUs

Idegh
U rUsijU

p;k
sβUs j

þ δup;klαul i
ρp;kZ

pαulβul
ulul I0000

ulul ij
€up;klβul

j ¼
X
�z

δUð�zÞ
ri Ið�zÞ

U r�Pri

The left-hand side is the virtual internal work and includes the inertial terms, for which

l ¼ 1; 2; 3. Mp;k
�� is one of the material parameters of Eq.(6) depending on the nature of

the generic variables U r and Us:

• if r; s ¼ 1; 2; 3, i.e. U r ¼ ur and Us ¼ us, then Mp;k
�� ¼ ~Cp;k

PQ is an elastic stiffness
coefficient;

• if r ¼ 1; 2; 3 and s ¼ 4, i.e. U r ¼ ur and Us ¼ Φ, then Mp;k
�� ¼ ep;kPi is a piezoelectric

stress coefficient; analogously, if r ¼ 4 and s ¼ 1; 2; 3, then Mp;k
�� ¼ ep;kiP

• if r ¼ s ¼ 4, i.e. U r ¼ Us ¼ Φ, then Mp;k
�� ¼ εp;kij is a dielectric permittivity coefficient.

The right-hand side represents the virtual work done by the external loading applied at
given interfaces �z:

• for r ¼ 1; 2; 3, a mechanical loading with a prescribed traction distribution �trðx1; x2Þ:

I int f
U r�Pri

¼
ð
Ω
Nuriðx1; x2Þ�trðx1; x2Þ dx1 dx2

• for r ¼ 4, an electrical loading with a prescribed charge distribution �qðx1; x2Þ
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I int f
U r�Pri

¼
ð
Ω
NΦiðx1; x2Þ�qðx1; x2Þ dx1 dx2

After cycling over all indexes αU r ; βUs
of the thickness assumptions, assembly over all

plies p and sublaminates k, and finally cycling over all Ritz expansion indexes i; j, the
following discrete system is obtained:

M 0
0 0

� �
€uðtÞ
€ΦðtÞ

� �
þ Kuu KuΦ

KT
uΦ KΦΦ

� �
uðtÞ
ΦðtÞ

� �
¼ TðtÞ

QðtÞ
� �

(17)

Electrical open-circuit and short-circuit conditions can be taken into account as detailed
hereafter [29]. The electric potential DOF are subdivided in ‘internal’ electric DOF Φi and
those associated to an electroded surface, denoted Φe. No electric charge is imposed in
correspondance of the ‘internal’ electric potential DOF, which comprise the electric
potential DOF at non-electroded (NE) surfaces also. These can hence be statically
condensed out, which leads to the following discrete system:

M 0
0 0

� �
€uðtÞ
€ΦeðtÞ

� �
þ ~Kuu ~KuΦe

~KT
uΦe

~KΦeΦe

� �
uðtÞ
ΦeðtÞ

� �
¼ TðtÞ

QðtÞ
� �

(18a)

where

~KXY ¼ KXY � KXΦiK
�1
ΦiΦi

KT
YΦi

ðX; Y 2 fu;ΦegÞ (18b)

In the short-circuit configuration (SC), one sets Φe ¼ 0: the system to be solved is
composed of only the first hyper-row of Eq.(18a) and its last hyper-row can be used to
recover the electric charge vector within a post-processing step. In the open-circuit
configuration (OC), one sets Q ¼ 0: a further static condensation of the electric potential
DOF at the electrodes is carried out, which transforms the first hyper-row of Eq.(18a) into

M€uðtÞ þ ~~KuuuðtÞ ¼ TðtÞ with ~~Kuu ¼ ~Kuu � ~KuΦe
~K�1
ΦeΦe

~KT
uΦe

(19)

The electric potential DOF at the open-circuited electrodes are then obtained from the
second hyper-row in a post-processing step.

Static problems are obtained by dropping out the time-dependency, while free-
vibration responses are obtained by setting T ¼ 0 along with uðtÞ ¼ ueiωt and

ΦðtÞ ¼ Φeiωt , where i ¼ ffiffiffiffiffiffiffi�1
p

and ω is the eigenfrequency.

3. Numerical results

Before proceeding to the presentation of some numerical examples, the naming con-
vention is introduced for identifying the variable kinematics models that can be imple-
mented. For each sublaminate, the in-plane displacements uα, the transverse
displacement u3 and the electric potential can be described in an ESL (E) or LW (L)
manner, and with a specific polynomial order Nk

uα , N
k
u3 and Nk

Φ. These informations are

gathered for each sublaminate k according to the following acronyms:
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EDNuα ;Nu3=NΦ
if all generalized displacements ðuα;u3;ΦÞ are ESL

LDNuα ;Nu3=NΦ
if all generalized displacements ðuα;u3;ΦÞ are LW

DLNuα ;ENu3=LNΦ
if uα andΦ are LW;while u3 is ESL

DZNuα ;ENu3=LNΦ
if uα is ESLwithZigZag function;u3isESLandΦisLW

If a sublaminate does not host the electric potential variable Φ, the corresponding index
is dropped off. In fact, thanks to the sublaminate approach, the electric DOF can be
retained only in those sublaminates with a piezoelectric response and omitted from
those characterized by a merely elastic response.

For the whole stack of sublaminates, the acronyms are listed separated by a slash
starting from the top sublaminate. For example, consider a composite layup subdivided
into 3 sublaminates, all described by a FSDT kinematics; if the first (top) sublaminate is
piezoelectric with a LW quadratic assumption for the electric potential, the second
(central) sublaminate is purely elastic and the third (bottom) sublaminate is again
piezoelectric with an ESL constant approximation for the electric potential, the resulting
model is defined by the following acronym: DE1;E0=L2=ED1;0=ED1;0=0.

3.1. Electromechanical coupling coefficients for a piezoelectric plate (T1)

This first case study, denoted as T1 and taken from [30], aims at illustrating the
capabilities of the proposed approach to handle different electro-mechanical boundary
conditions. In fact, these are known to play a relevant role in the possibility of the
structure to convert electric and deformation energy by means of the electro-mechan-
ical coupling. The first five bending modes are considered of a freely vibrating moder-
ately thick plate (S ¼ L1=h ¼ 10) made of 2 equally thick plies of PZT-5 material (data in
Table 1). The analysis is carried out in a two-dimensional plane strain setting. Four
different sets of mechanical boundary conditions are considered at the plate edges
�x 2 0; L1f g, which can be both simply-supported (SS), both clamped (CC), clamped-free
(CF) and clamped-simply-supported (CS). The simple support condition amounts to set
u3ð�x; zÞ ¼ 0. The interface �z ¼ 0 between the two plies is electrically grounded and
different electrical conditions are applied to the top and bottom surfaces of the plate,
which may be covered by a thin conducting electrode or let without electrode. The
electrode is modeled as an equipotential surface without mechanical stiffness at which
two electric conditions can be applied: a nil electric potential is imposed, which yields a
short-circuit condition (SC), or the potential value is let free, which yields an open-circuit
condition (OC). If no electrode is present (NE), the electric potential is let free to vary

Table 1. T1: Material data for the transversely isotropic PZT-5 material polarized along the x3
direction. Superscripts E and S specify that the coefficients are given at constant electric field and
at constant strain, respectively. Plate length L1 ¼ 1 [m], thickness h ¼ 0:1 [m].
CE11[GPa] 121 e31 [Cm−2] −5.46
CE12 [GPa] 75.4 e33 [Cm−2] 15.8
CE13 [GPa] 75.2 e15 [Cm−2] 12.32
CE33 [GPa] 111 εS11 [nFm−1] 15.317
CE44[GPa] 21.8 εS33 [nFm−1] 15.052
CE66 [GPa] 22.8 ρ [kgm−3] 7750
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along x at the outer surfaces. In all cases, the vertical edges �x 2 0; L1f g are electrode-
free. Krommer provides analytical solutions obtained with an FSDT model (with a shear
correction factor of 5/6) for the SC and OC configurations [30]. Further reference
solutions are obtained by FEM computations with the commercial software Abaqus
employing a mesh of 100 � 10 quadratic elements CPE8E.

Before proceeding further, it is useful to present a convergence study of the present
Ritz solution. The first and the sixth circular eigenfrequencies are considered for a CC
and a CF configuration. The electrical boundary conditions are the following: the mid-
surface is electroded and grounded (Φðz ¼ 0Þ ¼ 0), the bottom surface is electroded
and in open-circuit (Φðz ¼ �h=2Þ free), the top surface is not electroded (NE). The results
of the convergence study are reported in Figure 2 for a number of Ritz expansion terms
R that range from 4 up to 64 (cylindrical bending is assured by S ¼ 1 and ψU r1 ¼ 1). The
plate is modeled with an FSDT kinematics and a LW quadratic expansion of the electric
potential, i.e., an ED1;0=2 model. A shear correction factor of 5/6 is used. Based on the
convergence analysis, an expansion order R ¼ 48 will be used in the subsequent
computations.

Figure 2. T1: Convergence analysis for first and sixth eigenfrequencies of the CC and CF plate.

Table 2. T1: Circular eigenfrequencies [rads�1] for the hinged-hinged (SS) plate.
elec BC Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

ED1;0=2 SC 862.97 3279.3 6862.6 11,228 16,092 21,272
OC 912.02 3279.3 6900.1 11,228 16,118 21,272
NE 921.78 3456.8 7124.9 11,505 16,330 21,454

LD3;2=2 SC 863.83 3291.1 6911.1 11,350 16,325 21,654
OC 912.59 3291.1 6946.9 11,350 16,348 21,654
NE 923.20 3475.2 7194.8 11,665 16,612 21,878

Table 3. T1: Circular eigenfrequencies [rads�1] for the clamped-clamped (CC) plate.
elec BC Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

ED1;0=2 SC 1849.3 4701.2 8444.0 12,766 17,484 22,480
OC 1849.3 4701.2 8444.0 12,766 17,484 22,480
NE 1938.1 4844.5 8599.4 12,903 17,597 22,579

LD3;2=2 SC 1871.6 4767.6 8582.4 13,006 17,853 23,007
OC 1871.6 4767.6 8582.5 13,006 17,853 23,007
NE 1966.2 4935.2 8785.1 13,207 18,033 23,157
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Table 2 – Table 5 report the first 6 circular eigenfrequencies obtained by the present
Ritz-SGUF approach for the four different mechanical boundary conditions. For each
case, the three electrical configurations SC, OC and NE are considered. Two different
models are used: the FSDT model ED1;0=2 (5/6 as shear correction factor) and the high-
order LD3;2=2 model. Note that both models retain a quadratic approximation for the
electric potential in order to well capture the electric field induced by the piezoelectric
coupling. The eigenfrequencies obtained by the plane strain solid Abaqus model are in
perfect agreement with those of the more accurate model LD3; 2=2 model and are not
reported in the tables for the sake of conciseness. Furthermore, the present ED1;0=2

model identically recovers the analytical results obtained with the FSDT model by
Krommer, whose numerical values can be found in [30].

Figure 3 reports the ratio ω=ωel for the first 6 bending modes, where ωel is the
eigenfrequency of the elastic plate when the piezoelectric coupling is neglected and ω

refers to the different configurations SC, OC and NE. Figure 4 illustrates the modal
electro-mechanical coupling coefficient EMCC, defined as ðω2

� � ω2
SCÞ=ω2

�, where ω� ¼
ωOC for electroded (equipotential) surfaces and ω� ¼ ωNE if a electric potential distribu-
tion can develop at the outer surfaces. A perfect match is obtained between the present
results and those obtained by Krommer [30] and with the solid Abaqus model. It is
interesting to note that, despite the rather large differences between the eigenfrequen-
cies ω computed by the FSDT and LD3;2 kinematics, see Table 2–5, Figures 3 and 4 show
that the discrepancies in the frequency ratios ω=ωel and ðω2

� � ω2
SCÞ=ω2

� are small for the
NE configuration and practically nil for the SC and OC configurations.

These results confirm the important role of the electro-mechanical boundary condi-
tions on the coupled response of piezoelectric structures and the following comments
can be made. Figure 3 shows the stiffening effect induced by the piezoelectric coupling
for all considered electric boundary conditions. The largest increase is of about 10% and
is obtained by the electrode-free configuration (NE configuration), while the SC config-
uration leads to the smallest increase. The stiffening effect of the SC configuration
constantly increases from about 2.5% for mode 1 to about 4.5% for mode 6, irrespective

Table 4. T1: Circular eigenfrequencies [rads�1] for the clamped-free (CF) plate.
elec BC Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

ED1;0=2 SC 310.44 1849.6 4832.0 8708.1 13,189 18,060
OC 323.73 1875.0 4854.4 8728.6 13,208 18,078
NE 332.44 1952.9 5026.2 8937.0 13,405 18,240

LD3;2=2 SC 312.11 1862.3 4876.5 8813.6 13,388 18,385
OC 325.23 1888.4 4898.3 8835.1 13,406 18,404
NE 334.03 1970.1 5091.7 9088.0 13,671 18,641

Table 5. T1: Circular eigenfrequencies [rads�1] for the clamped-hinged (CS) plate.
elec BC Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

ED1;0=2 SC 1313.8 3983.5 7662.0 12,012 16,803 21,888
OC 1326.9 3994.1 7671.0 12,020 16,809 21,893
NE 1390.6 4150.9 7873.7 12,218 16,975 22,025

LD3;2=2 SC 1871.6 4767.6 9551.6 13,006 18,998 23,007
OC 1871.6 4767.6 9551.6 13,006 18,999 23,007
NE 1966.2 4935.2 10,478 13,207 20,826 23,157
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Figure 4. T1: Modal Electro-Mechanical Coupling Coefficient for different mechanical boundary
conditions with and without equipotential electrode conditions.

Figure 3. T1: Ratio between the eigenfrequencies of the piezoelectric plate and those of the
equivalent elastic plate for different mechanical boundary conditions and electric circuits.
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of the mechanical boundary conditions. On the contrary, the stiffening effect associated
to the NE and OC has its maximum for mode 1, with the NE configuration being alway
stiffer than the OC configuration. As the mode number increases, the OC curve merge
the SC curve, whereas the NE curve provides always slightly higher eigenfrequencies.
The EMCC reported in Figure 4 directly quantifies the piezoelectric coupling effect. It is
obvious that the NE configuration induces always a larger piezoelectric coupling than
the OC configuration, an effect explained by the charge cancellation effect at the
equipotential surface [31]. The EMCC is maximum for the first mode and decreases for
higher modes. Furthermore, statically determined (SS and CF) plates show a higher
EMCC than those with more rigid end conditions (CC and CS). For the OC configuration
(equipotential electrodes), the EMCC of the SS plate vanishes for modes with an even
number of half-waves, and it is identically nil for the CC plate.

3.2. Static analysis of an orthotropic laminate with a piezoelectric ply (T2)

This second case study, identified as T2, is particularly interesting because Vel and Batra
provided in [32] reference 3D solutions for static actuator and sensor problems involving
electro-mechanical boundary conditions different from the classical simply supported
and electrically grounded edges.

The problem deals with a thick, square plate (L1 ¼ L2 ¼ 1 [m], L1=h ¼ 5) consisting of
a PZT-5A ply (thickness 0:2h) bonded on top of an elastic substrate composed of two
Graphite-Epoxy (GrEp) plies (thickness 0:4h each). The non-zero coefficients of these
materials are reported in Table 6. The fibers of the bottom GrEp ply are aligned with the
x1 direction while those of the top GrEp ply are aligned with the x2 direction. The two
edges ~x2 2 f0; L2g are simply-supported (u1ð~x2Þ ¼ u3ð~x2Þ ¼ σ22ð~x2Þ ¼ 0) and electrically
grounded (Φð~x2Þ ¼ 0); at the edges ~x1 2 f0; L1g the two following sets of electro-
mechanical boundary conditions are considered:

SP configuration: u2ð~x1Þ ¼ u3ð~x1Þ ¼ σ11ð~x1Þ ¼ Φð~x1Þ ¼ 0
CD configuration: u1ð~x1Þ ¼ u2ð~x1Þ ¼ u3ð~x1Þ ¼ D1ð~x1Þ ¼ 0

Therefore, the edges ~x1 2 f0; L1g are simply-supported and electrically grounded in the
SP configuration and are clamped and electrically insulated in the CD configuration.

The interface between the elastic substrate and the piezoelectric ply is electroded
and grounded while the bottom surface of the plate is traction-free. A sensor and an
actuator configuration are considered, for which the boundary conditions at the top
surface ~z ¼ h

2 and the non-dimensional output quantities are defined as follows:

Table 6. T2: Material data for PZT-5A (transverse isotropy in ð1; 2Þ � plane) and for GrEp (transverse
isotropy in ð2; 3Þ � plane). Superscripts E and S specify that the coefficients are given at constant
electric field and at constant strain, respectively.

PZT-5A GrEp

CE11 [GPa] 99.201 e31 [Cm�2] −7.209 C11 [GPa] 183.443 e31 [Cm�2] 0
CE12 [GPa] 54.016 e33 [Cm�2] 15.118 C12 [GPa] 4.363 e33 [Cm�2] 0
CE13 [GPa] 50.778 e15 [Cm�2] 12.322 C23 [GPa] 3.918 e15 [Cm�2] 0
CE33 [GPa] 86.856 εS11 [nFm�1] 15.30 C33 [GPa] 11.662 ε11 [nFm�1] 15.30
CE44 [GPa] 21.100 εS33 [nFm�1] 15.00 C44 [GPa] 2.870 ε33 [nFm�1] 15.30
CE66 [GPa] 22.593 ρ [kgm�3] 7750 C66 [GPa] 7.170 ρ [kgm�3] 1590
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sensor configuration: σ33ð~zÞ ¼ q0 sin
πx1
L1

� 	
sin πx2

L2

� 	
; σα3ð~zÞ ¼ 0;Φð~zÞ ¼ 0

UðzÞ;WðzÞ½ � ¼ C0
L1q0

u1ðL14 ; L22 ; zÞ ; u3ðL12 ; L22 ; zÞ
� �

; U� ¼ Uðh2Þ;W� ¼ Wð0Þ
�xxðzÞ;�xzðzÞ½ � ¼ 1

q0
σ11ðL12 ; L22 ; zÞ ; σ13ðL18 ; L22 ; zÞ
� �

; ��
xx ¼ �xxðh2Þ;��

xz ¼ �xzð3h10Þ
�yzðzÞ;�zzðzÞ
� � ¼ 1

q0
σ23ðL18 ; 0; zÞ ; σ33ðL12 ; L22 ; zÞ
� �

; ��
yz ¼ �yzð3h10Þ;��

zz ¼ �zzð0Þ
VðzÞ ¼ 1000e0

L1q0
ΦðL12 ; L22 ; zÞ ; DzðzÞ ¼ C0

e0q0
D3ðL12 ; L22 ; zÞ; V� ¼ Vð4h10Þ;D�

z ¼ Dzðh2Þ

(20)

actuator configuration: Φð~zÞ ¼ Φ0 sin
πx1
L1

� 	
sin πx2

L2

� 	
; σi3ð~zÞ ¼ 0

UðzÞ;WðzÞ½ � ¼ C0
e0Φ0

u1ðL14 ; L22 ; zÞ ; u3ðL12 ; L22 ; zÞ
� �

; U� ¼ Uðh2Þ;W� ¼ Wð0Þ
�xxðzÞ;�xzðzÞ½ � ¼ L1

e0Φ0
σ11ðL12 ; L22 ; zÞ ; σ13ðL18 ; L22 ; zÞ
� �

; ��
xx ¼ �xxð� h

2Þ;��
xz ¼ �xzð3h10Þ

�yzðzÞ;�zzðzÞ
� � ¼ L1

e0Φ0
σ23ðL18 ; 0; zÞ ; σ33ðL18 ; L22 ; zÞ
� �

; ��
yz ¼ �yzð3h10Þ;��

zz ¼ �zzð0Þ
VðzÞ ¼ 1

Φ0
ΦðL12 ; L22 ; zÞ ; DzðzÞ ¼ L1C0

100e20Φ0
D3ðL12 ; L22 ; zÞ; V� ¼ Vð4h10Þ;D�

z ¼ Dzðh2Þ
(21)

The coefficients employed for the non-dimensional quantities defined above are C0 ¼
99:201 [GPa], e0 ¼ �7:209 [Cm�2]

Table 7 summarizes the reference values reported in [32] with present solutions
obtained by a quasi-3D model adopting an ED6;6=6 model for the piezoelectric ply, an
LD6;6 model for the elastic substrate and Ritz expansion orders R ¼ S ¼ 30. The non-
dimensional local response quantities defined in Eq.(20) (sensor configuration) and in Eq.
(21) (actuator configuration) are reported for both, the SP and CD boundary conditions.
For the SP boundary conditions, the present Ritz solution converges very rapidly (the
reported values were already obtained with R ¼ S ¼ 8) and exactly matches the analy-
tical 3D solution. For the CD configuration the convergence is definitively slower, as
already remarked by Vel and Batra [32], due to the difficulty in satisfying the electric
boundary condition of the insulated edges of the piezoelectric ply. Nevertheless, the
present results are shown to well agree with the exact 3D solution even in the CD
configuration.

The influence of electro-mechanical boundary conditions is illustrated in Figure 5 for
the sensor configuration and in Figure 6 for the actuator configuration. The through-the-
thickness distributions are reported of the non-dimensional in-plane and transverse
displacements UðzÞ and WðzÞ (Figure 5(a) and 6(a)), as well as bending and shear
stresses �xxðzÞ and �xzðzÞ (Figure 5(b) and 6(b)). The results are obtained with the
quasi-3D model ED6;6=6/LD6;6 with R ¼ S ¼ 30.

Table 7. T2: Comparison between local non-dimensional response obtained with the quasi-3D
model ED6;6=6/LD6;6 with R ¼ S ¼ 30 and the analytical 3D solution.

Sensor configuration Actuator configuration

SP configuration CD configuration SP configuration CD configuration

present 3D [32] present 3D [32] present 3D [32] present 3D [32]

U� −1.933 −1.933 −1.081 −1.082 10.160 10.161 4.773 4.774
W� 14.325 14.325 10.849 10.851 −25.861 −25.862 −14.198 −14.205
��

xx 9.329 9.329 6.683 6.652 15.517 15.517 11.114 11.115
��

xz 0.972 0.972 1.068 1.056 1.042 1.042 −0.021 0.057
��

yz 0.384 0.384 0.095 0.096 0.836 0.836 2.184 2.184
��

zz 0.419 0.419 0.462 0.462 −0.119 −0.119 −0.011 −0.012
V� −3.668 −3.668 −3.019 −3.020 0.505 0.505 0.503 0.502
D�
z 21.563 21.563 13.240 13.301 −9.878 −9.878 −9.431 −9.440
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Under the action of an external pressure load (sensor case), the in-plane displacement
shows a strong zig-zag distribution, which is more accentuated for the CD boundary
conditions than for the SP boundary conditions, see Figure 5(a) left. Due to the clamped
edges, the CD configuration reduces the deflection of the plate (Figure 5(a) right) and,
hence, the bending stress �xx (Figure 5(b) left). This stress is largest at the outer surfaces
z ¼ � h

2 . The transverse shear stress �xz is quadratic in each ply and shows its maximum
value within the bottom GrEp ply, whose fibers are oriented along the x axis (Figure 5
right). This stress is approximately 1.5 times larger in the CD configuration than in the SP
configuration.

In the actuator configuration, the zig-zag shape of the in-plane displacement is barely
appreciable, see Figure 6(a) left. Figure 6(a) right shows that the transverse displacement
is clearly non-constant across the plate thickness, with a rather steep linear variation
across the piezoelectric actuator. Obviously, the clamped edges in the CD configuration
reduce the deflection induced by the actuation. The through-thickness distribution of
the bending stress �xx , illustrated in Figure 6(b) left, is sensibly different from that of the
sensor configuration: on the one hand, it shows its maximum values at the interfaces
between the outer plies and the central GrEp ply, and not at the outer surfaces; on the
other hand, the bending stress in the piezoelectric actuator is larger in the CD config-
uration than in the SP configuration. The transverse shear stress �xz is again quadratic in
each ply and has its largest value within the bottom GrEp ply, but it shows an important
peak also at the interface between the PZT ply and the elastic substrate.

A final comment is made concerning the fulfilment of the transverse stress boundary
conditions at the top/bottom faces of the plate as well as their continuity at interfaces
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Figure 5. T2-Sensor configuration: influence of the boundary conditions on the mechanical response
of the PZT/GrEp laminate subjected to an external pressure load.
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Figure 6. T2-Actuator configuration: influence of the boundary conditions on the mechanical
response of the PZT/GrEp laminate under the action of an electric potential difference in the PZT ply.
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between dissimilar material plies, see the rightmost graphics of Figure 5(b) and 6(b).
Despite the present model is a displacement-based one, the high order expansion
employed in each material ply (polynomials of degree 6) yields in fact very accurate
solutions even for the transverse stress field, including the fulfilment of the natural
boundary conditions. In order to satisfy these conditions with low-order models, one
may consider the use of (partially) mixed formulations, see, e.g. [33,34].

3.3. Free-vibration analysis of a double sandwich plate with bonded
piezoelectric plies (T3)

The third test case (T3) addresses the free-vibration response of an elastic substrate
consisting of a double sandwich plate with two piezoelectric plies bonded at the top
and bottom surfaces. The plate is square, of total thickness h and simply-supported at its
four edges. Figure 7(a) illustrates the composite stack and the electric boundary condi-
tions: the double sandwich consists of two cores sandwiched between two composite
laminates and separated by a third composite laminate; each composite laminate has
three plies with stacking sequence [0/90/0]; the top surface as well as the interfaces
between the elastic substrate and the piezoelectric plies are electroded and grounded,
whereas the bottom surface is not electroded. The properties of the piezoelectric
material (PZT-5A) correspond to those listed in Table 6, the mechanical properties of
the core and face ply materials are listed in Table 8. This configuration, taken from
Kapuria and Nath [35], is here employed for highlighting how the proposed SGUF
approach can optimize the number of DOF for reaching a desired accuracy. For this,
models for the whole stack will be first proposed without resorting to the definition of
sublaminates (i.e., only one sublaminate represents the whole stack) and then by

Φ = 0

orthotropic core

orthotropic core

PZT-5A

PZT-5A

[0◦/90◦/0◦] laminate

[0◦/90◦/0◦] laminate

[0◦/90◦/0◦] laminate

0.05h

0.05h

0.315h

3 × 0.03h

3 × 0.03h

0.315h

3 × 0.03h

(a) Geometry and electric BC

SL2

SL1

SL3
(b) 3 sublaminates

SL2

SL1

SL3

SL4

SL5

SL6

SL7
(c) 7 sublaminates

Figure 7. T3: (a) double sandwich plate with bonded piezoelectric plies; (b) subdivision in Nk ¼ 3
sublaminates; (c) subdivision in Nk ¼ 7 sublaminates.
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subdividing the stack into 3 and 7 sublaminates, as indicated in Figure 7(b and c),
respectively.

The results are reported in terms of non-dimensional circular eigenfrequencies

�ω ¼ ω
L21
h

ffiffiffiffiffi
ρ0
E0

r
with ρ0¼ 103 ½kgm�3�; E0 ¼ 6:9 ½GPa� (22)

A thick ða=h ¼ S ¼ 5Þ and a moderately thin plate ðS ¼ 20Þ are considered and the
attention is limited to the flexural modes (1,1), (2,1) and (3,1), which correspond to
vibration modes with 1, 2 and 3 halfwaves along the x1 direction, respectively. Ritz
expansion orders R ¼ S ¼ 8 are used which ensure converged solutions. Table 9 and
Table 10 report the percentage difference between the 3D solutions, denoted by �ω3D

and provided in [35], and those obtained by some models of the proposed variable
kinematics approach.

By using only one sublaminate, Nk ¼ 1, the electric potential is always LW in order to
meet the electric boundary conditions, while the kinematics may be chosen as LW or

Table 8. T3: Material data for the face and core materials.
face ply core

C11[GPa] 133.931 1.976� 10�3

C12[GPa] 4.423 1.773� 10�3

C13[GPa] 4.423 1.475� 10�3

C22[GPa] 9.226 1.791� 10�3

C23[GPa] 4.595 1.406� 10�3

C33[GPa] 9.226 2.761
C44[GPa] 2.332 0.4554
C55[GPa] 2.332 0.5451
C66[GPa] 3.558 0.01656
ρ[kgm�3] 1000 70

Table 9. T3: assessment of models with one, three and seven sublaminates for a thick plate S ¼ 5.
mode (1,1) mode (2,1) mode (3,1)

�ω3D [–] 5.6641 9.9708 14.963

1 sublaminate (Nk ¼ 1)
model DOF �ω[–] �ω��ω3D

�ω3D
[%] �ω[–] �ω��ω3D

�ω3D
[%] �ω[–] �ω��ω3D

�ω3D
[%]

LD3;2=2 134 5.6641 0.00 9.9708 0.00 14.964 0.01
LD2 108 5.6641 0.00 9.9709 0.00 14.964 0.01
LD1;0=2 56 5.6437 −0.01 10.015 0.44 15.130 1.11
DZ3;Z2=L2 41 6.8754 21.82 12.452 24.88 18.672 24.79
DE3;E2=L2 38 6.9477 23.10 12.662 26.99 19.028 27.17

3 sublaminates (Nk ¼ 3): ED1;0=2/SL2/ED1;0=1
SL2 DOF �ω [–] �ω��ω3D

�ω3D
[%] �ω [–] �ω��ω3D

�ω3D
[%] �ω [–] �ω��ω3D

�ω3D
[%]

LD3;2 100 5.6393 −0.09 9.9587 −0.12 14.938 −0.16
LD1;0 34 5.6430 −0.02 10.012 0.42 15.123 1.07
EDZ3;2 23 6.7114 18.91 11.901 19.36 17.528 17.14
ED3;2 20 6.8407 21.20 12.340 23.76 18.267 22.08

7 sublaminates (Nk ¼ 7): ED1;0=2/SL-F/SL-C/SL-F/SL-C/SL-F/ED1;0=1
SL-F/SL-C DOF �ω[–] �ω��ω3D

�ω3D
[%] �ω[–] �ω��ω3D

�ω3D
[%] �ω[–] �ω��ω3D

�ω3D
[%]

DZ1;E0=ED1;2 32 5.6347 −0.17 9.9661 −0.05 14.987 0.16
ED1;0=ED1;2 26 5.6404 −0.07 9.9850 0.14 15.039 0.51
ED1;0=ED1;0 22 5.6495 0.09 10.032 0.61 15.176 1.42
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ESL. The high-order LW model LD3;2=2 and the classical CUF model LD2 both provide the
exact 3D solution, but these models need at least 100 DOF. Adopting the FSDT kine-
matics in each ply reduces the number of DOF to 56; in this case, an error larger than 1%
is found only for the shortest wavelength (3,1) mode of the thick plate (S ¼ 5Þ. Models
that rely upon an ESL kinematics for the whole composite stack are seen to be
inadequate, even if the Zig-Zag function is introduced. In fact, the Zig-Zag function
contributes only marginally because it is incapable of coping with the different inter-
faces that characterize the stack, e.g., the interface between the PZT-5A ply and the face
ply and that between the face ply and the core. It is worth noticing that models
adopting the plane stress condition for the piezoelectric constitutive law, which is the
case for the FSDT kinematics, may yield lower eigenfrequencies than the 3D reference. In
fact, low-order kinematics in conjunction with the plane stress assumption comes along
with an underestimation of the electrical energy induced by the electro-mechanical
coupling, which in turn results in an overly compliant response of the piezoelectric
structure. Similar results can be found, e.g., in [35,36].

Models with Nk ¼ 3 sublaminates are defined upon regrouping all plies constituting
the double sandwich elastic plate into the second sublaminate (SL2), see Figure 7(b). The
results in Tables 9 and 10 are thus obtained with several representative models for the
double sandwich structure SL2. The piezoelectric plies are modeled with an FSDT
kinematics in conjunction with an electric potential distribution that is quadratic for
the short-circuited ply at the top (SL1) and linear for the open-circuited ply at the
bottom (SL3). With respect to the case with only one sublaminate, the number of DOF
is already reduced by because no electric potential DOF are associated to the elastic
basis structure. Moreover, since the piezoelectric plies and the SL2 are assembled in an
LW sense, the accuracy is in general higher than that of models with only one
sublaminate.

Table 10. T3: assessment of models with with one, three and seven sublaminates for a moderately
thin plate S ¼ 20.

mode (1,1) mode (2,1) mode (3,1)
�ω3D [–] 11.059 26.013 44.708

1 sublaminate (Nk ¼ 1)
model DOF �ω[–] �ω��ω3D

�ω3D
[%] �ω[–] �ω��ω3D

�ω3D
[%] �ω[–] �ω��ω3D

�ω3D
[%]

LD3;2=2 134 11.059 0.00 26.013 0.00 44.712 0.01
LD2 108 11.059 0.00 26.013 0.00 44.712 0.01
LD1;0=2 56 11.053 −0.06 25.989 −0.09 44.671 −0.08
DZ3;Z2=L2 41 11.574 4.65 28.572 9.84 51.381 14.93
DE3;E2=L2 38 11.599 4.88 28.808 10.75 52.098 16.53

3 sublaminates (Nk ¼ 3): ED1;0=2/SL2/ED1;0=1
SL2 DOF �ω[–] �ω��ω3D

�ω3D
[%] �ω[–] �ω��ω3D

�ω3D
[%] �ω[–] �ω��ω3D

�ω3D
[%]

LD3;2 100 11.057 −0.02 26.005 −0.03 44.691 −0.04
LD1;0 34 11.052 −0.06 25.989 −0.09 44.669 −0.09
EDZ3;2 23 11.513 4.11 28.242 8.57 50.450 12.84
ED3;2 20 11.556 4.50 28.646 10.12 51.667 15.57

7 sublaminates (Nk ¼ 7): ED1;0=2/SL-F/SL-C/SL-F/SL-C/SL-F/ED1;0=1
SL-F/SL-C DOF �ω[–] �ω��ω3D

�ω3D
[%] �ω[–] �ω��ω3D

�ω3D
[%] �ω[–] �ω��ω3D

�ω3D
[%]

DZ1;E0=ED1;2 32 11.053 −0.06 25.988 −0.01 44.657 −0.11
ED1;0=ED1;2 26 11.055 −0.03 26.000 −0.05 44.690 −0.04
ED1;0=ED1;0 22 11.055 −0.03 26.004 −0.04 44.709 0.00
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An even more efficient modeling strategy consists in regrouping into different sub-
laminates the two piezoelectric plies, the two core plies and the three laminated faces of
the sandwich structure, see Figure 7(c). In Tables 9 and 10, this representation involving
7 sublaminates is identified by specifying the sublaminate models for the cores
(SL3 = SL5 = SL-C) and those for the laminated faces (SL2 = SL4 = SL6 = SL-F). The
models ED1;0=2 and ED1;0=1 are again employed for the sublaminates SL1 and SL7
corresponding to the top and bottom piezoelectric plies, respectively. In general, it
can be seen that the LW assembly of sublaminates allows to reduce the order of the
approximations inside each sublaminate without affecting the accuracy. So, a simple
FSDT kinematics with or without Zig-Zag function for the in-plane displacements can be
used for the laminated faces. The core model may be based on FSDT also, or it may be
enhanced upon retaining the through-thickness stretch (ED1;2 model for SL-C). This latter
effect is seen to play a certain role only in the (3,1) mode of the thick plate (S ¼ 5Þ. If an
error of 1.4% is acceptable for this mode, the less expensive model has only 22 DOF,
otherwise a model with 26 DOF can be used, which ensures a maximum error of 0.5% for
all considered modes. This level of accuracy can be achieved at this relatively low
number of DOF thanks to the subdivision of the whole stack into several sublaminates.

In closure, the number of DOF required by the present Ritz-SGUF approach is
compared with respect to a solid FEM approach available in commercial packages for
the piezoelectric analysis. Only the number of DOF along the thickness coordinate shall
be here considered, the discretization employed to resolve the gradients in the
ðx; yÞ � plane won’t be taken into account. Nevertheless, it is worth recalling that the
FE mesh should avoid extreme aspect ratios of the 3D elements in order to ensure a
proper conditioning, which means that the in-plane mesh density should depend on the
number of elements employed across the thickness. In order to capture the piezoelectric
coupling inside the top ply, at least 2 linear finite elements are required across the
thickness for approximating the electric potential, i.e., 3 electric potential DOF. Since in
solid elements the same approximation is used for all unknowns, a total of 12 DOF
should be used across the thickness of the piezoelectric ply. On the contrary, since the
present variable kinematics approach can introduce different approximations for the
field variables, the employed model ED1;0=2 uses only 8 DOF for the piezoelectric ply.
Similar considerations hold for all models in which the order of expansion is different for
the different field variables. It is finally mentioned that some commercial FEM packages
allow to model sublaminates by means of laminated solid-shell elements. In this case,
only FSDT kinematics can be used and no piezoelectric coupling is present.

4. Conclusions and outlook

A variable-kinematics modeling approach based on the Sublaminate Generalized Unified
Formulation (SGUF) has been extended to composite plates with bonded piezoelectric
plies working in extension mode. Ritz method has been used to solve in weak form the
resulting two-dimensional differential equations, which may include various types of
essential boundary conditions, in particular equipotential surfaces. The proposed results
have demonstrated that the resulting SGUF-Ritz approach is a valuable tool for ðiÞ
investigating piezoelectric plate problems, including static actuator or sensor
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applications and free-vibration analysis with various electro-mechanical boundary con-
ditions; ðiiÞ assessing a large number of models in view of a minimization of the number
of DOF with a controlled accuracy, i.e., for identifying the best compromise between
computational cost and results’ accuracy. As a general guideline, the accuracy is greatly
enhanced by adopting separate sublaminates for groups of plies characterised by a
strong mismatch with respect to adjacent plies, i.e., by using separate sublaminates for
the piezoelectric plies, the stiff composite laminates and the soft core plies.

The effect of model assumptions on the accuracy can be quantified in a systematic
manner with respect to the associated computational cost by referring to the so-called
mixed axiomatic/asymptotic approach [37–39]: Best Theory Diagrams have been derived
in the framework of analytical Navier-type and FEM solutions for sample problems
involving homogeneous metallic plates as well as laminated and sandwich plates. This
technique has been applied to analytical Navier-type solutions for piezoelectric plates in
[40]. The implementation of this methodology on the basis of the Ritz-SGUF approach
could be an interesting subject for a further study.

Further work will be dedicated to the inclusion of viscoelastic elements for the design
and analysis of integrated active-passive vibration damping systems. A finite element
implementation of the SGUF approach with a consistent global-local submodeling
approach related to the 2D mesh shall allow an efficient investigation of more complex
configurations, e.g. realistic structures with multiple active and/or passive damping
patches.
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